
Gradient DCE for Tru64TM UNIX

Reference Guide

Software Version 4.2

Notices

Gradient DCE for Tru64 UNIX Reference Guide - Software Version 4.2 - Revised November 2001

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A
SEPARATE LICENSE AGREEMENT, AND MAY BE USED AND COPIED ONLY IN ACCORDANCE
WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE COPYRIGHT
NOTICE BELOW. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN
WITH ENTEGRITY SOLUTIONS CORPORATION AND OR ITS LICENSOREES.

The information contained in this document is subject to change without notice.

ENTEGRITY SOLUTIONS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
SOFTWARE, DOCUMENTATION AND THIS MATERIAL, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Entegrity Solutions shall not be liable for errors contained herein, or for any direct or indirect, incidental,
special or consequential damages in connection with the furnishing, performance, or use of this material.

Use, duplication or disclosure by the Government is subject to restrictions as set forth in Entegrity’s
standard commercial license agreement and is commercial computer software and documentation pursuant
to Section 12.212 of the FAR and 227.7202 subparagraph (c) (1) (i) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

Entegrity, Entegrity Solutions, and Gradient are registered trademarks of Entegrity Solutions Corporation.
NetCrusader is a trademark of Entegrity Solutions Corporation.

Compaq, TruCluster,and AlphaServer are registered trademarks of Compaq Computer Corporation. Tru64
is a trademark of Compaq Computer Corporation. The the names of other Compaq products referenced
herein are trademarks or service marks, or registered trademarks or service marks, of Compaq Computer
Corporation.

Kerberos is a trademark of Massachusetts Institute of Technology. UNIX is a registered trademark of The
Open Group. The Open Group is a trademark of The Open Group. DCE is copyrighted by The Open Group
and other parties. Other products mentioned in the document are trademarks or registered trademarks of
their respective holders.

Copyright © 1991–2001 The Open Group

Copyright © 2001 Entegrity Solutions Corporation & its subsidiaries.

All Rights Reserved.

Entegrity Solutions Corporation, 2077 Gateway Place, Suite 200, San Jose, CA 95110, USA

Contents
Notices 2

Preface 5
Intended Audience 5
Overview of this Guide 5
Conventions 5
Related Documentation 6
Contacting Entegrity Solutions 7
Obtaining Technical Support 7
Obtaining Additional Technical Information 8
Obtaining Additional Documentation 8

Chapter 1 dcesetup Reference Page 9

Description 9
Permissions Required 9

Chapter 2 idl Reference Page 11

Name 11
Synopsis 11
Arguments 11
Description 18
Restrictions 18
Cautions 19
Files 19
Examples 19
Related Information 19

Chapter 3 XDS Directory Services Reference
Pages 21

ds_intro(3xds) 21
ds_abandon(3xds) 23
ds_add_entry(3xds) 25
ds_bind(3xds) 31
ds_compare(3xds) 34
ds_initialize(3xds) 39
ds_list(3xds) 40
ds_modify_entry(3xds) 45
ds_modify_rdn(3xds) 51
ds_read(3xds) 54
ds_receive_result(3xds) 63

4 NetCrusader/DCE Reference Guide
ds_remove_entry(3xds) 66
ds_search(3xds) 70
ds_shutdown(3xds) 76
ds_unbind(3xds) 78
ds_version(3xds) 80
dsX_trace_object(3xds) 81

Chapter 4 XDS Object Management
Reference Pages 85

om_intro(3xom) 85
om_copy(3xom) 87
om_copy_value(3xom) 89
om_create(3xom) 92
om_decode(3xom) 94
om_delete(3xom) 96
om_encode(3xom) 98
om_get(3xom) 100
om_instance(3xom) 105
om_put(3xom) 107
om_read(3xom) 111
om_remove(3xom) 115
om_write(3xom) 117

Chapter 5 Command Reference Pages 121

cdscache(8dce) 121
clearinghouse(8dce) 127
directory(8dce) 139
ldap_addcell(8dce) 155
gdad(8cds) 157
dtsd(8dts) 159
randd(8sec) 161

Preface
Intended Audience
The audience for this guide includes the following:

■ Experienced programmers who want to write client/server applications.
■ Experienced programmers who want to port existing applications to DCE.
■ Users who want to run distributed applications.

Overview of this Guide
The Gradient® DCE for Tru64™ UNIX® Reference Guide provides users of
Gradient DCE with reference information necessary to use Gradient DCE on
Tru64 UNIX Version 5.0a systems. This guide should be used with the
documents listed under Related Documentation .

Gradient DCE for Tru64 UNIX v4.0 is a layered product on the Tru64 UNIX
Version 5.0, 5.0a, and 5.1operating systems. It is a compatible upgrade of
DCE for Tru64 UNIX Version 3.0.. It consists of a full DCE implementation
as defined by The Open Group (TOG). This software includes these
components:

■ Remote Procedure Call (RPC)
■ Cell Directory Service (CDS)
■ Distributed Time Service (DTS)
■ DCE Security
■ DCE Distributed File Service (DFS, based on DCE Release 1.2.2)
■ Lightweight Directory Access Protocol (LDAP)

NOTE: The products named Gradient DCE for Tru64 UNIX v3.1 (and higher),
Digital DCE v3.1, and Compaq DCE v3.1 provide essentially the same
features; however, only Gradient DCE for Tru64 UNIX functions on the
Tru64 UNIX v5.0a operating system. Although other company names may be
referenced within this document (Digital, Compaq, or Gradient
Technologies), this DCE product is now produced and supported by Entegrity
Solutions® Corporation.

Conventions
The following conventions are used in this guide:

UPPERCASE

and lowercase

The operating system differentiates between lowercase and
uppercase characters. Literal strings that appear in text, examples,
syntax descriptions, and function definitions must be typed exactly as
shown.

6 Gradient DCE for Tru64 UNIX Reference Guide
Related Documentation
The following documents are available in HTML and Acrobat format on the
Entegrity software CD:

■ Gradient DCE for Tru64 UNIX Installation and Configuration Guide
Describes how to install DCE and configure and manage your DCE cell.

■ Gradient DCE for Tru64 UNIX Product Guide Provides supplemental
documentation for Gradient DCE value-added features.

■ Gradient DCE for Tru64 UNIX Reference Guide (this guide) Provides
supplemental reference information for Gradient DCE value-added
features.

■ Gradient DCE for Tru64 UNIX Release Notes Lists new features, bug
fixes, and known problems and restrictions.

The following OSF DCE Release 1.2.2 technical documentation is provided
on the Entegrity software CD in PDF format:

■ Introduction to OSF DCE Contains a high-level overview of DCE
technology including its architecture, components, and potential use.

■ OSF DCE Administration Guide - Introduction Describes the issues
and conventions concerning DCE as a whole system and provides
guidance for planning and configuring a DCE system.

■ OSF DCE Administration Guide - Core Components Provides specific
instructions on how core components should be installed and configured.

■ OSF DCE Application Development Guide - Introduction and Style Guide
 Serves as a starting point for application developers to learn how to
develop DCE applications.

■ OSF DCE Application Development Guide - Core Components
Provides information on how to develop DCE applications using core
DCE components such as RPC and security.

bold Boldface type in interactive examples indicates typed user input.
In general text reference, bold indicates file names and commands.

italics Italic type indicates variable values, placeholders, and function
argument names.

special type Indicates system output in interactive and code examples.

% The default user prompt is your system name followed by a right
angle bracket (>). In this manual, a percent sign (%) is used to
represent this prompt.

A number sign (#) represents the superuser prompt.

Ctrl/x This symbol indicates that you hold down the Ctrl key while pressing
the key or mouse button that follows the slash.

<Return> Refers to the key on your terminal or workstation that is labeled with
Return or Enter.

Preface 7
■ OSF DCE Application Development Guide - Directory Services
Contains information for developers building applications that use DCE
Directory Services.

■ OSF DCE Application Development Reference Provides reference
information for DCE application programming interfaces.

■ OSF DCE Command Reference Describes commands available to
system administrators.

Contacting Entegrity Solutions

Obtaining Technical Support
If you purchased your NetCrusader™ product directly from Entegrity
Solutions Corporation or Gradient Technologies, Inc. you are entitled to 30
days of limited technical support beginning on the day the product is expected
to arrive.

You may also purchase a support plan that entitles you to additional services.
You must register prior to receiving this support. For details, refer to the
customer support information package that accompanied your shipment or
refer to the Technical Support area of http://support.entegrity.com. The web
site also contains online forms for easy registration.

If you purchased NetCrusader from a reseller, please contact the reseller for
information on obtaining technical support.

Contact Address Phone/Fax/E-mail

DCE Product and Sales
Information

Entegrity Solutions Corporation
410 Amherst Street, Suite 150
Nashua, NH 03063 USA

E-mail: DCESales@entegrity.com
Web: www.entegrity.com

Telephone and Fax:

United States and Canada
Tel: +1 (603) 882-1306
Tel (US Only): 1-800-525-4343
Fax: +1 (603) 882-6092

All Other Product and Sales
Information Requests

Entegrity Solutions Corporation
2077 Gateway Place, Suite 200
San Jose, CA 95110 USA

E-mail: info@entegrity.com
Web: www.entegrity.com

Telephone and Fax:
Tel: +1 (408) 487-8600
Tel (US Only): 1-866-487-8600
Fax: +1 (408) 487-8610

Technical Support Entegrity Solutions Corporation
Technical Support
2 Mount Royal Ave.
Marlborough, MA 01752 USA

United States and Canada:
Tel: +1 (508) 229-0239
Tel (US Only): 1 (888) 368-3555
Fax: +1 (508) 229-0338

E-mail: support@entegrity.com
http://support.entegrity.com

8 Gradient DCE for Tru64 UNIX Reference Guide
Obtaining Additional Technical Information

Obtaining Additional Documentation
All documentation for your NetCrusader product is provided in electronic
format on the same CD on which the product ships. See the product CD for
information on accessing this documentation.

Documentation for all of Entegrity’s products is available at http://
support.entegrity.com. Enter the Support Web area and click the
Documentation link.

We are always trying to improve our documentation. If you notice any
inaccuracies or cannot find information, please send email to
docs@entegrity.com. We welcome any comments or suggestions.

Contact Address Phone/Fax/Email

The Open Group™
Developer of DCE (Distributed
Computing Architecture)
software and standards.

The Open Group™
29B Montvale Ave
Woburn MA 01801
U. S. A.

Tel: +1 781-376-8200
Fax: +1 781-376-9358

http://www.opengroup.org

C H A PT E R 1

dcesetup Reference Page
This chapter contains the dcesetup(8dce) reference page.
Gradient DCE for Tru64 UNIX provides the dcesetup utility for use in
configuring DCE services. The dcesetup utility replaces the dce_config
program provided with OSF DCE Release 1.1.

Description
dcesetup - Configures and starts up DCE. The command invokes an enhanced
configuration utility to configure and start DCE services. The configuration
utility displays a menu that allows you to perform the following operations:

■ Configure DCE services (config)

■ Show DCE configuration and active daemons (show)

■ Terminate all active DCE daemons (stop)

■ Start all DCE daemons (start)

■ Terminate and restart all DCE daemons (restart)

■ Terminate all active DCE daemons and remove all temporary local DCE
databases (clean)

■ Terminate all active DCE daemons and remove all permanent local DCE
databases (clobber)

■ Run the Configuration Verification Program (cvp)

Permissions Required
You must have root authority to run the dcesetup command. See the Gradient
DCE for Tru64 UNIX Installation and Configuration Guide and the Gradient
DCE for Tru64 UNIX Product Guide for more information about dcesetup.

C H A PT E R 2

idl Reference Page
This chapter contains a revised idl(1rpc) reference page which includes
information about the following value-added functions:

■ Support for Digital Fortran applications
■ Support for C++ object oriented idl extensions.
■ Support for Digital extensions provided in Digital products based on OSF DCE

Release 1.0.

Name
idl - Invokes the Interface Definition Language (IDL) compiler

Synopsis
idl filename [argument] ...

Arguments
-client file_type

Determines which client files to generate. If you do not specify this
argument, the compiler generates all client files. The file types are as
follows:

none

Does not generate client files.

stub

Generates only a client stub file.

aux

Generates only a client auxiliary file. A client auxiliary file is generated
only if the interface contains any out-of-line or self-pointing types.

all

Generates client stub and client auxiliary files. This is the default and is the
same as not specifying the -client argument.

-server file_type

12 Gradient DCE for Tru64 UNIX Reference Guide
Determines which server files to generate. If you do not specify this
argument, the compiler generates all server files. The file types are as
follows:

none

Does not generate server files.

stub

Generates only a server stub file.

aux

Generates only a server auxiliary file. A server auxiliary file is generated
only if the interface contains any out-of-line, self-pointing, or pipe types.

all

Generates server stub and server auxiliary files. This is the default and is
the same as not specifying the -server argument.

-standard standard_type

Allows you to specify portable or extended features of the OSF DCE. This
option is useful when you perform builds. The standard_type argument
specifies what IDL features to enable. If you do not specify this argument,
the compiler generates warning messages for all features that are not
available in the previous version of OSF DCE.

You can specify one of the following values for the standard_type
argument:

portable

Allows only the language features available in OSF DCE Version 1.0.2.

dce_v10

Synonymous with the portable argument.

dec_v10

Allows all language features supported by the standard dce_v10
argument, plus a set of Digital extensions to its products based on OSF
DCE Version 1.0.

extended

Allows all language features supported in the current version of the
compiler. This is the default.

dce_v11

Synonymous with the extended argument.

The following example command line compiles the IDL interface test.idl
and enables extended features of the OSF DCE:

%% idl test.idl -standard extended

-cstub filename

Chapter 2 idl Reference Page 13
Specifies a pathname for the client stub file. When you give a filename, do
not give a file extension; the idl compiler appends .c to the C source file
and .o to the object file. If you do not use the -cstub argument, the idl
compiler appends _cstub.c to the C source file and _cstub.o to the object
file. If the -lang cxx option is used, the source file has the .cxx extension.

-sstub filename

Specifies a pathname for the server stub file. When you give a filename, do
not give a file extension; the idl compiler appends .c to the C source file
and .o to the object file. If you do not use the -sstub argument, the idl
compiler appends _sstub.c to the C source file and _sstub.o to the object
file. If the -lang cxx option is used, the source file has the .cxx extension.

-caux filename

Specifies a pathname for the client auxiliary file. When you give a
filename, do not give a file extension; the idl compiler appends .c to the C
source file and .o to the object file. If you do not use the -caux argument,
the idl compiler appends _caux.c to the C source file and _caux.o to the
object file. If the -lang cxx option is used, the source file has the .cxx
extension.

-saux filename

Specifies a pathname for the server auxiliary file. When you give a
filename, do not give a file extension; the idl compiler appends .c to the C
source file and .o to the object file. If you do not use the -caux argument,
the idl compiler appends _saux.c to the C source file and _saux.o to the
object file. If the -lang cxx option is used, the source file has the .cxx
extension.

-header header_file

Allows you to specify a name for the generated header file. By default the
compiler takes the basename of the IDL file and appends the .h extension
to it.

-out directory

Places the output files in the directory you specify. By default the compiler
places the output files in the current working directory.

-Idirectory Specifies a directory name that contains imported interface
definition files. You can specify more than one directory by specifying
additional -Idirectory arguments on the command line. The compiler
searches the directories in the order you list them. If a file is present in
more than one directory, the compiler takes the first occurrence of the file.
The default behavior of the compiler is to first search the current directory,
then all directories you specify, then the system IDL directory. The
directory you specify is also passed to the C preprocessor and the C
compiler.

-no_def_idir

14 Gradient DCE for Tru64 UNIX Reference Guide
Specifies that the compiler search only the current directory for imported
files. When you use this with -Idirectory, the compiler searches only the
directories you list, not the current directory, and not the system IDL
directory.

-no_mepv

Causes the compiler to not generate a manager entry point vector (EPV) in
the server stub. Use this argument if the manager code and IDL file do not
use the same operation names. If you specify this argument you must
provide an EPV within the manager code that can be used when the
interface is registered with the RPC server runtime.

The name of the type that you construct an EPV with is
if_name_vmajor-version_minor-version_epv_t where if_name is the
interface name. It is not necessary to use this argument if the operation
names in the manager code and IDL file are the same. In this case, the
compiler generates a manager EPV in the server stub using the names of
the operations in the IDL file. (For information on registering the server,
see the intro(3rpc) and rpc_server_register_if(3rpc) reference pages.
See the OSF DCE Application Development Guide.)

-cepv

Generates local routines in the client stub file (filename_cstub.c) and
defines a Client Entry Point Vector (CEPV) of the name
if_name_vmajor-version_minor-version_c_epv where if_name is the
interface name. The CEPV contains the addresses of the local routines.
The client code must call the routines indirectly by using the addresses in
the CEPV; otherwise, the stub routines in the client stub file must have the
same names as the operations in the IDL file. (For information on
registering the server, see the intro(3rpc) and
rpc_server_register_if(3rpc) reference pages. See the OSF DCE
Application Development Guide.)

-cpp_cmd ’c_preprocessor_command_line’

Allows you to specify a C preprocessor other than the default. The
compiler invokes the C preprocessor found in that command line. The
output of the C preprocessor is an expanded version of the input file(s)
containing replacement text for any preprocessor directives (for example,
the #include preprocessor directive).

-cpp_opt ’command_options’

Specifies additional options to be passed to the C preprocessor. You can
add options to the command line used to invoke the C preprocessor
independent of the -cpp_cmd argument. The IDL compiler concatenates
the -cpp_cmd, -cpp_opt, -D, -U, -I arguments and the source filename
into a command used to invoke the C preprocessor. The compiler repeats
this process for each Attribute Configuration File (ACF) and IDL file.

-no_cpp

Chapter 2 idl Reference Page 15
Does not invoke the C preprocessor. Note that the C preprocessor must be
run on files that contain preprocessor directives (such as #include) in the
interface definition.

-cc_cmd ’command_line’

Invokes the C compiler and compiler options you specify in the
’command_line’ argument rather than the default C compiler and compiler
options. When used with the -lang cxx option, the -cc_cmd option
specifies the C++ compiler.

-cc_opt ’command_options’

Specifies additional options to be passed to the C compiler. You can add
options to the command line used to invoke the C compiler independent of
the -cc_cmd argument. The IDL compiler concatenates the -cc_cmd,
-cc_opt, -I arguments and the source filename into a command that
invokes the C compiler. This procedure is done for each generated stub or
auxiliary file. When used with the -lang cxx option, the -cc_opt option
specifies the C++ compiler options.

-Dname[=definition]

Defines a symbol name and an optional value to be passed to the C
preprocessor. You can use this method of defining a symbol instead of
using #define in the source code. You can use more than one -Dname
argument on the command line. This argument has no effect if you use the
-no_cpp argument.

-Uname

Removes (undefines) any initial definition of a symbol name as defined by
-Dname. You can use this method to remove a symbol name instead of
using #undef in the source code. You can use more than one -Uname
argument on the command line. This argument has no effect if you use the
-no_cpp argument. If you define and undefine a name on the same
command line, undefining takes precedence.

-space_opt

Generates code for the marshalling and unmarshalling of data that is
optimized for space, rather than speed.

-syntax_only

Checks only the syntax of the IDL file, but does not generate any output
files.

-keep file_types

Specifies which files to retain. To produce the object modules, the IDL
compiler first creates C source modules, then invokes the target C
compiler to produce object modules, and finally, deletes the C source
modules. If you do not use -keep, only the object modules are saved.

The file types are as follows:

none

16 Gradient DCE for Tru64 UNIX Reference Guide
Does not save the C source or the object modules. Does not invoke the C
compiler.

c_source

Saves only the C source modules. Does not invoke the C compiler.

object

Saves only the object modules.

all

Saves both the C source and the object modules.

-bug n, -no_bug n

Retains (-bug) or does not retain (-no_bug) a specified bug from earlier
IDL compiler versions. (This in an NCS compatibility argument and is not
supported in OSF DCE Version 1.1).

-stdin

Takes the standard output of a previous utility as the input to the idl
command. For example:

$$ cat my_filename.idl | idl -stdin

-version

Displays the current version of the IDL compiler.

-v

Prints informational messages (verbose mode) on the screen while the
compiler is running.

-no_warn

Suppresses compiler warning messages.

-confirm

Displays all the idl command arguments you chose, but does not compile
the source IDL file. If you use this with the -v argument, informational
messages about how the compiler behaves if you do not use -confirm are
displayed but no corresponding actions are performed.

-template_client filename

Requests that the IDL compiler generate a C source file containing a
template implementation of each routine that must appear in the client
application to use the specified IDL interface. If you do not specify an
extension for filename, the compiler assigns the file extension .c.

-template_manager filename

Requests that the IDL compiler generate a C source file containing a
template implementation of each routine and operation that must appear in
the manager module of the server side of an application to use the
specified IDL interface. If you do not specify an extension for filename,
the compiler assigns the file extension .c.

Chapter 2 idl Reference Page 17
-trace value

Enables event logging.

You can specify one of the following values for the value argument:

all

Log all events.

none

Disable all previously specified trace options.

calls

Log events relating to start and end of all RPC calls.

context

Log events relating to context handle creation, deletion, and rundown.

errors

Log errors.

misc

Log all miscellaneous events.

log_manager

Enable command interface support which allows modification at runtime
of event logging options.

-lang {c, cxx, fortran}

Allows you to select a programming language.

If you are generating stubs and include files for application code written in
C++, you must specify cxx as the language of choice when you compile
the application’s IDL file. When appropriate, you can extend the class
hierarchy and derive other classes from this one, to implement some or all
interface operations. The C++ compiler gives a warning if any functions in
the interface class have not been implemented. Avoid overwriting the
manager class header file by using the -no_cxxmgr argument in
conjunction with the -lang cxx argument.

If you are generating stubs and include files for application code written in
Fortran, you must specify Fortran as the language of choice when you
compile the application’s IDL file.

If you do not specify -lang fortran or -lang cxx, the default value is the C
programming language or -lang c.

-no_cxxmgr

Prevents the compiler from overwriting the manager classheader file. Use
this argument in conjunction with the -lang cxx argument if you implement
application-specific C++ code in the manager class header file.

18 Gradient DCE for Tru64 UNIX Reference Guide
Description
The idl command invokes the IDL compiler to convert an interface definition,
written in IDL, into output files. The output files include a header file, server
stub file, client stub file, and auxiliary files. The compiler constructs the
names of the output files by keeping the basename of the interface definition
source file but replacing the filename extension with the new extension (or
suffix and extension) appropriate to the newly generated type of output file.
For example, math.idl could produce math_sstub.c or math_sstub.o for the
server stub.

The idl command accepts the following input:

■ An interface definition filename.
■ Arguments to indicate either special actions to be performed by the

compiler, or special properties of the input or output files.

The IDL compiler searches through directories for any related ACF. For
example, if you compile a file named source.idl, the compiler automatically
searches for a file named source.acf. The compiler also searches for any
imported IDL file (and its related ACF). The compiler searches for these files
using the following order:

1 The current working directory. The compiler always searches this
directory unless you specify the -no_def_idir and -Idirectory arguments
together.

2 Any imported directory. The compiler searches each directory you are
specifying in the -Idirectory argument.

3 The system IDL directory. The compiler automatically imports nbase.idl,
which resides in the system IDL directory. The compiler always searches
this directory unless you specify the -no_def_idir argument.

4 The directory specified in the source filename. If you explicitly specify a
directory in the source IDL pathname, then that directory is searched for
the corresponding ACF. For example,

$$ idl /path/pathname/my_source.idl

causes the IDL compiler to look for /path/pathname/my_source.acf if
my_source.acf is not found in the directories in 1,2 and 3.

Note that this directory is not searched for any imported IDL file or its
corresponding ACF.

Restrictions
The following filenames are reserved by the IDL compiler. Naming an IDL
file with one of these names may result in unexpected behavior
.

iovector.idl lbase.idl nbase.idl ncastat.idl

ndrold.idl rpc.idl rpcbase.idl rpcpvt.idl

rpcsts.idl rpctypes.idl twr.idl uuid.idl

Chapter 2 idl Reference Page 19
Cautions
The IDL compiler generates ANSI C code. It also supports C compilers that
are not fully ANSI compliant although a warning message may occur during
compilation of the stubs by the C compiler. A C compiler that is not fully
ANSI compliant may generate the following warning messages:

warning: & before array or function: ignored
warning: enumeration type clash, operator =

Files

Examples
1 Invoke the IDL compiler to compile the interface definition file test.idl

and keep the generated C source modules. Only server files are generated.
The server stub default filename is overridden by creating a file named
test_ss.c for the server stub module.

$$ idl test.idl -keep c_source -client none -sstub test_ss.c

2 Invoke the IDL compiler to compile the interface definition file test.idl,
but do not run the C preprocessor. The manager entry point vector is not
defined in the generated server stub module. The IDL compiler searches
the parent directory of the current directory for any IDL files that test.idl
could import. The generated output files are located in the output
subdirectory under the current directory.

$$ idl test.idl -no_cpp -no_mepv -I.. -out ./output

Related Information
Books: OSF DCE Application Development Guide.

/lib/cpp C preprocessor

dceshared/bin/idl Compiler

dceshared/include System IDL directory for imported files

dceshared/include/dce/nbase.idl Predefined IDL types

dceshared/nls/msg/LANG/idl.cat Compiler error messages

dceshared/share/include/file.ext All .idl or .h files that are part of DCE RPC

C H A PT E R 3

XDS Directory Services Reference
Pages
This chapter provides reference pages for the X/Open Directory Services
(XDS) API functions. Digital’s XDS implementation includes two additional
XDS functions that support asynchronous operations. The functions are as
follows:

■ The ds_abandon function abandons the outstanding asynchronous function call.

■ The ds_receive_result function retrieves completed results of an outstanding
asynchronous operation.

ds_intro(3xds)

Name
ds_intro - This reference page introduces the X/OPEN Directory Services
(XDS) functions.

Syntax
#include <xom.h>
#include <xds.h>

Description
This reference page lists the XDS interface functions supported in the Digital
X.500 product. XDS provides a C language binding
.

Function Description

ds_abandon Abandons an outstanding asynchronous operation.

ds_add_entry Adds a leaf entry to the Directory Information Tree (DIT).

ds_bind Opens a session with a directory user agent.

ds_compare Compares a purported attribute value with the attribute value stored
in the directory for a particular entry.

ds_initialize Initializes the interface.

ds_list Enumerates the immediate subordinates of a particular directory
entry.

22 Gradient DCE for Tru64 UNIX Reference Guide
DCE Notes
The DEC X.500 Directory Service supports asynchronous operations, which
the Distributed Computing Environment (DCE) XDS interface does not.
Thus, the Abandon and Receive Result functions are included in the Digital
product.

The differences between the X.500 Directory Service and the Cell Directory
Service (CDS) are as follows:

■ All functions operate on the X.500 name space.

■ CDS does not support the Modify RDN or Search functions. The
Service-Error unwilling-to-perform is returned if either function is
attempted on CDS.

■ CDS does not support the X.500 schema. Therefore, CDS does not have:

■ The concept of an object class

■ Mandatory attributes for a given object

■ A set of attributes expressly permitted for a given object

■ A predefined definition of single and multivalued attributes

The absence of the schema means that the usual errors, which are returned
by X.500 for breach of the rules, are not returned by CDS.

■ The CDS naming Directory Information Tree (DIT) is modeled on a
typical file system architecture, in which directories are used to store
objects and can contain subdirectories. Leaf objects in the CDS DIT are
similar to X.500 naming objects. However, subtree objects are called
directories as in a file system directory. All new objects must be added to
an existing directory. CDS directory objects cannot be added, removed,
modified, or compared using the XDS programming interface.

ds_modify_entry Performs an atomic modification of a directory entry.

ds_modify_rdn Changes the Relative Distinguished Name (RDN) of a leaf entry.

ds_read Queries information on a directory entry by name

ds_receive_result Retrieves the result of an asynchronously executed operation

ds_remove_entry Removes a leaf entry from the DIT

ds_search Finds entries of interest in a portion of the DIT

ds_shutdown Shuts down the interface

ds_unbind Unbinds from a directory session

ds_version Negotiates features of the interface and service

dsX_trace_object Displays an explanation of the content of an object

Chapter 3 XDS Directory Services Reference Pages 23
■ In CDS, the naming attribute of an object is not stored in the object.
Consequently, in CDS the Read operation never returns this attribute, and
the Compare operation applied to this attribute returns with the
Attribute-Error constraint-violation.

See the notes in the relevant reference page for function-specific differences.

ds_abandon(3xds)

Name
ds_abandon - This function abandons an outstanding asynchronous operation.

Syntax
Status = ds_abandon(Session, Invoke-ID)

C Binding
DS_status ds_abandon(session, invoke_id)

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session in which the operation was submitted to
the directory.

Invoke-ID

Identifies the operation that is to be abandoned. You can only abandon
interrogatory operations (Compare, List, Read, and Search).

The value of Invoke-ID must be that which was returned by the function
call that initiated the asynchronous directory operation that is now to be
abandoned.

Argument Data Type Access

Session OM_private_object read

Invoke-ID Integer write

DS_status Status

OM_private_object session

OM_sint invoke_id

24 Gradient DCE for Tru64 UNIX Reference Guide
Description
This function abandons the outstanding asynchronous function call. The
asynchronous function is no longer outstanding after the Abandon function
returns, and the results of the asynchronous function will never be returned by
the Receive-Result function.

DCE Notes
The DCE XDS interface does not support asynchronous operations.

Return Value

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

■ Abandon-Failed

■ Communications-Error

■ Library-Error, with Problem attribute values of bad-session,or
miscellaneous

■ The result of the asynchronous operation will not be returned even if an
Abandon-Failed error is returned.

Example
The following code extract shows an example call to the Abandon function.

OM_private_object bound_session;
OM_sint invoke_id;
{
 DS_status status;
 status = ds_abandon(bound_session, invoke_id);
 if (status == DS_SUCCESS)
 {
 printf("ABANDON was successful\n");
 }
 else
 {
 printf("ABANDON failed\n");
 }
}

DS_SUCCESS The operation completedsuccessfully.

DS_NO_WORKSPACE A workspace has not been set up by a
call to the Initialize function.

Chapter 3 XDS Directory Services Reference Pages 25
The abandon function abandons the results of the asynchronous operation
identified by the Invoke-ID argument.

ds_add_entry(3xds)

Name
ds_add_entry - Adds an entry to the Directory Information Tree (DIT).

Syntax
Status = ds_add_entry(Session, Context, Name, Entry, Invoke-ID)

C Binding
DS_status ds_add_entry(session, context, name, entry, invoke_id_return)
session

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

Argument Data Type Access

Session OM_private_object read

Context OM_private_object read

Name OM_object read

Entry OM_object read

Invoke-ID Integer write

 Status DS_status

OM_private_object session

OM_private_object context

OM_object name

OM_object entry

OM_sint invoke_id_return

26 Gradient DCE for Tru64 UNIX Reference Guide
The Context parameters to be used for this operation. The Size-Limit and
Dont-Dereference-Aliases Context parameters do not apply to this
operation. This argument must be a Context OM private object or the
constant Default-Context.

Name

A Name OM object containing the distinguished name of the entry to be
added. The immediate superior of the new entry is determined by
removing the last RDN component that belongs to the new entry. The
immediate superior should exist in the same DSA; otherwise, the function
may fail with an Update-Error, affecting-multiple-DSAs. It does not fail if
an agreement exists between the DSAs that allows the entry to be added.
Any aliases in the name will not be dereferenced.

Entry

The attribute information which, together with the RDN, constitutes the
entry to be created. The information must be contained in an Attribute List
OM object, or an OM object that is a subclass of Attribute-List. The object
parameter should not contain the value of the RDN of the entry being
created.

Invoke-ID

The Invoke-ID of an asynchronous directory operation. This is passed by
reference.

Description
This function adds an entry to the Directory. The entry can be either an object
entry or an alias entry. The Directory checks that the resulting entry conforms
to the Directory schema.

DCE Notes
Ideally, the user does not know whether X.500 or CDS is actually handling
the DCE naming operations. There are, however, some situations where
naming results will differ depending on which service is handling the
operation. (The intro reference page for XDS functions describes the general
differences between operations on X.500 and CDS.)

Note the following issues for the Add Entry function:

■ All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

■ When a CDS name is passed to XDS and DCE is not installed, a
Library-Error, not-supported, is returned. This error is also returned when
an X.500 name is passed to XDS and X.500 is not installed.

■ Only leaf objects (that is, objects that are not CDS directory objects) can
be added to CDS through the XDS interface.

Chapter 3 XDS Directory Services Reference Pages 27
■ The DS_A_OBJECT_CLASS attribute of an object is single valued in
CDS and multivalued in X.500. If the Entry argument contains a
DS_A_OBJECT_CLASS attribute with a value of DS_O_ALIAS, a CDS
alias (soft link) will be created. If the attribute value is
DS_O_GROUP_OF_NAMES, a CDS Group object will be created. Any
other value for DS_A_OBJECT_CLASS, or the absence of this attribute,
will result in the creation of an ordinary CDS object.

■ Only the DS_A_COMMON_NAME and DS_A_MEMBER attributes are
valid for the DS_O_GROUP_OF_NAMES object in CDS.

■ CDS supports only the following X.500 attribute syntaxes:

OM_S_TELETEX_STRING
OM_S_OBJECT_IDENTIFIER_STRING
OM_S_OCTET_STRING
OM_S_PRINTABLE_STRING
OM_S_NUMERIC_STRING
OM_S_BOOLEAN
OM_S_INTEGER
OM_S_UTC_TIME_STRING
OM_S_ENCODING_STRING

If attributes of any other syntax are supplied to an Add Entry operation that
references CDS, then it returns the Attribute-Error constraint-violation.
Because CDS does not implement the X.500 schema rules, some CDS objects
may not contain mandatory attributes like object class and so on.

Return Value

If neither of these constants are returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

■ Attribute-Error, constraint-violation

■ Communications-Error

■ Library-Error, with Problem attribute values of bad-argument,
bad-context, bad-name, bad-session, miscellaneous, missing-type,
not-supported or too-many-operations

■ Name-Error, no-such-object

DS_SUCCESS The entry was added, if the operation was invoked
synchronously. The operation was initiated, if it was invoked
asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to the Initialize
function.

28 Gradient DCE for Tru64 UNIX Reference Guide
■ Referral

■ Security-Error

■ Service-Error

■ Update-Error

Examples
The following code extracts show an example call to the Add Entry function.
The Add Entry function is used to create a new directory entry containing two
attributes: common name and organization unit.

There are two examples. The first example shows how to perform an
asynchronous Add Entry operation. The second example shows how to
perform a synchronous Add Entry operation.

The Bound_Session argument contains the identity of a session returned from
an earlier call to the Bind function. This object identifies the session through
which the request should be issued. The Name argument is assumed to have
been previously defined. Examples of how to define a Name argument,
including an example of a CDS Name argument, are shown in the Read
function.

Example 1

OM_private_object bound_session, context;
OM_workspace workspace;
OM_return_code om_status = OM_SUCCESS;
OM_descriptor ATLST_entry[4],/* contents of entry */
 ATTR_sn_Black[4],
 ATTR_oc_OrgPerson[5],
 Context[3];/* For the context */
/* Define the first X.500 Object Class attribute */
OMX_CLASS_DESC(ATTR_oc_OrgPerson[0], DS_C_ATTRIBUTE);
OMX_ATTR_TYPE_DESC(ATTR_oc_OrgPerson[1], DS_ATTRIBUTE_TYPE,
 DS_A_OBJECT_CLASS);
OMX_STRING_DESC(ATTR_oc_OrgPerson[2], OM_S_OBJECT_IDENTIFIER_STRING,
 DS_ATTRIBUTE_VALUES,
 DS_O_PERSON.elements,
 DS_O_PERSON.length);
OMX_STRING_DESC(ATTR_oc_OrgPerson[3], OM_S_OBJECT_IDENTIFIER_STRING,
 DS_ATTRIBUTE_VALUES,
 DS_O_ORG_PERSON.elements,
 DS_O_ORG_PERSON.length);
OMX_OM_NULL_DESC(ATTR_oc_OrgPerson[4]);
/* Define the X.500 Surname attribute */
OMX_CLASS_DESC(ATTR_sn_Black[0], DS_C_ATTRIBUTE);
OMX_ATTR_TYPE_DESC(ATTR_sn_Black[1], DS_ATTRIBUTE_TYPE,
 DS_A_SURNAME);
OMX_ZSTRING_DESC(ATTR_sn_Black[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Black");
OMX_OM_NULL_DESC(ATTR_sn_Black[3]);
/* Define the Attribute List */
OMX_CLASS_DESC(ATLST_entry[0], DS_C_ATTRIBUTE_LIST);

Chapter 3 XDS Directory Services Reference Pages 29
OMX_OBJECT_DESC(ATLST_entry[1], DS_ATTRIBUTES, ATTR_sn_Black);
OMX_OBJECT_DESC(ATLST_entry[2], DS_ATTRIBUTES, ATTR_oc_OrgPerson);
OMX_OM_NULL_DESC(ATLST_entry[3]);
/* now create the context object and set the Asynchronous flag to */
/* true to indicate that the operation should be asynchronous. */
om_status = om_create(DS_C_CONTEXT, OM_TRUE, workspace, &context);
OMX_CLASS_DESC(Context[0], DS_C_CONTEXT);
OMX_BOOLEAN_DESC(Context[1], DS_ASYNCHRONOUS,OM_TRUE);
OMX_OM_NULL_DESC(Context[2]);
/* Now place the contents of the public object cpub_context into */
/* the private object context */
om_status = om_put(context, OM_REPLACE_ALL, Context, 0, 0, 0);
{
 DS_status status;
 OM_sint invoke_id;
 OM_uint completion_flag;
 DS_status operation_status;
 OM_return_code om_status;
 OM_private_object entry, add_entry_result;
 /* create the OM private object: entry */
 om_status = om_create(DS_C_ATTRIBUTE_LIST, OM_FALSE, workspace,
 &entry);
 /* Copy the attribute list from the cpub_attr_list public */
 /* object into the entry private object */
 om_status = om_put(entry, OM_REPLACE_ALL, ATLST_entry, 0, 0, 0);
 /* Call the Add Entry function using entry as a parameter */
 status = ds_add_entry(bound_session, context, name, entry,
 &invoke_id);

 if (status == DS_SUCCESS)
 {
 printf("ADD ENTRY request was successful\n");
 }
 else
 {
 printf("ADD ENTRY request failed\n");
 }

 /* now wait for the response... */
 completion_flag = DS_OUTSTANDING_OPERATIONS;
 /* loop around calls to receive_result() until we get one back */
 while ((status == DS_SUCCESS)
 && (completion_flag == DS_OUTSTANDING_OPERATIONS))
 {
 status = ds_receive_result(bound_session, &completion_flag,
 &operation_status,
 &add_entry_result, &invoke_id);
 if (status == DS_SUCCESS)
 {
 switch (completion_flag)
 {
 case DS_COMPLETED_OPERATION:
 /* we have a completed operation */
 if(operation_status == DS_SUCCESS)
 {
 printf("ADD ENTRY was successful\n");
 }

30 Gradient DCE for Tru64 UNIX Reference Guide
 break;
 case DS_OUTSTANDING_OPERATIONS:
 printf("There are outstanding operations\n");
 break;
 case DS_NO_OUTSTANDING_OPERATION:
 printf("There are NO outstanding operations\n");

 break;
 }
 }
 }
}

The above example shows:

■ How to define a private object containing context parameters.

■ How to define a public object (cpub_attr_list) containing the attributes to
be added to the new directory entry.

■ How to use the OM Create function to create a private object (entry) and
how to use the OM Put function to copy the entry’s attributes from the
public object (cpub_attr_list) into the newly created private object (entry).

■ How to use the Receive Result function to obtain the result of the Add
Entry function.

The OM Create and the OM Put functions are assumed to succeed.

Example 2

OM_private_object bound_session, context, name;
{
 DS_status status;
 OM_private_object entry;
 status = ds_add_entry(bound_session, DS_DEFAULT_CONTEXT, name,
 entry, NULL);
 if (status == DS_SUCCESS)
 {
 printf("ADD ENTRY was successful\n");
 }
 else
 {
 printf("ADD ENTRY failed\n");
 }
}

The above example shows how to perform a synchronous Add Entry
operation. Note that the Invoke_id argument is not needed and therefore set to
NULL. The example assumes that all other arguments have been defined as
shown in Example 1.

Chapter 3 XDS Directory Services Reference Pages 31
ds_bind(3xds)

Name
ds_bind - Opens a session with the directory service.

Syntax
Status = ds_bind(Session, Workspace, Bound-Session)

C Binding
DS_status ds_bind(session, workspace, bound_session_return)

Arguments
Session

A Session OM object specifying the address of the DSA to bind to, and
other information. You can submit either an OM public object or an OM
private object as this argument. You can also use the constant
Default-Session as the value of this argument, causing a new session to be
created with default values for all its OM attributes. The Bind operation
uses information from the DUA defaults file when the constant
Default-Session is used.

Workspace

Specifies the workspace (obtained from a call to the Initialize function)
which is to be associated with the session. All function results from
directory operations using this session will be returned as private objects in
this workspace. If the Session argument is a private object, it must be a
private object in this workspace.

Bound-Session

Argument Data Type Access

Session OM_object read

Workspace OM_workspace read

Bound-Session OM_private_object write

Status DS_status

OM_object session

OM_workspace workspace

OM_private_object bound_session_return

32 Gradient DCE for Tru64 UNIX Reference Guide
A Session OM private object identifying a directory session. This session
may be used as an argument to other functions, for example the Read
function. If the value of Session was Default-Session or a public object,
then Bound-Session is a new private object. Otherwise, when the Session
is a private object, then Bound-Session is that private object. The function
supplies default values for any of the OM attributes that were not present
in the session instance supplied as an argument. It also sets the value of the
File-Descriptor OM Attribute. The initial value of this attribute is
No-Valid-File-Descriptor. On an OpenVMS system, a file descriptor is not
returned and the value of this attribute does not change. Note also that if
the application binds only to a CDS directory, the value of the
File-Descriptor OM attribute does not change.

Description
This function opens a session with the directory service and returns a session
object for use in subsequent function calls. This function must be called
before any other directory functions.

DCE Notes
Ideally, the user does not know whether X.500 or CDS is actually handling
the DCE naming operations. There are, however, some situations where
naming results will differ depending on which service is handling the
operation. (The intro reference page for XDS functions describes the general
differences between operations on X.500 and CDS.)

Note that to use CDS when X.500 is not active, the Bind function must be
called with the value of the session parameter to set to
DS_DEFAULT_SESSION. In this case, the Bind function will return
DS_SUCCESS, but the returned Bound Session object may be used only for
directory operations on the CDS namespace. If an operation is attempted
against X.500 with this Bound Session, the directory routine will return the
Library-Error, not-supported.

If your application was built and runs on a system where CDS is installed but
X.500 is not installed, the Bind function will only attempt to bind to the CDS
directory. If your application was built and runs on a system where X.500 is
installed but CDS is not installed, the Bind function will only attempt to bind
to the X.500 directory, and will return an error if it fails. If both CDS and
X.500 are installed on the system and your application was built and runs
against the XDS shareable library files (or on a DEC OSF/1 system was
linked against the archive libraries libdxd.a and libdxdcds.a), then the Bind
function will attempt to bind to both directories.

Note that in normal operation, no error message is returned if the Bind
function fails to connect to an X.500 directory, but an error will be returned
when your application attempts an X.500 operation. If you require error
messages to be returned when the Bind function fails, your application must
call the Version function and negotiate the Digital extension feature
DSX-RET-X500-BIND-ERR-FTR.

Chapter 3 XDS Directory Services Reference Pages 33
Return Value

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

■ System-Error
■ Library-Error, with Problem attribute values of bad-session,

miscellaneous, not-supported or too-many-sessions
■ Security-Error
■ Service-Error
■ Communications-Error

Example
The following code extract shows an example call to the Bind function. It
establishes a session with the directory service.

OM_private_object bound_session;
OM_workspace workspace;
{
 DS_status status;

 status = ds_bind(DS_DEFAULT_SESSION, workspace, &bound_session);
 if (status == DS_SUCCESS)
 {
 printf("BIND was successful\n");
 }
 else
 {
 printf("BIND failed\n");
 }

}

The Bind function associates a workspace, obtained from a call to the
Initialize function, with the directory service session returned in the
Bound_Session argument. The function uses the default session constant
DS_DEFAULT_SESSION as the Session argument.

DS_SUCCESS The operation completed successfully.

DS_NO_WORKSPACE A workspace has not been set up by a call to
the Initialize function.

34 Gradient DCE for Tru64 UNIX Reference Guide
ds_compare(3xds)

Name
ds_compare - Compares an attribute value with the attribute value stored in
the Directory for a particular entry.

Syntax
Status = ds_compare(Session, Context, Name, AVA, Result, Invoke-ID)

C Binding
DS_status ds_compare(session, context, name, ava, result_return,
invoke_id_return)

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

The Context parameters to be used for this operation. The Size-Limit
Context parameter does not apply to this operation. This argument must be
a Context OM private object or the constant Default-Context.

Argument Data Type Access

Session OM_private_object read

Context OM_private_object read

Name OM_object read

AVA OM_object read

Result OM_private_object write

Invoke-ID Integer write

Status DS_status

OM_private_object session

OM_private_object context

OM_object name

OM_object ava

OM_private_object result_return

OM_sint invoke_id_return

Chapter 3 XDS Directory Services Reference Pages 35
Name

A Name OM object containing the name of the target entry. Any aliases in
the name will be dereferenced unless prohibited by the Context parameter
Dont-Dereference-Aliases.

AVA

An AVA OM object containing the attribute-value-assertion that specifies
the attribute type and value to be compared with that in the entry.

Result

A Compare-Result OM private object containing flags indicating whether
the values matched and whether the comparison was made against the
original entry. It also contains the Distinguished Name of the target object
if an alias was dereferenced.

Invoke-ID

The Invoke-ID of an asynchronous directory operation. This is only valid
if the Asynchronous OM attribute in the Context parameter is set to True.

Description
This function checks that the value supplied in the given AVA is the same as
the value or values of the same attribute type in the named entry. The
operation fails and an error is returned if the target object is not found or if the
target entry does not have the required attribute type.

If this function is called asynchronously, then the result can be abandoned by
calling the Abandon function.

DCE Notes
Ideally, the user does not know whether X.500 or CDS is actually handling
the DCE naming operations. There are, however, some situations where
naming results will differ depending on which service is handling the
operation. (The intro reference page for XDS functions describes the general
differences betweenoperations on X.500 and CDS.) Note the following issues
for the Compare function:

■ All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

■ When a CDS name is passed to XDS and DCE is not installed, a
Library-Error, not-supported, is returned. This error is also returned when
an X.500 name is passed to XDS and X.500 is not installed.

■ In CDS, the naming attribute of an object is not stored in the attribute list
of an object. Thus in CDS a Compare operation of the purported naming
attribute value with the naming attribute value of the directory object
always fails to match.

■ CDS supports only the following X.500 attribute syntaxes:

36 Gradient DCE for Tru64 UNIX Reference Guide
OM_S_TELETEX_STRING
OM_S_OBJECT_IDENTIFIER_STRING
OM_S_OCTET_STRING
OM_S_PRINTABLE_STRING
OM_S_NUMERIC_STRING
OM_S_BOOLEAN
OM_S_INTEGER
OM_S_UTC_TIME_STRING
OM_S_ENCODING_STRING

If attributes of any other syntax are supplied to a Compare operation that
references CDS, then it returns the Attribute-Error constraint-violation.

■ In CDS, the name parameter supplied to the Compare function must
ultimately resolve to the name of a leaf (that is, a CDS Object) entry;
otherwise, the Name-Error no-such-object is returned. The function never
interprets the name parameter as the name of a CDS Directory entry.

Return Value

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

■ Library-Error, with Problem attribute values of bad-argument,
bad-context, bad-name, bad-session, miscellaneous, missing-type,
not-supported or too-many-operations

■ Attribute-Error, constraint-violation
■ Name-Error, no-such-object
■ Referral
■ Security-Error
■ Service-Error
■ Communications-Error

Examples
The following code extracts show an example call to the Compare function.
The Compare function is used to compare the common name attribute with
the name attribute contained within the directory entry identified by the Name
argument.

DS_SUCCESS The comparison was completed, if the operation was
invoked synchronously. The operation was initiated, if it
was invoked asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to the Initialize
function.

Chapter 3 XDS Directory Services Reference Pages 37
There are two examples. The first example shows how to perform an
asynchronous Compare operation. The second example shows how to
perform a synchronous Compare operation.

The Bound_Session argument contains the identity of a session returned from
an earlier call to the Bind function. This object identifies the session through
which the request should be issued. The Name argument is assumed to have
been previously defined. Examples of how to define a Name argument,
including an example of a CDS Name argument, are shown in the Read
function.

Example 1

 OM_private_object ava;
 OM_workspace workspace;
 OM_descriptor cpub_ava[4];
 DS_status status;
 OM_sint invoke_id;
 OM_uint completion_flag;
 DS_status operation_status;
 OM_return_code om_status;
 OM_private_object name, compare_result;
 OM_return_code om_status = OM_SUCCESS;
 OMX_CLASS_DESC(cpub_ava[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava[1], DS_ATTRIBUTE_TYPE,
 DS_A_COMMON_NAME);
 OMX_ZSTRING_DESC(cpub_ava[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Albert Einstein");
 OMX_OM_NULL_DESC(cpub_ava[3]);
 /* create the OM private object: ava */
 om_status = om_create(DS_C_AVA, OM_FALSE, workspace, &ava);
 /* Copy the attribute list from the cpub_ava public object */
 /* into the ava private object */

 om_status = om_put(ava, OM_REPLACE_ALL, cpub_ava, 0,0,0);
 /* call the ds_compare function using ava as a parameter */
 status = ds_compare(bound_session, context, name,
 ava, &compare_result, &invoke_id);

 if (status == DS_SUCCESS)
 {
 printf("COMPARE request was successful\n");
 }
 else
 {
 printf("COMPARE request failed\n");
 }
 /* now wait for the response... */
 completion_flag = DS_OUTSTANDING_OPERATIONS;
 /* loop around calls to receive_result() until we get one back */
 while ((status == DS_SUCCESS)
 && (completion_flag == DS_OUTSTANDING_OPERATIONS))
 {
 status = ds_receive_result(bound_session, &completion_flag,
 &operation_status, &compare_result,

38 Gradient DCE for Tru64 UNIX Reference Guide
 &invoke_id);
 if (status == DS_SUCCESS)
 {
 switch (completion_flag)
 {
 case DS_COMPLETED_OPERATION:
 /* we have a completed operation */
 /* now see what we have got back ... */
 if(operation_status == DS_SUCCESS)
 {
 printf("COMPARE result received\n");
 /* use OM to examine compare_result object */
 ...
 }
 else
 {
 printf("COMPARE request failed\n");
 }
 break;

 case DS_OUTSTANDING_OPERATIONS:
 ...
 break;
 case DS_NO_OUTSTANDING_OPERATION:
 ...
 break;
 }
 }
 }

The above example shows:

■ How to define an attribute value assertion and use that in the Compare
function.

■ How to define an AVA OM public object (cpub_ava) containing the
attribute value assertion.

■ How to use the OM Create function to create an AVA OM private object
(ava) and how to use the OM Put function to copy the attribute value
assertion from the public object (cpub_ava) into the newly created private
object (ava).

■ How to use the Receive Result function to obtain the result of the Compare
function.

The OM Create and the OM Put functions are assumed to succeed.

Example 2

OM_private_object bound_session, name, context;
{
 DS_status status;
 OM_private_object ava;
 status = ds_compare(bound_session, DS_DEFAULT_CONTEXT,
 name, ava, &compare_result, NULL);

Chapter 3 XDS Directory Services Reference Pages 39
 if (status == DS_SUCCESS)
 {
 printf("COMPARE request was successful\n");
 /* examine compare result object to see if */
 /* comparison was TRUE or FALSE */
 }
 else
 {
 printf("COMPARE request failed\n");
 }
}

The above example shows how to perform a synchronous Compare operation.
Note that the Invoke-ID argument is not needed and therefore set to NULL.
The example assumes that all other arguments have been defined as shown in
Example 1.

ds_initialize(3xds)

Name
ds_initialize - Initializes the interface.

Syntax
Workspace = ds_initialize(void)

C Binding
OM_workspace ds_initialize(void)

Description
This function performs any necessary initialization of the X.500 API
including the creation of a workspace. You must call this function before you
call any other X.500 API functions. It may be called multiple times, in which
case each call returns a workspace that is distinct from other workspaces
created by the Initialize function but not yet deleted by the Shutdown
function.

Return Value
Workspace

Argument Data Type

Workspace OM_workspace

40 Gradient DCE for Tru64 UNIX Reference Guide
Upon successful completion this function returns a pointer to a workspace
in which OM objects can be created and manipulated. Only objects created
in this workspace can be used as arguments to the other directory interface
functions. This function returns NULL if it fails.

Errors
This function does not return any errors.

Example
The following code extract shows an example of a call to the Initialize
function. The Initialize function is used to initialize the X.500 API and create
a workspace which can then be used by other functions.

OM_workspace workspace;
{
 if ((workspace = ds_initialize()) != NULL)
 {
 printf("INITIALIZE was successful\n");
 }
 else
 {
 printf("INITIALIZE failed\n");
 }
}

The Initialize function establishes the workspace that you can then use to
communicate with the directory, for the remainder of the session.

ds_list(3xds)

Name
ds_list - Lists all the immediate subordinate entries of a directory entry.

Syntax
Status = ds_list(Session, Context, Name, Result, Invoke-ID)

Argument Data Type Access

Session OM_private_object read

Context OM_private_object read

Name OM_object read

Result OM_private_object write

Invoke-ID Integer write

Status DS_status

Chapter 3 XDS Directory Services Reference Pages 41
C Binding
DS_status ds_list(session, context, name, result_return, invoke_id_return)

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

The directory context to be used for this operation. This argument must be
a Context OM private object or the constant Default-Context.

Name

A Name OM object specifying the name of the object entry whose
immediate subordinates are to be listed. Any aliases in the name will be
dereferenced unless prohibited by the Context parameter
Dont-Dereference-Aliases.

Result

A List-Result OM private object, passed by reference, containing some
information about the target object’s immediate subordinates. It also
contains the distinguished name of the target object if an alias was
dereferenced to find it. Aliases in the subordinate names are identified, but
not dereferenced. Additionally, there may be a partial outcome qualifier
which indicates that the result is incomplete. It also explains the reason
why, for example, the time limit expired, and contains information that
may be helpful when attempting to complete the operation.

Invoke-ID

The Invoke-ID of an asynchronous directory operation.

Description
This function is used to obtain a list of all the immediate subordinates of a
named entry. It is possible that the list will be incomplete in some
circumstances.

If this function is called asynchronously, then the result can be abandoned by
calling the Abandon function.

OM_private_object session

OM_private_object context

OM_object name

OM_private_object result_return

OM_sint invoke_id_return

42 Gradient DCE for Tru64 UNIX Reference Guide
DCE Notes
Ideally, the user does not know whether X.500 or CDS is actually handling
the DCE naming operations. There are, however, some situations where
naming results will differ depending on which service is handling the
operation. (The intro reference page for XDS functions describes the general
differences between operations on X.500 and CDS.)

Note the following issues for the List function:

■ All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

■ When a CDS name is passed to XDS and DCE is not installed, a
Library-Error, not-supported, is returned. This error is also returned when
an X.500 name is passed to XDS and X.500 is not installed.

Return Value

If neither of these constants are returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

■ Library-Error, with Problem attribute values of bad-argument,
bad-context, bad-name, bad-session, miscellaneous, missing-type,
not-supported or too-many- operations

■ Name-Error
■ Referral
■ Security-Error
■ Service-Error
■ Communications-Error

Examples
The following code extracts show an example call to the List function. The
List function is used to list the subordinates of the directory entry identified in
the Name argument.

There are two examples. The first example shows how to perform an
asynchronous List operation. The second example shows how to perform a
synchronous List operation.

DS_SUCCESS The target object was located regardless of whether it has any
subordinates, if the operation was invoked synchronously.
The operation was initiated, if it was invoked asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to the Initialize
function.

Chapter 3 XDS Directory Services Reference Pages 43
The Bound_Session argument contains the identity of a session, established
using the Bind function, through which the request should be issued. The
Name argument is assumed to have been previously defined. Examples of
how to define a Name argument, including an example of a CDS Name
argument, are shown in the Read function.

Example 1

OM_private_object bound_session, context, name;
OM_workspace workspace;
{
 DS_status status;
 OM_private_object list_result;
 OM_sint invoke_id;
 OM_uint completion_flag;
 DS_status operation_status;
 OM_return_code om_status;
 OM_public_object spub_result;
 OM_value_position desc_count;
 /* call ds_list to list the subordinates of the entry */
 /* identified in name */
 status = ds_list(bound_session, context, name, &list_result,
 &invoke_id);
 completion_flag = DS_OUTSTANDING_OPERATIONS;
 /* loop around calls to receive_result() until we get one back */
 while ((status == DS_SUCCESS) &&
 (completion_flag == DS_OUTSTANDING_OPERATIONS))
 {
 status = ds_receive_result(bound_session, &completion_flag,
 &operation_status, &list_result,
 &invoke_id);

 if (status == DS_SUCCESS)
 {
 switch (completion_flag)
 {
 case DS_COMPLETED_OPERATION:
 /* we have a completed operation */
 /* now see what we have got back ... */
 if (operation_status == DS_SUCCESS)
 {

 om_status = om_get(list_result, OM_NO_EXCLUSIONS,
 0, 0, 0, OM_ALL_VALUES,
 &spub_result, &desc_count);
 if (om_status == OM_SUCCESS)
 {
 /* if desc_count is not zero, the results are now */
 /* available in the public object spub_result */
 }
 else
 {
 /* error getting results */
 }
 }
 else

44 Gradient DCE for Tru64 UNIX Reference Guide
 {...}
 break;
 case DS_COMPLETED_OPERATION:
 ...
 break;
 case DS_COMPLETED_OPERATION:
 ...
 break;
 }
 }

}

This example shows:

■ A call to the List function.

■ How to use the Receive Result function to obtain the result of the List
function.

■ How to use the OM Get function to copy the attributes of the List-Result
OM private object into the equivalent List-Result OM public object
(Spub_Result) for examination.

The OM Get function is assumed to succeed.

Example 2

OM_private_object bound_session, context, name;
{
 DS_status status;
 OM_private_object list_result;
 OM_public_object spub_result;
 OM_value_position desc_count;
 status = ds_list(bound_session, DS_DEFAULT_CONTEXT, name,
 &list_result, NULL);
 if (status == DS_SUCCESS)
 {
 /* LIST was successful */
 /* now see what we have got back ... */
 om_status = om_get(list_result, OM_NO_EXCLUSIONS,
 0, 0, 0, OM_ALL_VALUES,
 &spub_result, &desc_count);
 if (om_status == OM_SUCCESS)
 {
 /* if desc_count!=0, results now available as a public */
 /* object */
 }
 else
 {
 /* error getting results */
 }
 }
 else
 {...}
}

Chapter 3 XDS Directory Services Reference Pages 45
This example shows how to perform a synchronous List operation. Note that
the Invoke-ID argument is not needed and therefore set to NULL. The
example assumes that all other arguments have been defined as shown in
Example 1.

ds_modify_entry(3xds)

Name
ds_modify_entry - Performs an modification on an entry.

Syntax
Status = ds_modify_entry(Session, Context, Name, Changes, Invoke-ID)

C Binding
DS_status ds_modify_entry(session, context, name, changes,
invoke_id_return)

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

The Context parameters to be used for this operation. This argument must
be a Context OM private object or the constant Default-Context.

Argument Data Type Access

Session OM_private_object read

Context OM_private_object read

Name OM_object read

Changes OM_object read

Invoke-ID Integer write

Status DS_status

OM_private_object session

OM_private_object context

OM_object name

OM_object changes

OM_sint invoke_id_return

46 Gradient DCE for Tru64 UNIX Reference Guide
Name

A Name OM object containing the name of the target entry. Any aliases in
the name will be dereferenced if the DSA attribute Dereference Alias on
Modify is set and the Dont Deference Aliases service control is not set.

Changes

An Entry-Modification-List OM object specifying a sequence of
modifications to the named entry.

Invoke-ID

The Invoke-ID of an asynchronous directory operation.

Description
This function is used to make a series of one or more of the following changes
to a single entry:

■ Add a new attribute (add-attribute)
■ Remove an attribute (remove-attribute)
■ Add attribute values (add-values)
■ Remove attribute values (remove-values)

You can replace values by a combination of adding values and removing
values in a single operation. You can only change the RDN of an entry by
using the Modify-RDN function.

The result of the operation is as if each modification is made in the order
specified in the Changes argument. If any of the individual modifications fail,
then an Attribute-Error is reported and the entry is left as it was before the
whole operation. The operation is atomic, either all the changes are made or
none are. The Directory Service checks that the resulting entry conforms to
the schema.

DCE Notes
Ideally, the user does not know whether X.500 or CDS is actually handling
the DCE naming operations. There are, however, some situations where
naming results will differ depending on which service is handling the
operation. (The intro reference page for XDS functions describes the general
differences between operations on X.500 and CDS.)

Note the following issues for the Modify Entry function:

■ All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

■ When a CDS name is passed to XDS and DCE is not installed, a
Library-Error, not-supported, is returned. This error is also returned when
an X.500 name is passed to XDS and X.500 is not installed.

Chapter 3 XDS Directory Services Reference Pages 47
■ Naming schema rules do not apply in CDS. At the XDS API, all CDS
attributes are treated as multivalued. Adding an attribute that already exists
on the CDS entry causes an additional value to be added to that attribute’s
set of values. Thus the following Attribute-Errors are never returned by
CDS:

■ no-such-attribute-or-value
■ attribute-or-value-already-exists

Naming operations that would normally return these errors succeed in
CDS. In particular, the addition of an attribute that already exists does not
return with an error. Instead, the values of the attribute to be added are
combined with the values of the existing attribute.

■ CDS supports only the following X.500 attribute syntaxes:

■ OM_S_TELETEX_STRING
■ OM_S_OBJECT_IDENTIFIER_STRING
■ OM_S_OCTET_STRING
■ OM_S_PRINTABLE_STRING
■ OM_S_NUMERIC_STRING
■ OM_S_BOOLEAN
■ OM_S_INTEGER
■ OM_S_UTC_TIME_STRING
■ OM_S_ENCODING_STRING

If attributes of any other syntax are supplied to a Modify Entry operation
that references CDS, then it returns the Attribute-Error
constraint-violation.

■ In CDS, the name parameter supplied to the Modify Entry function must
ultimately resolve to the name of a leaf (that is, a CDS Object) entry;
otherwise the Name-Error no-such-object is returned. The function never
interprets the name parameter as the name of a CDS Directory entry.

Return Value

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

DS_SUCCESS All the modifications were made to the entry, if the
operation was invoked synchronously. The operation was
initiated, if it was invoked asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to the Initialize
function.

48 Gradient DCE for Tru64 UNIX Reference Guide
■ Library-Error, with Problem attribute values of bad-argument,
bad-context, bad-name, bad-session, miscellaneous, missing-type,
not-supported,or too-many- operations

■ Attribute-Error, constraint-violation
■ Name-Error, no-such-object
■ Referral
■ Security-Error
■ Service-Error
■ Update-Error
■ Communications-Error

An Attribute-Error is returned if you attempt any of the following:

■ To use Add-Attribute to add an existing attribute
■ To add a value to a nonexistent attribute type
■ To use Remove-Attribute to remove a nonexistent attribute or nonexistent

attribute value

An attempt to remove an attribute or attribute value which is part of the
object’s RDN or to modify the object class attribute results in an
Update-Error.

Examples
The following code extracts show an example call to the Modify Entry
function. Note that the standard schema does not contain an object class with
the attributes used in the example. The Modify Entry function is used to
modify the directory entry, identified in the Name argument, as follows:

■ Add a new X.500 attribute Title with the value "Sales & Marketing
Director"

■ Add the value "Abacus Trading Corporation" to the X.500 attribute
Organization Name

■ Remove the X.500 attribute Organizational Unit Name

■ Remove the value "US" from the Country Name X.500 attribute

There are two examples. The first example shows how to perform an
asynchronous Modify Entry operation. The second example shows how to
perform a synchronous Modify Entry operation.

The Bound_Session argument contains the identity of a session, established
using the Bind function, through which the request should be issued. Two
arguments are assumed to have been previously defined. These are the Name
argument and the Context argument. Examples of how to define a Name
argument, including an example of a CDS Name argument, are shown in the
Read function. An example of how to define a Context argument is shown in
the Add Entry function.

Chapter 3 XDS Directory Services Reference Pages 49
Example 1

OM_private_object bound_session, context, name;
/* define some public objects to contain the changes to be made to */
/* the directory entry */
/* declare the descriptor lists (public objects) */
OM_descriptor cpub_mod_list[6];
OM_descriptor cpub_mod1[5];
OM_descriptor cpub_mod2[6];
OM_descriptor cpub_mod3[4];
OM_descriptor cpub_mod4[5];
/* define the first descriptor list */
OMX_CLASS_DESC(cpub_mod1[0], DS_C_ENTRY_MOD);
OMX_ENUM_DESC(cpub_mod1[1], DS_MOD_TYPE,
 DS_ADD_ATTRIBUTE);
OMX_ATTR_TYPE_DESC(cpub_mod1[2], DS_ATTRIBUTE_TYPE,
 DS_A_TITLE);
OMX_ZSTRING_DESC(cpub_mod1[3], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Sales & Marketing Director");
OMX_OM_NULL_DESC(cpub_mod1[4]);
/* define the second descriptor list */
OMX_CLASS_DESC(cpub_mod2[0], DS_C_ENTRY_MOD);
OMX_ENUM_DESC(cpub_mod2[1], DS_MOD_TYPE,
 DS_ADD_VALUES);
OMX_ATTR_TYPE_DESC(cpub_mod2[2], DS_ATTRIBUTE_TYPE,
 DS_A_ORG_NAME);
OMX_ZSTRING_DESC(cpub_mod2[3], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Abacus Trading Corporation");
OMX_ZSTRING_DESC(cpub_mod2[4], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Abacus");
OMX_OM_NULL_DESC(cpub_mod2[5]);
/* define the third descriptor list */
OMX_CLASS_DESC(cpub_mod3[0], DS_C_ENTRY_MOD);
OMX_ENUM_DESC(cpub_mod3[1], DS_MOD_TYPE,
 DS_REMOVE_ATTRIBUTE);
OMX_ATTR_TYPE_DESC(cpub_mod3[2], DS_ATTRIBUTE_TYPE,
 DS_A_ORG_UNIT_NAME);
OMX_OM_NULL_DESC(cpub_mod3[3]);
/* define the fourth descriptor list */
OMX_CLASS_DESC(cpub_mod4[0], DS_C_ENTRY_MOD);
OMX_ENUM_DESC(cpub_mod4[1], DS_MOD_TYPE,
 DS_REMOVE_VALUES);
OMX_ATTR_TYPE_DESC(cpub_mod4[2], DS_ATTRIBUTE_TYPE,
 DS_A_COUNTRY_NAME);
OMX_ZSTRING_DESC(cpub_mod4[3], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "US");
OMX_OM_NULL_DESC(cpub_mod4[4]);

/* define the fifth descriptor list */
OMX_CLASS_DESC(cpub_mod_list[0], DS_C_ENTRY_MOD_LIST);
OMX_OBJECT_DESC(cpub_mod_list[1], DS_CHANGES, cpub_mod1);
OMX_OBJECT_DESC(cpub_mod_list[2], DS_CHANGES, cpub_mod2);
OMX_OBJECT_DESC(cpub_mod_list[3], DS_CHANGES, cpub_mod3);

50 Gradient DCE for Tru64 UNIX Reference Guide
OMX_OBJECT_DESC(cpub_mod_list[4], DS_CHANGES, cpub_mod4);
OMX_OM_NULL_DESC(cpub_mod_list[5]);
{
 DS_status status;
 OM_sint invoke_id;
 OM_uint completion_flag;
 DS_status operation_status;
 OM_return_code om_status;
 OM_private_object changes, modify_entry_result;
 /* create an OM Private object called changes*/
 om_status = om_create(DS_C_ENTRY_MOD_LIST, OM_FALSE, workspace,
 &changes);
 /* now put the contents of the public object, cpub_mod_list, */
 /* in to the changes private object */
 om_status = om_put(changes, OM_REPLACE_ALL, cpub_mod_list,
 0, 0, 0);
 /* Call the Modify Entry function using the changes object as */
 /* a parameter */
 status = ds_modify_entry(bound_session, context, name, changes,
 &invoke_id);

 if (status == DS_SUCCESS)
 {
 printf("MODIFY ENTRY was successful\n");
 }
 else
 {
 printf("MODIFY ENTRY failed\n");
 }
 /* now wait for the response... */
 completion_flag = DS_OUTSTANDING_OPERATIONS;
 /* loop around calls to receive_result() until we get one back */
 while ((status == DS_SUCCESS) &&
 (completion_flag == DS_OUTSTANDING_OPERATIONS))
 {
 status = ds_receive_result(bound_session, &completion_flag,
 &operation_status,
 &modify_entry_result,
 &invoke_id);
 if (status == DS_SUCCESS)
 {
 switch (completion_flag)
 {
 case DS_COMPLETED_OPERATION:
 /* we have a completed operation */
 /* check operation_status */
 break;
 case DS_OUTSTANDING_OPERATIONS:
 ...
 break;
 case DS_NO_OUTSTANDING_OPERATION:
 ...
 break;
 }
 }
 }
}

Chapter 3 XDS Directory Services Reference Pages 51
The above example shows the following:

■ How to define an Entry-Modification-List OM public object
(cpub_mod_list) containing the modifications to be made.

■ How to use the OM Create function to create an Entry-Modification-List
OM private object (changes) and how to use the OM Put function to copy
the modifications from the public object (cpub_mod_list) into the newly
created private object (changes).

Both the OM Create and the OM Put functions are assumed to succeed.

■ How to obtain the result of the Modify Entry function using the Receive
Result function.

Example 2

OM_private_object bound_session, context, name;
{
 DS_status status;
 OM_private_object changes;
 status = ds_modify_entry(bound_session, DS_DEFAULT_CONTEXT,
 name, changes, NULL);
 if (status == DS_SUCCESS)
 {
 printf("MODIFY_ENTRY was successful\n");
 }
 else
 {
 printf("MODIFY_ENTRY failed\n");
 }
}

The above example shows how to perform a synchronous Modify Entry
operation. Note that the Invoke-ID argument is not needed so NULL is used.

This example assumes that the Changes argument has been defined as shown
in Example 1.

ds_modify_rdn(3xds)

Name
ds_modify_rdn - Changes the Relative Distinguished Name (RDN) of an
entry.

Syntax
Status = ds_modify_rdn(Session, Context, Name, New-RDN,
Delete-Old-RDN, Invoke-ID)

Argument Data Type Access

Session OM_private_object read

52 Gradient DCE for Tru64 UNIX Reference Guide
C Binding
DS_status ds_modify_rdn(session, context, name, new_rdn, delete_old_rdn,
invoke_id_return)

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

The directory context to be used for this operation. This argument must be a
Context OM private object or the constant Default-Context.

Name

A Name OM object containing the current name of the target entry. Any
aliases in the name will be dereferenced if the DSA attribute Dereference
Alias on Modify is set and the Dont Deference Aliases service control is not
set.

New-RDN

A Relative-Name OM object specifying the new RDN. If an attribute value in
the new RDN does not already exist in the entry, either as part of the old RDN
or as a non-distinguished value, then the new value is added.

Delete-Old-RDN

Context OM_private_object read

Name OM_object read

New-RDN OM_object read

Delete-Old-RDN OM_boolean read

Invoke-ID Integer write

Status DS_status

OM_private_object session

OM_private_object context

OM_object name

OM_object new_rdn

OM_boolean delete_old_rdn

OM_sint invoke_id_return

Argument Data Type Access

Chapter 3 XDS Directory Services Reference Pages 53
When this takes the value false the old values will remain, but not as part of
the RDN. When this takes the value true, all attribute values in the old RDN
that are not also in the new RDN are deleted. If the operation removes the last
value of an attribute, the attribute is deleted. This argument must be true when
the value of a single-valued attribute is changed.

Invoke-ID

The Invoke-ID of an asynchronous directory operation.

Description
This function is used to change the RDN of a leaf entry. This can be either an
object entry or an alias entry.

DCE Notes
CDS does not support the Modify RDN function; it returns with the
Service-Error unwilling-to-perform.

Return Value

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

■ Library-Error, with Problem attribute values of bad-argument,
bad-context, bad-name, bad-session, miscellaneous, missing-type,or
too-many-operations

■ Attribute-Error
■ Name-Error
■ Referral
■ Security-Error
■ Service-Error
■ Update-Error
■ Communications-Error

The Update-Error affects-multiple-DSAs that is referred to in the argument
descriptions need not be returned if there is local agreement between the
DSAs to allow the entry to be modified.

DS_SUCCESS The RDN of the entry was changed, if the operation was
invoked synchronously. The operation was initiated, if it
was invoked asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to the Initialize
function.

54 Gradient DCE for Tru64 UNIX Reference Guide
Example
The following code extract shows an example call to the Modify RDN
function:

OM_private_object bound_session, context, name, new_rdn;
OM_sint invoke_id;
OM_boolean delete_old_rdn;
{
 DS_status status;
 status = ds_modify_rdn(bound_session, DS_DEFAULT_CONTEXT, name,
 new_rdn, delete_old_rdn, NULL);
 if (status == DS_SUCCESS)
 {
 printf("MODIFY RDN was successful\n");
 }
 else
 {
 printf("MODIFY RDN failed\n");
 }
 return status;}

ds_read(3xds)

Name
ds_read - Queries information in a particular entry.

Syntax
Status = ds_read(Session, Context, Name, Selection, Result, Invoke-ID)

C Binding
DS_status ds_read (session, context, name, selection, result_return,
invoke_id_return)

Argument Data Type Access

Session OM_private_object read

Context OM_private_object read

Name OM_object read

Selection OM_object read

Result OM_object write

Invoke-ID Integer write

Status DS_status

OM_private_object session

Chapter 3 XDS Directory Services Reference Pages 55
Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

The directory context to be used for this operation. The Size-Limit Context
parameter does not apply to this operation. This argument must be a
Context OM private object or the constant Default-Context.

Name

A Name OM object containing the name of the target entry. Any aliases in
the name will be dereferenced unless prohibited by the Context parameter
Dont-Dereference-Aliases.

Selection

An Entry-Information-Selection OM object or a constant specifying what
information from the named entry is requested. Information about no
attributes, all attributes, or just a named set can be chosen. Attribute types
are always returned, but the attribute values need not be. The following
constants can be used:

■ Select-No-Attributes, to verify the existence of an entry
■ Select_All-Types, to return just the types of all attributes
■ Select-All-Types-And-Values, to return the types and values of all

attributes

Result

A Read-Result OM object, passed by reference, containing the
distinguished name of the target object and a flag indicating whether the
result came from the original entry or a copy. It also contains any
requested attribute types and values. Attribute information is only returned
if access rights are sufficient. No object is returned if the call does not
complete successfully.

Invoke-ID

The Invoke-ID of an asynchronous directory operation.

OM_private_object context

OM_object name

OM_object selection

OM_private_object result_return

OM_sint invoke_id_return

56 Gradient DCE for Tru64 UNIX Reference Guide
Description
This function is used to extract information from an explicitly named entry. It
can also be used to verify a distinguished name.

If this function is called asynchronously, then the result can be abandoned by
calling the Abandon function.

DCE Notes
Ideally, the user does not know whether X.500 or CDS is actually handling
the DCE naming operations. There are, however, some situations where
naming results will differ depending on which service is handling the
operation. (The intro reference page for XDS functions describes the general
differences between operations on X.500 and CDS.)

Note the following issues for the Read function:

■ All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

■ When a CDS name is passed to XDS and DCE is not installed, a
Library-Error, not-supported, is returned. This error is also returned when
an X.500 name is passed to XDS, and X.500 is not installed.

■ Because CDS does not implement the X.500 schema rules, some CDS
objects may not contain mandatory attributes such as object class and so
on. In CDS, a read of an alias object fails if the
DS_A_ALIASED_OBJECT_NAME does not exist. Instead, CDS returns
with the Name-Error no-such-object.

■ In CDS, the naming attribute of an object is not stored in the attribute list
for the object. Thus in CDS, the Read function does not return this
attribute in the attribute list for an object.

Return Value

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

DS_SUCCESS The read was completed, if the operation was invoked
synchronously. The operation was initiated, if it was
invoked asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to the Initialize
function.

Chapter 3 XDS Directory Services Reference Pages 57
■ Library-Error, with Problem attribute values of bad-argument,
bad-attribute, bad-context, bad-name, bad-session, miscellaneous,
missing-type, not-supported or too-many-operations

■ Attribute-Error

■ Name-Error, no-such-object

■ Referral

■ Security-Error

■ Service-Error

■ Communications-Error

■ An Attribute-Error, no-such-attribute, is reported if an explicit list of
attributes is specified by the selection argument but none of them are
present in the entry. This error is not reported if any of the selected
attributes are present.

■ A Security-Error, insufficient-access-rights, is reported where access
rights prohibit the reading of all requested attribute values.

Examples
The following code extracts show an example call to the Read function. The
Read function is used to read all the types and values from all attributes of the
directory entry identified in the Name argument.

There are three examples. The first example shows how to perform an
asynchronous Read operation. The second example shows how to perform a
synchronous Read operation. The third example shows how to perform a
synchronous Read operation with a CDS name.

The Bound_Session argument contains the identity of a session returned from
an earlier call to the Bind function. This object identifies the session through
which the request should be issued. The Context argument is assumed to have
been previously defined. An example of how to define a Context argument is
shown in the Add Entry function.

Example 1

{
 OM_workspace workspace;
 OM_descriptor cpub_dn[6];
 OM_descriptor cpub_rdn1[3];
 OM_descriptor cpub_rdn2[3];
 OM_descriptor cpub_rdn3[3];
 OM_descriptor cpub_rdn4[3];
 OM_descriptor cpub_ava1[4];
 OM_descriptor cpub_ava2[4];
 OM_descriptor cpub_ava3[4];
 OM_descriptor cpub_ava4[4];
 OM_value_position desc_count;
 DS_status status;
 OM_sint invoke_id;

58 Gradient DCE for Tru64 UNIX Reference Guide
 OM_uint completion_flag;
 DS_status operation_status;
 OM_return_code om_status;
 OM_private_object name, read_result;
 OM_public_object spub_result;
 OMX_CLASS_DESC(cpub_ava1[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava1[1], DS_ATTRIBUTE_TYPE,
 DS_A_COMMON_NAME);
 OMX_ZSTRING_DESC(cpub_ava1[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Albert Einstein");
 OMX_OM_NULL_DESC(cpub_ava1[3]);
 OMX_CLASS_DESC(cpub_ava2[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava2[1], DS_ATTRIBUTE_TYPE,
 DS_A_ORG_UNIT_NAME);
 OMX_ZSTRING_DESC(cpub_ava2[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Research");
 OMX_OM_NULL_DESC(cpub_ava2[3]);
 OMX_CLASS_DESC(cpub_ava3[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava3[1], DS_ATTRIBUTE_TYPE,
 DS_A_ORG_NAME);
 OMX_ZSTRING_DESC(cpub_ava3[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Digital Equipment Corporation");
 OMX_OM_NULL_DESC(cpub_ava3[3]);
 OMX_CLASS_DESC(cpub_ava4[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava4[1], DS_ATTRIBUTE_TYPE,
 DS_A_COUNTRY_NAME);
 OMX_ZSTRING_DESC(cpub_ava4[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "US");
 OMX_OM_NULL_DESC(cpub_ava4[3]);
 OMX_CLASS_DESC(cpub_rdn1[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn1[1], DS_AVAS, cpub_ava1);
 OMX_OM_NULL_DESC(cpub_rdn1[2]);
 OMX_CLASS_DESC(cpub_rdn2[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn2[1], DS_AVAS, cpub_ava2);
 OMX_OM_NULL_DESC(cpub_rdn2[2]);
 OMX_CLASS_DESC(cpub_rdn3[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn3[1], DS_AVAS, cpub_ava3);
 OMX_OM_NULL_DESC(cpub_rdn3[2]);
 OMX_CLASS_DESC(cpub_rdn4[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn4[1], DS_AVAS, cpub_ava4);
 OMX_OM_NULL_DESC(cpub_rdn4[2]);
 OMX_CLASS_DESC(cpub_dn[0], DS_C_DS_DN);
 OMX_OBJECT_DESC(cpub_dn[1], DS_RDNS, cpub_rdn4);
 OMX_OBJECT_DESC(cpub_dn[2], DS_RDNS, cpub_rdn3);
 OMX_OBJECT_DESC(cpub_dn[3], DS_RDNS, cpub_rdn2);
 OMX_OBJECT_DESC(cpub_dn[4], DS_RDNS, cpub_rdn1);
 OMX_OM_NULL_DESC(cpub_dn[5]);
 /* create the OM private object: name */
 om_status = om_create(DS_C_DS_DN, OM_FALSE, workspace, &name);
 /* Copy the attribute list from the cpub_dn public object into */
 /* the name private object */

Chapter 3 XDS Directory Services Reference Pages 59
 om_status = om_put(name, OM_REPLACE_ALL, cpub_dn, 0,0,0);
 /* call the ds_read function using Name as a parameter and */
 /* select only the information specified by rdn_type_list */
 status = ds_read(bound_session, context, name,
 DS_SELECT_ALL_TYPES_AND_VALUES, &read_result,
 &invoke_id);

 if (status == DS_SUCCESS)
 {
 printf("READ request was successful\n");
 }
 else
 {
 printf("READ request failed\n");
 }
 /* now wait for the response... */
 completion_flag = DS_OUTSTANDING_OPERATIONS;
 /* loop around calls to receive_result() until we get one back */
 while ((status == DS_SUCCESS)
 && (completion_flag == DS_OUTSTANDING_OPERATIONS))
 {
 status = ds_receive_result(bound_session, &completion_flag,
 &operation_status, &read_result,
 &invoke_id);
 if (status == DS_SUCCESS)
 {
 switch (completion_flag)
 {
 case DS_COMPLETED_OPERATION:
 /* we have a completed operation */
 /* now see what we have got back ... */
 if (operation_status == DS_SUCCESS)
 {
 om_status = om_get(read_result, OM_NO_EXCLUSIONS,
 0, 0, 0, OM_ALL_VALUES,
 &spub_result, &desc_count);
 if (om_status == OM_SUCCESS)
 {
 /* check desc_count != 0 */
 /* results now available in public object */
 /* spub_result */
 }
 else
 {
 /* error getting results */
 /* search_result not deleted */
 }
 }
 else
 {...}
 break;

 case DS_OUTSTANDING_OPERATIONS:
 ...
 break;
 case DS_NO_OUTSTANDING_OPERATION:
 ...

60 Gradient DCE for Tru64 UNIX Reference Guide
 break;
 }
 }
 }
}

The above example shows:

■ How to define a private object containing a distinguished name.

■ How to define a DS-DN OM public object (cpub_dn) containing the
entry’s distinguished name: /C=US/O=Digital Equipment Corporation/
OU=Research/CN=Albert Einstein

■ How to use the OM Create function to create a DS-DN OM private object
(name) and how to use the OM Put function to copy the distinguished
name from the public object (cpub_dn) into the newly created private
object (name).

■ How to use the Receive Result function to obtain the result of the Read
function.

■ How to use the OM Get function to copy the attributes of the Read-Result
OM private object into the Read-Result OM public object (Spub_Result)
for examination.

The OM Create, OM Put and the OM Get functions are assumed to
succeed.

Example 2

OM_private_object bound_session, name, context;
{
 DS_status status;
 OM_private_object name;
 status = ds_read(bound_session, DS_DEFAULT_CONTEXT,
 name, selection, &info, NULL);

 if (status == DS_SUCCESS)
 {
 printf("READ was successful\n");
 }
 else
 {
 printf("READ failed\n");
 }
}

The above example shows how to perform a synchronous Read operation.
Note that the Invoke-ID argument is not needed and therefore set to NULL.
The example assumes that all other arguments have been defined as shown in
Example 1.

Chapter 3 XDS Directory Services Reference Pages 61
Example 3

{
 OM_workspace workspace;
 OM_descriptor cpub_dn[7];
 OM_descriptor cpub_rdn0[3];
 OM_descriptor cpub_rdn1[3];
 OM_descriptor cpub_rdn2[3];
 OM_descriptor cpub_rdn3[3];
 OM_descriptor cpub_rdn4[3];
 OM_descriptor cpub_ava0[4];
 OM_descriptor cpub_ava1[4];
 OM_descriptor cpub_ava2[4];
 OM_descriptor cpub_ava3[4];
 OM_descriptor cpub_ava4[4];
 OM_value_position desc_count;
 DS_status status;
 OM_sint invoke_id;
 OM_uint completion_flag;
 DS_status operation_status;
 OM_return_code om_status;
 OM_private_object name, read_result;
 OM_public_object spub_result;
 OMX_CLASS_DESC(cpub_ava0[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava0[1], DS_ATTRIBUTE_TYPE,
 DSX_TYPELESS_RDN);
 OMX_ZSTRING_DESC(cpub_ava0[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "CDS");
 OMX_OM_NULL_DESC(cpub_ava0[3]);
 OMX_CLASS_DESC(cpub_ava1[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava1[1], DS_ATTRIBUTE_TYPE,
 DSX_TYPELESS_RDN);
 OMX_ZSTRING_DESC(cpub_ava1[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Projects");
 OMX_OM_NULL_DESC(cpub_ava1[3]);
 OMX_CLASS_DESC(cpub_ava2[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava2[1], DS_ATTRIBUTE_TYPE,
 DS_A_ORG_UNIT_NAME);
 OMX_ZSTRING_DESC(cpub_ava2[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Research");
 OMX_OM_NULL_DESC(cpub_ava2[3]);
 OMX_CLASS_DESC(cpub_ava3[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava3[1], DS_ATTRIBUTE_TYPE,
 DS_A_ORG_NAME);
 OMX_ZSTRING_DESC(cpub_ava3[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Digital Equipment Corporation");
 OMX_OM_NULL_DESC(cpub_ava3[3]);
 OMX_CLASS_DESC(cpub_ava4[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava4[1], DS_ATTRIBUTE_TYPE,
 DS_A_COUNTRY_NAME);
 OMX_ZSTRING_DESC(cpub_ava4[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "US");
 OMX_OM_NULL_DESC(cpub_ava4[3]);

62 Gradient DCE for Tru64 UNIX Reference Guide
 OMX_CLASS_DESC(cpub_rdn0[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn0[1], DS_AVAS, cpub_ava0);
 OMX_OM_NULL_DESC(cpub_rdn0[2]);
 OMX_CLASS_DESC(cpub_rdn1[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn1[1], DS_AVAS, cpub_ava1);
 OMX_OM_NULL_DESC(cpub_rdn1[2]);
 OMX_CLASS_DESC(cpub_rdn2[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn2[1], DS_AVAS, cpub_ava2);
 OMX_OM_NULL_DESC(cpub_rdn2[2]);
 OMX_CLASS_DESC(cpub_rdn3[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn3[1], DS_AVAS, cpub_ava3);
 OMX_OM_NULL_DESC(cpub_rdn3[2]);
 OMX_CLASS_DESC(cpub_rdn4[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn4[1], DS_AVAS, cpub_ava4);
 OMX_OM_NULL_DESC(cpub_rdn4[2]);
 OMX_CLASS_DESC(cpub_dn[0], DS_C_DS_DN);
 OMX_OBJECT_DESC(cpub_dn[1], DS_RDNS, cpub_rdn4);
 OMX_OBJECT_DESC(cpub_dn[2], DS_RDNS, cpub_rdn3);
 OMX_OBJECT_DESC(cpub_dn[3], DS_RDNS, cpub_rdn2);
 OMX_OBJECT_DESC(cpub_dn[4], DS_RDNS, cpub_rdn1);
 OMX_OBJECT_DESC(cpub_dn[5], DS_RDNS, cpub_rdn0);
 OMX_OM_NULL_DESC(cpub_dn[6]);
 /* create the OM private object: name */
 om_status = om_create(DS_C_DS_DN, OM_FALSE, workspace, &name);
 /* Copy the attribute list from the cpub_dn public object into */
 /* the name private object */

 om_status = om_put(name, OM_REPLACE_ALL, cpub_dn, 0,0,0);
 /* call the ds_read function using Name as a parameter and */
 /* specify that all attribute types and values be read. */
 /* Note that invoke_id parameter is may be set NULL in the */
 /* case of synchronous operation. */
 status = ds_read(bound_session, DS_DEFAULT_CONTEXT, name,
 DS_SELECT_ALL_TYPES_AND_VALUES, &read_result,
 NULL);

 if (status == DS_SUCCESS)
 {
 printf("READ request was successful\n");
 om_status = om_get(read_result, OM_NO_EXCLUSIONS,
 0, 0, 0, OM_ALL_VALUES,
 &spub_result, &desc_count);
 if (om_status == OM_SUCCESS)
 {
 /* check desc_count != 0 */
 /* results now available in public object */
 /* spub_result */
 }
 else
 {
 /* error getting results */
 /* search_result not deleted */
 }
 }
 else
 {

Chapter 3 XDS Directory Services Reference Pages 63
 printf("READ request failed\n");
 }
}

The above example shows the synchronous reading of all attribute types and
values from the CDS entry /.../C=US/O=Digital Equipment Corporation/
OU=Research/Projects/CDS

Note the use of the special attribute type DSX_TYPELESS_RDN in the
rightmost RDNs of the name. The presence of one or more occurrences of this
attribute type indicates to the XDS API that a name is a CDS distinguished
name.

Note that the CDS global naming root /... need not be explicitly supplied as
the first RDN in a CDS distinguished name. When the XDS API encounters a
CDS distinguished name, it will internally prepend the CDS global naming
root, unless one of the CDS local naming roots such as /.: or /: has been
explicitly supplied.

A CDS local naming root, if desired, must be explicitly supplied as the first
RDN of a distinguished name. It is specified with an attribute type of
DSX_TYPELESS_RDN and an attribute value of .: or : as appropriate.

Note that the Invoke-ID argument is not needed for synchronous operation
and is therefore set to NULL. The Bound-Session argument is assumed to
have been set up as in Example 1.

ds_receive_result(3xds)

Name
ds_receive_result - This function retrieves the result of an asynchronously
executed operation.

Syntax
Status = ds_receive_result(Session, Completion-Flag, Operation-Status,
Result, Invoke-ID)

Argument Data Type Access

Session OM_private_object read

Completion-Flag Unsigned Integer write

Operation-Status DS_status write

Result OM_private_object write

Invoke-ID Integer write

Status DS_status

64 Gradient DCE for Tru64 UNIX Reference Guide
C Binding
DS_status ds_receive_result(session, completion_flag, operation_status,
result, invoke_id)

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session in which the operation was performed.

Completion-Flag

One of the following values to indicate the status of outstanding
asynchronous operations:

■ Completed-Operation. At least one outstanding asynchronous operation
is completed and its result is available.

■ Outstanding-Operations. There are outstanding asynchronous
operations but none is completed.

■ No-Outstanding-Operation. There are no outstanding asynchronous
operations.

The result of the Completion-Flag parameter is valid if Status has the value
Success.

Upon successful return with Completion-Flag having the value
completed-operation, Status and Invoke-ID parameter values for the
completed operation are returned.

Operation-Status

Takes an error value if an error occurred during the execution of the
asynchronous directory operation. If no error occurred, then it takes the
value success. The possible error values are listed for each individual
operation in the corresponding function description. This result is only
valid if the status has the value success and Completion-Flag has the value
completed-operation.

Result

The result of the completed asynchronous operation. Its value is the
constant Null-Result if the operation was one that does not return a result
(Add-Entry, Modify-Entry, Modify-RDN, or Remove-Entry). Otherwise it

OM_private_object session

OM_uint completion_flag_return

DS_status operation_status_return

OM_private_object result_return

OM_sint invoke_id_return

Chapter 3 XDS Directory Services Reference Pages 65
is an OM object of the appropriate OM class for the result of the
asynchronous operation. You can check the class of the Result by using the
OM functions. This result is only valid if the following conditions are true:

■ Status has the value success
■ Completion-Flag has the value completed-operation
■ Operation-Status has the value success

Invoke-ID

The Invoke-ID of the operation whose result is being returned.

This result is valid if the Status has the value success and Completion-Flag
has the value completed-operation.

Description
This function is used to retrieve the completed results of an outstanding
asynchronous operation.

The function results include two status indications. One, called Status,
indicates that the function call itself was successful and is always returned.
The other, called Operation-Status, is used to return the status of the
completed asynchronous operation and is only returned if there is one. See
DEC X.500 Directory Service Programming for information about calling
functions asynchronously.

DCE Notes
The DCE XDS interface does not support asynchronous operations.

Return Value

If neither of these constants are returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error object:

■ Library-Error, with Problem attribute values of bad-session,or
miscellaneous

Any errors related to the completed asynchronous operation are reported in
Operation-Status as described above.

DS_SUCCESS The operation completed successfully.

DS_NO_WORKSPACE A workspace has not been set up by a call to
the Initialize function.

66 Gradient DCE for Tru64 UNIX Reference Guide
Example
The following code extract shows an example call to the Receive Result
function.

The Receive Result function is used to obtain the result of an outstanding
asynchronous operation.

{
 /* Call the Modify Entry function asynchronously using the */
 /* changes object as a parameter. The Asynchronous attribute */
 /* on the OM Context object has value True */
 status = ds_modify_entry(session,context,name,changes,&invoke_id);
 if (status == DS_SUCCESS)
 {...}
 else
 {...}
 /* now wait for the response... */
 completion_flag = DS_OUTSTANDING_OPERATIONS;
 /* loop around calls to receive_result() until we get one back */
 while ((status == DS_SUCCESS) &&
 (completion_flag == DS_OUTSTANDING_OPERATIONS))
 {
 status = ds_receive_result(bound_session, &completion_flag,
 &operation_status,
 &modify_entry_result,
 &invoke_id);
 if (status == DS_SUCCESS)
 {
 switch (completion_flag)
 {
 case DS_COMPLETED_OPERATION:
 /* operation is complete */
 break;
 case DS_OUTSTANDING_OPERATIONS:
 ...
 break;
 case DS_NO_OUTSTANDING_OPERATION:
 ...
 break;
 }
 }
 }
}

The Receive Result function uses, as input, the Invoke-ID argument output
from the asynchronous function.

ds_remove_entry(3xds)

Name
ds_remove_entry - Removes an entry from the Directory Information Tree
(DIT).

Chapter 3 XDS Directory Services Reference Pages 67
Syntax
Status = ds_remove_entry(Session, Context, Name, Invoke-ID)

C Binding
DS_status ds_remove_entry(session, context, name, invoke_id_return)

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

The directory context to be used for this operation. The Size-Limit and
Dont-Dereference-Aliases Context parameters do not apply to this
operation. This argument must be a Context OM private object or the
constant Default-Context.

Name

A Name OM object containing the name of the target entry. Any aliases in
the name will not be dereferenced.

Invoke-ID

The Invoke-ID of an asynchronous directory operation.

Description
This function is used to remove an entry from the Directory. This may be an
object entry or an alias entry. The entry must not have any subordinate entries.

Argument Data Type Access

Session OM_private_object read

Context OM_private_object read

Name OM_object read

Invoke-ID Integer write

Status DS_status

OM_private_object session

OM_private_object context

OM_object name

 OM_sint invoke_id_return

68 Gradient DCE for Tru64 UNIX Reference Guide
DCE Notes
Ideally, the user does not know whether X.500 or CDS is actually handling
the DCE naming operations. There are, however, some situations where
naming results will differ depending on which service is handling the
operation. (The intro reference page for XDS functions describes the general
differences between operations on X.500 and CDS.)

Note the following issues for the Remove Entry function:

■ All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

■ When a CDS name is passed to XDS and DCE is not installed, a
Library-Error, not-supported, is returned. This error is also returned when
an X.500 name is passed to XDS, and X.500 is not installed.

■ In CDS, the name parameter supplied to the Remove Entry function must
ultimately resolve to the name of a leaf (that is, a CDS Object) entry;
otherwise, the Name-Error no-such-object is returned. The function never
interprets the name parameter as the name of a CDS Directory entry.

Return Value

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

■ Library-Error, with Problem attribute values of bad-argument,
bad-context, bad-name, bad-session, miscellaneous, missing-type,
not-supported or too-many- operations

■ Name-Error, no-such-object
■ Referral
■ Security-Error
■ Service-Error
■ Update-Error
■ Communications-Error

DS_SUCCESS The entry was removed, if the operation was invoked
synchronously. The operation,was initiated, if it was invoked
asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to the Initialize
function.

Chapter 3 XDS Directory Services Reference Pages 69
Examples
The following code extracts show an example call to the Remove Entry
function. The Remove Entry function is used to remove an existing directory
entry.

There are two examples. The first example shows how to perform an
asynchronous Remove Entry operation. The second example shows how to
perform a synchronous Remove Entry operation.

The Bound_Session argument contains the identity of a session returned from
an earlier call to the Bind function. This object identifies the session through
which the request should be issued. The Name argument and the Context
argument are assumed to have been previously defined. Examples of how to
define a Name argument, including an example of a CDS Name argument, are
shown in the Read function. An example of how to define a Context argument
is shown in the Add Entry function.

Example 1

OM_private_object bound_session, context, name;
{
 DS_status status;
 OM_sint invoke_id;
 OM_uint completion_flag;
 DS_status operation_status;
 OM_private_object remove_entry_result;
 /* Call the Remove Entry function */
 status = ds_remove_entry(bound_session, context, name,
 &invoke_id);

 if (status == DS_SUCCESS)
 {
 printf("REMOVE ENTRY request was successful\n");
 }
 else
 {
 printf("REMOVE ENTRY request failed\n");
 }
 /* now wait for the response... */
 completion_flag = DS_OUTSTANDING_OPERATIONS;
 /* loop around calls to receive_result() until we get one back */
 while ((status == DS_SUCCESS) &&
 (completion_flag == DS_OUTSTANDING_OPERATIONS))
 {
 status = ds_receive_result(bound_session, &completion_flag,
 &operation_status,
 &remove_entry_result,
 &invoke_id);
 if (status == DS_SUCCESS)
 {
 switch (completion_flag)
 {
 case DS_COMPLETED_OPERATION:
 /* we have a completed operation */
 /* check operation_status */

70 Gradient DCE for Tru64 UNIX Reference Guide
 break;
 case DS_OUTSTANDING_OPERATIONS:
 ...
 break;
 case DS_NO_OUTSTANDING_OPERATION:
 ...
 break;
 }
 }
 }
}

The above example removes the directory entry, identified in the Name
argument, from the directory. Since the operation is executed asynchronously,
an invoke identifier is returned in the Invoke-ID argument. This uniquely
identifies this specific operation and is therefore used in the subsequent
Receive Result function to obtain the result of the operation.

Example 2

OM_private_object bound_session, context, name;
{
 DS_status status;
 OM_private_object changes;
 status = ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
 name, changes, NULL);
 if (status == DS_SUCCESS)
 {
 printf("REMOVE_ENTRY was successful\n");
 }
 else
 {
 printf("REMOVE_ENTRY failed\n");
 }
 return status;
}

ds_search(3xds)

Name
ds_search - Finds entries of interest in a portion of the Directory.

Syntax
Status = ds_search(Session, Context, Name, Subset, Filter, Search_Aliases,
Selection, Result, Invoke-ID)

Argument Data Type Access

Session OM_private_object read

Context OM_private_object read

Name OM_object read

Chapter 3 XDS Directory Services Reference Pages 71
C Binding
DS_status ds_search(session, context, name, subset, filter, search_aliases,
selection, result_return, invoke_id_return)

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

The Context parameters to be used for this operation. This argument must
be a Context OM private object or the constant Default-Context.

Name

A Name OM object containing the name of the target entry, which forms
the base of the search. Any aliases in the name will be dereferenced unless
prohibited by the Dont-Dereference-Aliases Context parameter.

Subset

The search limit that specifies a portion of the Directory tom be searched.
Its value must be one of:

Subset Integer read

Filter OM_object read

Search_Aliases OM_boolean read

Selection OM_object read

Result OM_private_object write

Status DS_status write

Invoke-ID Integer

OM_private_object session

OM_private_object context

OM_object name

OM_sint subset

OM_object filter

OM_boolean search_aliases

OM_object selection

OM_private_object result_return

OM_sint invoke_id_return

Argument Data Type Access

72 Gradient DCE for Tru64 UNIX Reference Guide
■ base-object, meaning search just the target entry
■ one-level, meaning search just the immediate subordinates of the target

entry
■ whole-subtree, meaning search the target entry and all its subordinates

Filter

The filter is used to prevent unwanted entries being returned in the results
of the search. Information is only returned on entries that satisfy the filter.
The constant No-Filter can be used as the value of this argument if you
want to search all entries. This corresponds to a filter with a value of and
for the attribute Filter-Type, and no values of the attributes Filters or
Filter-Items.

Search-Aliases

Any aliases in the subordinate entries being searched are dereferenced if
the value of this argument is true. They are not dereferenced if its value is
false. Note that Digital’s X.500 DSA does not honor this control; it
assumes the value is false and does not dereference aliases.

Selection

An Entry-Information-Selection OM object or a constant specifying what
information from the named entry is requested. Information about no
attributes, all attributes, or just a named set can be chosen. Attribute types
are always returned, but the attribute values need not be. The following
constants can be used:

■ Select-No-Attributes, to verify the existence of an entry
■ Select_All-Types, to return just the types of all attributes
■ Select-All-Types-And-Values, to return the types and values of all

attributes

Result

A Search-Result OM private object, passed by reference, containing the
requested information from each object in the search space that satisfied
the filter. The distinguished name of the target object is present if an alias
was dereferenced. Additionally there may be a partial outcome qualifier
that indicates the result is incomplete. It also explains why it is not
complete and how it could be completed.

Invoke-ID

The Invoke-ID of an asynchronous operation.

Description
This function is used to search a portion of the directory and return selected
information from the entries of interest. It is possible that the information will
be incomplete in some circumstances.

Chapter 3 XDS Directory Services Reference Pages 73
DCE Notes
CDS does not support the Search function. It returns with the Service-Error
unwilling-to-perform.

Return Value

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

■ Library-Error, with Problem attribute values of bad-argument,
bad-context, bad-name, bad-session, miscellaneous, missing-type,or
too-many-operations

■ Attribute-Error
■ Name-Error
■ Referral
■ Security-Error
■ Service-Error
■ Communications-Error

An unfiltered search of just the base object succeeds even if none of the
requested attributes is found while Read fails with the same selected
attributes.

A Security-Error, insufficient-access-rights, is only reported where access
rights prohibit the reading of all requested attribute values.

Examples
The following code extract shows an example call to the Search function. The
Search function is used to search the directory for a specific entry and then
extract the values of the Surname and the Title attributes from that entry.

There are two examples. The first example shows how to perform an
asynchronous Search operation. The second example shows how to perform a
synchronous Search operation.

The Bound_Session argument contains the identity of a session returned from
an earlier call to the Bind function. This object identifies the session through
which the request should be issued. The Name argument and the Context

DS_SUCCESS The target object was located, if the operation was
invoked synchronously. The operation was initiated, if it
was invoked asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to the
Initialize function.

74 Gradient DCE for Tru64 UNIX Reference Guide
argument are assumed to have been previously defined. Examples of how to
define a Name argument are shown in the Read function. An example of how
to define a Context argument is shown in the Add Entry function.

Example 1

{
 OM_private_object bound_session, context, name;
 OM_workspace workspace;
 OM_descriptor cpub_eis[5];
 OM_value_position desc_count;
 DS_status status;
 OM_private_object search_result;
 OM_sint invoke_id;
 OM_uint completion_flag;
 DS_status operation_status;
 OM_return_code om_status;
 OM_public_object spub_result;
 OM_value_position desc_count;
 OM_private_object selection;
 /* create a descriptor list for surname and title of class */
 /* entry information selection */
 OMX_CLASS_DESC(cpub_eis[0], DS_C_ENTRY_INFO_SELECTION);
 OMX_ATTR_TYPE_DESC(cpub_eis[1], DS_ATTRIBUTES_SELECTED,
 DS_A_SURNAME);
 OMX_ATTR_TYPE_DESC(cpub_eis[2], DS_ATTRIBUTES_SELECTED,
 DS_A_TITLE);
 OMX_ENUM_DESC(cpub_eis[3], DS_INFO_TYPE,
 DS_TYPES_ONLY);
 OMX_OM_NULL_DESC(cpub_eis[4]);
 /* Create an OM private object called selection */
 om_status = om_create(DS_C_ENTRY_INFO_SELECTION,OM_FALSE,
 workspace, &selection);
 /* Object created, now put in the attributes from cpub_eis */
 om_status = om_put(selection, OM_REPLACE_ALL, cpub_eis ,0,0,0);
 /* now start the search using selection as a parameter*/
 status = ds_search(bound_session, context, name, DS_ONE_LEVEL,
 DS_NO_FILTER, OM_FALSE, selection,
 &search_result, &invoke_id);
 completion_flag = DS_OUTSTANDING_OPERATIONS;
 /* loop around calls to receive_result() until we get one back */
 while ((status == DS_SUCCESS) &&
 (completion_flag == DS_OUTSTANDING_OPERATIONS))
 {
 status = ds_receive_result(bound_session, &completion_flag,
 &operation_status, &search_result,
 &invoke_id);

 if (status == DS_SUCCESS)
 {
 switch (completion_flag)
 {
 case DS_COMPLETED_OPERATION:
 /* we have a completed operation */
 /* now see what we have got back ... */

Chapter 3 XDS Directory Services Reference Pages 75
 if (operation_status == DS_SUCCESS)
 {

 om_status = om_get(search_result, OM_NO_EXCLUSIONS,
 0, 0, 0, OM_ALL_VALUES,
 &spub_result, &desc_count);
 if (om_status == OM_SUCCESS)
 {
 /* results now available as a public object */
 /* check desc_count != 0 */
 /* delete the search result... */
 om_status = om_delete(search_result);
 }
 else
 {
 /* error getting results */
 /* search_result not deleted */
 }
 }
 else
 {...}
 break;
 case DS_COMPLETED_OPERATION:
 ...
 break;
 case DS_COMPLETED_OPERATION:
 ...
 break;
 }
 }
}

The above example shows the following:

■ How to define an Entry-Information-Selection OM public object
(cpub_eis) containing details of the information that is to be returned from
the search.

■ How to use the OM Create function to create a private object (selection)
and how to use the OM Put function to copy the details of the required
information from the Entry-Information-Selection OM public object
(cpub_eis) into the newly-created Entry-Information-Selection OM private
object (selection).

■ How to obtain the result of the Search function using the Receive Result
function.

■ How to use the OM Get function to copy the attributes of the
Search-Result OM private object into the Search-Result OM public object
(Spub_Result) for examination.

The OM Create, OM Put, OM Get and OM Delete functions are assumed to
succeed.

76 Gradient DCE for Tru64 UNIX Reference Guide
Example 2

{
 OM_private_object bound_session, context, name;
 OM_value_position desc_count;
 DS_status status;
 OM_private_object search_result;
 OM_private_object selection;
 OM_public_object spub_result;
 /* start the search using selection as a parameter */
 status = ds_search(bound_session, DS_DEFAULT_CONTEXT, name,
 DS_ONE_LEVEL, DS_NO_FILTER, OM_FALSE,
 selection, &search_result, NULL);
 if (status == DS_SUCCESS)
 {
 /* now see what we have got back ... */
 om_status = om_get(search_result, OM_NO_EXCLUSIONS,
 0, 0, 0, OM_ALL_VALUES,
 &spub_result, &desc_count);
 if (om_status == OM_SUCCESS)
 {
 /* results now available as a public object */
 /* check desc_count != 0 */
 /* delete the search result... */
 om_status = om_delete(search_result);
 }
 else
 {
 /* error getting results */
 /* search_result not deleted */
 }
 }
 else
 {...}
}

The above example shows how to perform a synchronous Search operation.
Note that the Invoke-ID argument is not needed and NULL is used. This
example assumes that the Selection argument has been defined as shown in
Example 1.

ds_shutdown(3xds)

Name
ds_shutdown - Shuts down the interface and closes the workspace.

Syntax
Status = ds_shutdown(Workspace)

Argument Data Type Access

Workspace OM_workspace read

Chapter 3 XDS Directory Services Reference Pages 77
C Binding
DS_status ds_shutdown(workspace)

Arguments
Workspace

Specifies the workspace (obtained from a call to the Initialize function)
that is to be deleted.

Description
This function shuts down the interface previously established by Initialize and
enables the service to release resources.

After this function has been called, no OM objects or other data values
associated with the workspace are valid, with the exception of
client-generated public objects. You should call the Unbind function for all
sessions in this workspace. You must not subsequently call any X.500 API
functions that operate on OM objects in this workspace.

In order to ensure that resources are freed, applications should release all
private objects by calling the OM Delete function for all top-level OM private
objects before calling this function. This is not necessary for subobjects.
Applications should also release all service-generated public objects by
calling the OM Delete function. You can do this either before or after the
calling of this function.

Return Value

Errors
This function does not return any error objects.

Status DS_status

OM_workspace workspace

DS_SUCCESS The shutdown was completed, if the operation was invoked
synchronously. The operation was initiated, if it was
invoked. asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to the Initialize
function.

Argument Data Type Access

78 Gradient DCE for Tru64 UNIX Reference Guide
Example
The following code extract shows an example call to the Shutdown function:

OM_workspace workspace;
{
 DS_status status;
 /* Finally, close down the workspace */
 ds_status = ds_shutdown(workspace);
}

The Shutdown function closes down the workspace identified in the
Workspace argument. The workspace identity is obtained from the Initialize
function.

ds_unbind(3xds)

Name
ds_unbind - This function closes a directory session.

Syntax
Status = ds_unbind(Session)

C Binding
DS_status ds_unbind(session)

Arguments
Session

The directory session that is to be unbound. This argument must be the
Session OM private object that was returned by the Bind function,
identifying the directory session. If the function succeeds, the value of the
File-Descriptor OM attribute is No-Valid-File-Descriptor. The other OM
attributes are unchanged.

Argument Data Type Access

Session OM_private_object read

Status DS_status

OM_private_object session

Chapter 3 XDS Directory Services Reference Pages 79
Description
This function terminates the given directory session and makes the argument
unavailable for use with all other interface functions except Bind.

The results of any outstanding asynchronous operations that were initiated
using the given Session can no longer be received, and it is not possible to
find out if they succeeded. It is therefore recommended that you obtain the
results of all outstanding asynchronous operations by calling the
Receive-Result function before calling Unbind.

It is possible to use the unbound session again as an argument to Bind,
perhaps after modification by the Object Management functions.

Return Value

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error object:

■ Library-Error, with Problem attribute values of bad-session,or
miscellaneous.

Example
The following code extract shows an example call to the Unbind function.

{
 OM_private_object bound_session;
 DS_status status;

 status = ds_unbind(bound_session);
 if (status == DS_SUCCESS)
 {
 printf("UNBIND was successful\n");
 }
 else
 {
 printf("UNBIND failed\n");
 }
}

The Unbind function closes down a session established by the Bind function.
The Bound_Session argument identifies the session to be closed.

DS_SUCCESS The operation completed successfully.

DS_NO_WORKSPACE A workspace has not been set up by a call to the
Initialize function.

80 Gradient DCE for Tru64 UNIX Reference Guide
ds_version(3xds)

Name
ds_version - Negotiates the features of the interface and service.

Syntax
Status = ds_version(Feature-List, Workspace)

C Binding
DS_status ds_version(feature_list, workspace)

Arguments
Feature-List

An ordered sequence of features, each represented by an object identifier.
The sequence is terminated by an object identifier having no components
(that is, a length of zero, and any value of the data pointer in the C
representation).

Workspace

Specifies the workspace (obtained from a call to the Initialize function) for
which the features are to be negotiated. The features will be in effect for
operations that use the workspace or directory sessions associated with the
workspace.

Description
This function negotiates features of the interface that are represented by
object identifiers. Features are negotiated after a workspace has been
initialized.

Negotiable features include the Basic-Directory-Contents Package, the
Strong-Authentication Package, and the MHS Directory User Package.

Argument Data Type Access

Feature-List DS_Feature write/read

Workspace OM_workspace read

Status DS_status

DS_feature feature_list[]

OM_workspace workspace

Chapter 3 XDS Directory Services Reference Pages 81
The Gradient DCE for Tru64 UNIX implementation of this function does not
support the features listed above, but supports one extension,
DSX-RET-X500-BIND-ERR-FTR. This feature guarantees that the Bind
function will always return an error if it fails to connect to an X.500 directory.
This feature is useful if the system where your application runs is capable of
simultaneous connections to both CDS and X.500 directories in the same
XDS session. In other circumstances, this feature is not needed.

Return Value

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

■ Library-Error, with the Problem attribute values of miscellaneous,
bad_workspace.

■ System-Error

Example
The following code extract shows an example call to the Version function.

{
 OM_workspace workspace;
 DS_feature feature_list[];
 DS_status status;
 status = ds_version(feature_list, workspace);
 if (status == DS_SUCCESS)
 {
 printf("VERSION was successful\n");
 }
 else
 {
 printf("VERSION failed\n");
 }
}

dsX_trace_object(3xds)

Name
dsX_trace_object - Displays an explanation of the content of an object on the
current output device.

DS_SUCCESS The features were successfully negotiated.

DS_NO_WORKSPACE A workspace has not been set up by a call to the
Initialize function.

82 Gradient DCE for Tru64 UNIX Reference Guide
Syntax
(void) dsX_trace_object(Object)

C Binding
dsX_trace_object(object)

Arguments
OM_object

The object whose content you want to inspect.

Description
This function displays on the current output device information about the
content of an OM object, as follows:

■ A full expansion of a public object
■ The type of a private object
■ Details of the content of an error object
■ For a name object or AVA encoded in ASN.1, both the ASCII and

hexadecimal representations of the ASN.1 encoding

The routine also checks for null pointers.

Errors
This function does not return any errors.

Example
The following code extract shows an example call to the Trace Object
function:

{
 OM_workspace workspace;
 OM_return_code status;
 OM_object session = NULL;

 status = om_create(DS_C_SESSION,OM_TRUE,workspace,&session);
 if (status == OM_SUCCESS)
 {

Argument Data Type Access

Object OM_object read

OM_object object

Chapter 3 XDS Directory Services Reference Pages 83
 dsX_trace_object(session);
 }
}

C H A PT E R 4

XDS Object Management
Reference Pages
This chapter provides reference pages for the X/Open Object Management
(XOM) API functions. The Gradient DCE for Tru64 UNIX XOM
implementation supports two additional ways to create private objects. The
functions are as follows:

■ The om_encode function uses the encoding rules you specify to create a
private object independent of the original private object.

■ The om_decode function decodes the ASN.1 of the original object to
create the new one. You must specify the class of the existing object and
the rules used to encode it.

om_intro(3xom)

Name
om_intro - This reference page introduces the OM API functions.

Syntax
#include <xom.h>

Description
This reference page defines the functions of the C interface in the Digital
X.500 product.

Function Description

om_copy Copies a private object

om_copy_value Copies a string between private objects

om_create Creates a private object

om_decode Creates a new private object that decodes an existing ASN.1
private object.

om_delete Deletes a private or service-generated object

om_encode Creates a new private object that encodes an existing private
object.

86 Gradient DCE for Tru64 UNIX Reference Guide
As indicated in the table, the service interface comprises a number of
functions whose purpose and range of capabilities are summarized as follows:

om_get Gets copies of attribute values from a private object

om_instance Tests an object’s class

om_put Puts attribute values into a private object

om_read Reads a segment of a string in a private object

om_remove Removes attribute values from a private object

om_write Writes a segment of a string into a private object

Function Description

om_copy This function creates an independent copy of an existing private
object and all its subobjects. The copy is placed in the original’s
workspace, or in another specified by the XOM application.

om_copy_value This function replaces an existing attribute value or inserts a new
value in one private object with a copy of an existing attribute
value found in another. Both values must be strings.

om_create This function creates a new private object that is an instance of a
particular class. The object can be initialized with the attribute
values specified as initial in the class definition. The service does
not permit the API user to explicitly create instances of all classes,
but rather only those indicated by a package’s definition as having
this property.

om_decode This function creates a new private object by decoding the ASN.1
of the original object.

om_delete This function deletes a service-generated public object, or makes a
private object inaccessible.

om_encode This function creates a new private object, the encoding, which
exactly and independently encodes an existing private object, the
original.

om_get This function creates a new public object that is an exact but
independent copy of an existing private object. The client can
request certain exclusions, each of which reduces the copy to a part
of the original. The client can also request that values be converted
from one syntax to another before they are returned. The copy can
exclude: attributes of types other than those specified, values at
positions other than those specified within an attribute, the values
of multivalued attributes, copies of (not handles for) subobjects, or
all attribute values (revealing only an attribute’s presence).

om_instance This function determines whether an object is an instance of a
particular class. The client can determine an object’s class simply
by inspection. This function is useful because it reveals that an
object is an instance of a particular class, even if the class is an
instance of a subclass of that class.

Function Description

Chapter 4 XDS Object Management Reference Pages 87
In the C interface, the functions are realized by macros. The function
prototype in the synopsis of a function’s specification shows the client’s view
of the function.

The intent of the interface definition is that each function be atomic; that is,
either it carries out its assigned task in full and reports success, or it fails to
carry out even a part of the task and reports an exeception. However, the
service does not guarantee that a task is always carried out in full.

om_copy(3xom)

Name
om_copy - Creates a copy of an existing private object.

Syntax
OM_return_code om_copy(original, workspace, copy)

om_put This function places or replaces in one private object copies of the
attribute values of another public object or private object. The
source values can be inserted before any existing destination
values, before the value at a specified position in the destination
attribute, or after any existing destination values. Alternatively, the
source values can be substituted for any existing destination values
or for the values at specified positions in the destination attribute.

om_read This function reads a segment of a value of an attribute of a private
object. The value must be a string. The value can first be converted
from one syntax to another. The function enables the client to read
an arbitrarily long value without requiring that the service place a
copy of the entire value in memory.

om_remove This function removes and discards particular values of an
attribute of a private object. The attribute itself is removed if no
values remain.

om_write This function writes a segment of a value of an attribute to a
private object. The value must be a string. The segment can first be
converted from onesyntax to another. The written segment
becomes the value’s last segment because any elements beyond it
are discarded. The function enables the client to write an arbitrarily
long value without having to place a copy of the entire value in
memory.

Argument Data Type Access

original OM_private object read

workspace OM_workspace read

copy OM_private_object write

return_code OM_return_code

Function Description

88 Gradient DCE for Tru64 UNIX Reference Guide
C Binding
OM_return_code om_copy(original, workspace, copy)

OM_private_object original,
OM_workspace workspace,
OM_private_object #copy

Arguments
Original

The original private object.

Workspace

The workspace in which the Service creates the copy. The workspace that
the Client specifies in this argument must be one that is associated with a
package containing the class of the original object.

Copy

The copy of the original object. The Service returns this argument if the
Return Code of the function is OM_SUCCESS.

Description
This function creates a new private object, the copy, which is an exact but
independent copy of an existing private object, the original. The function also
copies the original’s subobjects, if it has any.

The Client can specify a workspace in which the Service should place the
copy. If the Client does not do so, the Service places the copy in the original’s
workspace.

Return Values

OM_SUCCESS The function has completed its task successfully

OM_FUNCTION_INTERRUPTED The function was aborted by external intervention

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

OM_NO_SUCH_CLASS There is an undefined class identifier

OM_NO_SUCH_OBJECT You have specified a nonexistent object, or an
invalid Handle for an object

OM_NO_SUCH_WORKSPACE You have specified a nonexistent workspace

OM_NOT_PRIVATE There is a public object where there should be a
private object

OM_PERMANENT_ERROR The Service encountered a permanent problem for
which there is no defined error code

Chapter 4 XDS Object Management Reference Pages 89
Examples
The following example shows how to copy an object of the MH class Local
NDR ndr. The copy is ndr_copy.

OM_return_code result;
 OM_private_object ndr,
 ndr_copy;
 OM_workspace workspace;
 result = copy (ndr,
 /* object to be copied */
 workspace,
 /* workspace in which to create copy */
 &ndr_copy);
 /* the copy */

om_copy_value(3xom)

Name
om_copy_value - Copies a value (string) from a private object and places it in
another private object.

Syntax
OM_return_code om_copy_value(source, source_type,
source_value_position, destination, destination_type,
destination_value_position)

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument

OM_SYSTEM_ERROR The Service cannot use the operating system

OM_TEMPORARY_ERROR The Service encountered a temporary problem for
which there is no defined error code

OM_TOO_MANY_VALUES An implementation limit prevents the addition to an
object of another attribute value

Argument Data Type Access

source OM_private_object read

source_type OM_type read

source_value_position OM_value_position read

destination OM_private_object read

destination_type OM_type read

destination_value_position OM_value_position read

return_code OM_return_code

90 Gradient DCE for Tru64 UNIX Reference Guide
C Binding
OM_return_code om_copy_value(source, source_type,
source_value_position,destination, destination_type,
destination_value_position)

OM_private_object source,
OM_type source_type,
OM_value_position source_value_position,
OM_private_object destination,
OM_type destination_type,
OM_value_position destination_value_position

Arguments
Source

The object from which you want to copy the value.

Source Type

The type of the attribute value from which you want tocopy the value.

Source Value Position

The position within the attribute of the value to be copied.

Destination

The object to which you want to copy the value.

Destination Type

The type of the attribute to which you want to copy thevalue.

Destination Value Position

The position within the destination attribute at which you want to place the
copied value. If the value of this argument exceeds the number of values in
the Destination attribute, then it is taken to be equal to that number.

Description
This function either replaces, or fills in for the first time, an attribute value in
the destination object with a copy of an attribute value from the source object.
The source value should be a string. The copy has the same syntax as the
source value.

Return Values

OM_SUCCESS The function has completed its task successfully

OM_FUNCTION_DECLINED The function does not apply to the object to which it
is addressed

OM_FUNCTION_INTERRUPTED The function was aborted by external intervention

Chapter 4 XDS Object Management Reference Pages 91
Examples
The following example shows the copying of a string value between two
objects of the MH class Delivery Envelope (envelope1 and envelope2).

OM_private_object envelope1,
 envelope2;
OM_return_code result;
 result = om_copy_value (envelope1,
 /* source object */
 MH_T_CONTENT_IDENTIFIER,
 /* source attribute */
 0,
 /* position of value in source attribute */

 envelope2,
 /* destination object */
 MH_T_CONTENT_IDENTIFIER,
 /* destination attribute */
 0);
 /* position in destination attribute */

This call to Copy Value reads the string value at position 0 in the Content
Identifier attribute of envelope1. This value is then copied to position 0 in the
Content Identifier attribute of envelope2.

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

OM_NO_SUCH_OBJECT You have specified a nonexistent object, or an
invalid Handle for an object

OM_NO_SUCH_TYPE There is an undefined type identifier

OM_NOT_PRESENT An expected attribute value is missing

OM_NOT_PRIVATE There is a public object where there should be a
private object

OM_PERMANENT_ERROR The Service encountered a permanent problem for
which there is no defined error code

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument or as the receptacle for a function result

OM_SYSTEM_ERROR The Service cannot use the operating system

OM_TEMPORARY_ERROR The Service encountered a temporary problem for
which there is no defined error code

OM_WRONG_VALUE_LENGTH There is an attribute with a value that violates the
value length constraints in force

OM_WRONG_VALUE_SYNTAX There is an attribute value with an illegal syntax

OM_WRONG_VALUE_TYPE There is an attribute value of an illegal type

92 Gradient DCE for Tru64 UNIX Reference Guide
om_create(3xom)

Name
om_create - Creates a new private object that is an instance of a particular
class.

Syntax
OM_return_code om_create(class, initialize, workspace, object)

C Binding
OM_return_code om_create(class, initialize, workspace, object)

OM_object_identifier class,
OM_boolean initialize,
OM_workspace workspace,
OM_private_object #object

Arguments
Class

The class of the object you are creating. It must be a concrete class.

Initialize

If you set this argument to OM_TRUE, the object that you create has some
of its attributes initialized. These are the attributes for which initial values
are specified in the class definition table. You can find these class
definition tables in the documentation for the X.400 and X.500 APIs. If
you set this argument to OM_FALSE, the object you create has only its
Class attribute initialized.

Workspace

The workspace in which the Service should create the object. The class
you specify for the object must be in a package that you already associated
with this workspace.

Object

Argument Data Type Access

class OM_object_identifier read

initialize OM_boolean read

workspace OM_workspace read

object OM_private_object write

return_code OM_return_code

Chapter 4 XDS Object Management Reference Pages 93
This is the created object. The Service returns this argument if the Return
Code of the function is OM_SUCCESS.

Description
This function creates a private object in the workspace that you specify.

You can add new values and replace or remove existing values, any time after
the object has been created. In this way, you can create any possible instance
of the object’s class.

Return Values

Examples
The first example shows how to create a private object of Message Handling
(MH) class Local Per-recipient NDR, with the Initialize argument set to
OM_FALSE; the function does not initialize any of the object’s attributes.

The second example shows the creation of a private object of X.500 class
Entry-Info-Selection, with the Initialize argument set to OM_TRUE; the
function initializes two of the object’s attributes.

OM_private_object ndr;
OM_workspace workspace;
OM_return_code result;

OM_SUCCESS The function has completed its task successfully

OM_FUNCTION_DECLINED The function does not apply to the object to
which it is addressed

OM_FUNCTION_INTERRUPTED The function was aborted by external
intervention

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

OM_NO_SUCH_CLASS There is an undefined class identifier

OM_NO_SUCH_WORKSPACE You have specified a nonexistent workspace

OM_PERMANENT_ERROR A class is abstract, not concrete
OM_NOT_CONCRETE The Service
encountered a permanent problem for which
there is no defined error code

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument

OM_SYSTEM_ERROR The Service cannot use the operating system

OM_TEMPORARY_ERROR The Service encountered a temporary problem
for which there is no defined error code

94 Gradient DCE for Tru64 UNIX Reference Guide
 result = om_create (MH_C_LOCAL_PER_RECIP_NDR,
 /* class of object */
 OM_FALSE,
 /* do not initialize attributes */
 workspace,
 /* workspace in which object created */
 &ndr);
 /* created object */

OM_private_object select_info;
OM_workspace workspace;
OM_return_code result;
 result = om_create (DS_C_ENTRY_INFO_SELECTION,
 /* class of object */
 OM_TRUE,
 /* initialize attributes */
 workspace,
 /* workspace in which object created */
 &select_info);
 /* created object */

om_decode(3xom)

Name
om_decode - Creates a new private object that decodes an existing ASN.1
private object.

Syntax
OM_return_code om_decode(encoding, original)

C Binding
OM_return_code om_decode(encoding, original)

OM_private_object encoding,
OM_private_object #original

Arguments
Encoding

Argument Data Type Access

encoding OM_private_object read

original OM_private_object write

return_code OM_return_code

Chapter 4 XDS Object Management Reference Pages 95
The encoded object that you want to decode. It must be an instance of the
Encoding class.

Original

An object that is the decoded version of the encoding. The Service creates
this object in the workspace in which the encoding is located. The Service
returns this argument if the Return Code of the function is
OM_SUCCESS.

Description
This function creates a new private object by decoding the ASN.1 of the
original object.

In the Encoding argument, you specify the class of the existing object and the
rules used to encode it. In the current version of the OM API, you must
specify ASN.1 BER.

Return Values

OM_SUCCESS The function has completed its task successfully

OM_ENCODING_INVALID The value of the Object Encoding is invalid

OM_FUNCTION_INTERRUPTED The function was aborted by external intervention

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

OM_NO_SUCH_CLASS There is an undefined class identifier

OM_NO_SUCH_OBJECT You have specified a nonexistent object, or an
invalid Handle for an object

OM_NO_SUCH_RULES There is an undefined rules identifier

OM_NOT_AN_ENCODING There is an object that is not an instance of the
Encoding class

OM_NOT_PRIVATE There is a public object where there should be a
private object

OM_PERMANENT_ERROR The Service encountered a permanent problem for
which there is no defined error code

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument

OM_SYSTEM_ERROR The Service cannot use the operating system

OM_TEMPORARY_ERROR The Service encountered a temporary problem for
which there is no defined error code

OM_TOO_MANY_VALUES An implementation limit prevents the addition to an
object of another attribute value

OM_WRONG_VALUE_LENGTH There is an attribute with a value that violates the
value length constraints in force

96 Gradient DCE for Tru64 UNIX Reference Guide
Examples

The following example shows the decoding of the object encoded in
the code example from OSI-Abstract-Data Manipulation. The encoded
object is encoding, and the decoded object is decoded_object .

OM_return_code result;
OM_private_object encoding,
 decoded_object;
 result = om_decode (encoding,
 /* object to be decoded */
 &decoded_object);
 /* decoded object */

om_delete(3xom)

Name
om_delete - Deletes a service-generated public object or makes a private
object inaccessible.

Syntax
OM_return_code om_delete(subject)

C Binding
OM_return_code om_delete(subject)

OM_object subject

Arguments
Subject

OM_WRONG_VALUE_MAKEUP There is an attribute with a value that violates a
constraint of its syntax

OM_WRONG_VALUE_NUMBER There is an attribute with a value that violates the
value number constraints in force

OM_WRONG_VALUE_SYNTAX There is an attribute value with an illegal syntax

OM_WRONG_VALUE_TYPE There is an attribute value with an illegal type

Argument Data Type Access

subject OM_object read

return_code OM_return_code

Chapter 4 XDS Object Management Reference Pages 97
The object that you want the Service to delete. It must be a
service-generated public object or a private object. If the object that you
specify is a client-generated public object, the function returns an error
status.

Description
This function deletes a service-generated public object, or makes a private
object inaccessible.

When you apply this function to a service-generated public object, the
function deletes the object and releases the resources associated with it. The
resources include the space occupied by descriptors and attribute values. The
function also deletes all public subobjects of the subject. This function does
not delete private subobjects.

When you apply this function to a private object, the function makes the
object inaccessible by making its Handle invalid. The function also makes
invalid the Handles of any private subobjects of the subject. Note that the
effect of using an object’s Handle once it has been made invalid is undefined.

Return Values

OM_SUCCESS The function has completed its task successfully

OM_FUNCTION_INTERRUPTED The function was aborted by external
intervention

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

OM_NO_SUCH_OBJECT You have specified a nonexistent object, or an
invalid Handle for an object

OM_NO_SUCH_SYNTAX There is an undefined syntax identifier

OM_NO_SUCH_TYPE There is an undefined type identifier

OM_NOT_THE_SERVICES There is an object that is Client generated when
it should be Service generated or private

OM_PERMANENT_ERROR The Service encountered a permanent problem
for which there is no defined error code

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument

OM_SYSTEM_ERROR The Service cannot use the operating system

OM_TEMPORARY_ERROR The Service encountered a temporary problem
for which there is no defined error code

98 Gradient DCE for Tru64 UNIX Reference Guide
Examples
The following example shows how to delete a service-generated public object
of the X.500 class Entry-Info-Selection (info_select_copy). The object is a
public copy of a private object of class Entry-Info-Selection info_select .

OM_return_code result;
OM_private_object info_select;
OM_object info_select_copy;
OM_value_position total_number;
 result = om_get (info_select,
 /* object to be copied */
 OM_NO_EXCLUSIONS,
 /* no exclusions */
 NULL,
 /* ignored because no exclusions specified */
 OM_FALSE,0,0,
 /* no translation into local char set */
 &info_select_copy,
 /* the copy */
 &total_number);
 /* number of attributes copied */
/* Examine info_select_copy public object using C programming language
constructs */
/* Delete object when finished with it */
 result = om_delete (info_select_copy);
 /* the object to be deleted */

om_encode(3xom)

Name
om_encode - Creates a new private object that encodes an existing private
object.

Syntax
OM_return_code om_encode(original, rules, encoding)

C Binding
OM_return_code om_encode(original, rules, encoding)

OM_private_object original,

Argument Data Type Access

original OM_private_object read

rules OM_object_identifier read

encoding OM_private_object write

return_code OM_return_code

Chapter 4 XDS Object Management Reference Pages 99
OM_object_identifier rules,
OM_private_object #encoding

Arguments
Original

The object you want to encode.

Rules

The set of rules that the Service must follow to produce an encoding. In
this version of the OM API, you can only specify ASN.1 BER.

Encoding

An object that is the encoded version of the original. The Service creates
this object in the workspace in which the original is located. The Service
returns this argument if the Return Code of the function is
OM_SUCCESS. The returned object is an instance of the Encoding class.

Description
This function creates a new private object, the encoding, which exactly and
independently encodes an existing private object, the original. When you
apply this function to a private object, the function uses the encoding rules
you specify to create a new private object. The new encoded private object is
independent of the original private object.

Return Values

OM_SUCCESS The function has completed its task successfully

OM_FUNCTION_DECLINED The function does not apply to the object to which it
is addressed

OM_FUNCTION_INTERRUPTED The function was aborted by external intervention

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

OM_NO_SUCH_OBJECT You have specified a nonexistent object, or an
invalid Handle for an object

OM_NO_SUCH_RULES There is an undefined rules identifier

OM_NOT_PRIVATE There is a public object where there should be a
private object

OM_PERMANENT_ERROR The Service encountered a permanent problem for
which there is no defined error code

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument

OM_SYSTEM_ERROR The Service cannot use the operating system

100 Gradient DCE for Tru64 UNIX Reference Guide
Examples
The following example shows the encoding of an object of the MH class
Report ((encodable_object). The object is encoded according to the rules
OM_BER, and the encoded object is encoding.

OM_return_code result;
OM_private_object encodable_object,
 encoding;
 result = om_encode (encodable_object,
 /* object to be encoded */
 OM_BER,
 /* encoding rules */
 &encoding);
 /* encoded object */

om_get(3xom)

Name
om_get - Creates a new public object that is a copy of the whole or part of a
private object.

Syntax
OM_return_code om_get(original, exclusions, included_types, local_strings,
initial_value, limiting_value, copy, total_number)

OM_TEMPORARY_ERROR The Service encountered a temporary problem for
which there is no defined error code

Argument Data Type Access

original OM_private_object read

exclusions OM_exclusions read

included_types OM_type_list read

local_strings OM_boolean read

initial_value OM_value_position read

limiting_value OM_value_position read

copy OM_public_object write

total_number OM_value_position write

return_code OM_return_code

Chapter 4 XDS Object Management Reference Pages 101
C Binding
OM_return_code om_get(original, exclusions, included_types, local_strings,
initial_value, limiting_value, copy, total_number)

OM_private_object original,
OM_exclusions exclusions,
OM_type_list included_types,
OM_boolean local_strings,
OM_value_position initial_value,
OM_value_position limiting_value,
OM_public_object #copy,
OM_value_position #total_number

Arguments
Original

The private object, all or part of which you want to copy.

Exclusions

A list of zero or more values, each of which reduces the copy to a portion
of the original. The exclusions apply to the attributes of the original object,
but not to the attributes of its subobjects. This argument has one or more of
the following values:

■ OM_EXCLUDE_ALL_BUT_THESE_TYPES

The copy includes descriptors of attributes of specified types only.

■ OM_EXCLUDE_MULTIPLES

The copy includes a single descriptor for each attribute having two or
more values, instead of one descriptor for each value. Each such
descriptor contains no attribute value, and the No-Value bit of the syntax
component is set. If the attribute has values of two or more syntaxes, the
descriptor identifies one of those syntaxes. Which syntax it identifies is
unspecified.

■ OM_EXCLUDE_ALL_BUT_THESE_VALUES

The copy includes descriptors encompassing only values at specified
positions within an attribute.

■ OM_EXCLUDE_VALUES

The copy includes a single descriptor for each attribute value, but the
descriptor does not contain the value, and the No-Value bit of the syntax
component is set.

■ OM_EXCLUDE_SUBOBJECTS

102 Gradient DCE for Tru64 UNIX Reference Guide
The copy includes a descriptor for each value which has a syntax of
object. Each descriptor contains an object Handle for the original private
subobject, instead of a public copy of the original private subobject. The
Handle makes the private subobject accessible for use in OM function
calls.

■ OM_EXCLUDE_DESCRIPTORS

The function does not return any descriptors, nor does it return a value
in the Copy argument. The value of the Total Number argument gives
the number of descriptors which would have otherwise been returned.

■ OM_NO_EXCLUSIONS

The copy contains descriptors and values for all attributes in the
original.

If you specify multiple exclusions, the Service applies the exclusions in
the order in which they occur in the above list. If a portion of the object
disappears after the Service applies an exclusion, the Service applies no
further exclusions to that portion.

Included Types

The types of attributes that are to be included in the copy, provided they
appear in the original. This argument must be present if you select the
OM_EXCLUDE_ALL_BUT_THESE_TYPES exclusion, but must
otherwise be set to null.

Local Strings

If you set this argument to OM_TRUE, you indicate to the Service that it
must translate all String(*) values included in the Copy into the local
character set representation. This translation may cause the loss of some
information.

Initial Value

The position within each attribute of the first value to be included in the
copy. This argument must be present if you select the
OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion, but must
otherwise be set to null. If the value of Initial Value is
OM_ALL_VALUES, or if it exceeds the number of values present in an
attribute, the Service takes Initial Value to be equal to the number of values
present in the attribute.

Limiting Value

The position in each attribute that is one element beyond the position of
the last value included in the copy. This argument must be present if you
select the OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion, but
must otherwise be set to null. If the value of Limiting Value is less than
that of Initial Value, the Service does not put any values in the copy. If the
value of Limiting Value is OM_ALL_VALUES, or if it exceeds the
number of values present in an attribute, then the Service takes Limiting
Value to be equal to the number of values present in the attribute.

Chapter 4 XDS Object Management Reference Pages 103
Copy

An exact but independent copy of the original. The Service returns this
argument if both the following conditions are true:

■ The Return Code of the function is OM_SUCCESS
■ You do not specify the OM_EXCLUDE_DESCRIPTORS exclusion

You do not have to allocate any space to the copy. If you alter any portion
of this space, you may affect the behaviour of the Service.

Total Number

The number of attribute descriptors in the copy. This does not include
descriptors in any subobjects of the copy. If you specify the
OM_EXCLUDE_DESCRIPTORS exclusion, then there is no copy.
Therefore, the value in Total Number is the number of descriptors that the
Service would return if you did not specify
OM_EXCLUDE_DESCRIPTORS (applying any other exclusions that you
specified). Total Number excludes the special descriptor that signals the
end of a public object, OM_NULL_DESCRIPTOR.

Description
This function creates a new public object, the copy, which is an exact but
independent copy of an existing private object, the original.

When using this function, you can request certain exclusions, each of which
reduces the copy to a portion of the original.

When this function is used with the X.400 API, one exclusion is requested
implicitly. For each attribute value in the original that is a string exceeding
1024 bytes in length, the copy includes a descriptor that omits the elements,
but specifies the length of the string. In this case, the following applies:

■ The syntax of the descriptor has its Long-String bit set.

■ The value of the descriptor is a string whose elements component is set to
OM_ELEMENTS_UNSPECIFIED, but whose length component does
specify the correct length.

Note that if you are using the OM API with the X.400 API, you can read
long strings using om_read.

When used with the X.500 API, there is no limit to the length of string
returned by om_get, and so this exclusion is not requested implicitly.

Return Values

OM_SUCCESS The function has completed its task successfully

OM_FUNCTION_INTERRUPTED The function was aborted by external intervention

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

104 Gradient DCE for Tru64 UNIX Reference Guide
Examples
The following example shows om_get being used to make a public copy of an
object of the X.400 API MH class Local Per-recipient NDR (ndr) containing
the attribute MH_T_TEMPORARY.

OM_private_object ndr;
OM_public_object ndr_copy;
OM_value_position total_number;
OM_type
 temporary[] = {MH_T_TEMPORARY, OM_NO_MORE_TYPES};

 result = om_get (ndr,
 /* object to be copied */
 OM_EXCLUDE_ALL_BUT_THESE_TYPES,
 /* include attributes of specified types */
 temporary,
 /* type to be included */
 OM_FALSE,0,0,
 /* no translation into local char set */
 ndr_copy,
 /* the copy */
 &total_number);
 /* number of attributes copied */

The example shows the use of the exclusion exclude-all-but-these-types. The
public copy (ndr_copy) includes a descriptor representing the attribute
MH_T_TEMPORARY (temporary), and its single value.

The following example shows how to use the Get function to work down a
nested structure, getting one level at a time. The structure is a Result object
returned from a call to the X.500 API DS Read function. Note that this code
example uses the dsX_trace_object function, which is not available in Version
1.0 of the MAILbus 400 API.

OM_NO_SUCH_EXCLUSION There is an undefined exclusion identifier

OM_NO_SUCH_OBJECT You have specified a nonexistent object, or an
invalid Handle for an object

OM_NO_SUCH_TYPE There is an undefined type identifier

OM_NOT_PRIVATE There is a public object where there should be a
private object

OM_PERMANENT_ERROR The Service encountered a permanent problem for
which there is no defined error code

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument

OM_SYSTEM_ERROR The Service cannot use the operating system

OM_TEMPORARY_ERROR The Service encountered a temporary problem for
which there is no defined error code

OM_WRONG_VALUE_SYNTAX There is an attribute value with an illegal syntax

OM_WRONG_VALUE_TYPE There is an attribute value with an illegal type

Chapter 4 XDS Object Management Reference Pages 105
/* declare an OM-type-list structure and variables to hold pointers to the
 entry, DS_object and RDNS subobjects:
 */
OM_integer desc_count;
OM_object read_result;
OM_type included_types[2];
OM_public_object spub_entry;
OM_public_object spub_DS_object;
OM_public_object spub_RDNS;
/* and set up the OM attributes you want to get first: */
 included_types[0] = DS_ENTRY;
 included_types[1] = OM_NO_MORE_TYPES;

/* now get only a pointer to the first subobject, the entry */
 om_status = om_get(read_result,
 OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
 included_types, OM_FALSE, 0, OM_ALL_VALUES,
 &spub_entry, &desc_count);

/* the object spub_entry now contains only the
 OM-descriptor for an entry-information object */
dsX_trace_object(spub_entry);
* Now use OM_get() again to extract the DN of the object */
 included_types[0] = DS_OBJECT_NAME;
 om_status = om_get(spub_entry->value.object.object,
 OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
 included_types, OM_FALSE, 0, OM_ALL_VALUES,
 &spub_DS_object, &desc_count);
dsX_trace_object(spub_DS_object);

/* Next, use OM_get() again to extract the RDNS */
 included_types[0] = DS_RDNS;
 om_status = om_get(spub_DS_object->value.object.object,
 OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
 included_types, OM_FALSE, 0, OM_ALL_VALUES,
 &spub_RDNS, &desc_count);

dsX_trace_object(spub_RDNS);
/* Now loop around each RDN, extract a pointer to the AVAS
 and then extract the attribute type and value
 */
 ...
/* When finished, remember to delete all the objects you have used */

om_instance(3xom)

Name
om_instance - Determines whether an object is an instance of a particular
class or of one of its subclasses.

106 Gradient DCE for Tru64 UNIX Reference Guide
Syntax
OM_return_code om_instance(subject, class, instance)

C Binding
OM_return_code om_instance(subject, class, instance)

OM_object subject,
OM_object_identifier class,
OM_boolean #instance

Arguments
Subject

The object whose class you want to verify.

Class

The class against which you want to verify the subject.

Instance

The Service sets this argument to OM_TRUE if the subject is an instance
of the class you specified, and OM_FALSE if the subject is not. The
Service returns this argument if the Return Code of the function is
OM_SUCCESS.

Description
This function enables you to determine whether an object is an instance of a
specified class or of any of the subclasses of that class.

Note that it is possible to determine an object’s class by using programming
constructs to inspect the object, if it is public, or by using om_get, if it is
private. The advantage of the Instance function is that it indicates whether the
object is an instance of the specified class, even when it is also a subclass of
the specified class.

Return Values

Argument Data Type Access

subject OM_object read

class OM_object_identifier read

instance OM_boolean write

return_code OM_return_code

OM_SUCCESS The function has completed its task successfully

Chapter 4 XDS Object Management Reference Pages 107
Examples
The following example shows how to check a private object, an_object, to see
if it is an instance of the X.400 Message Handling class Submitted Message
RD. inst_true is the return argument. The function returns OM_TRUE in the
parameter if the object is an instance of the class Submitted Message RD, or
its subclass Message RD.

OM_private_object sub_mess_rd;
OM_return_code result;
OM_boolean inst;
 result = om_instance (an_object,
 /* object to be checked */
 MH_C_SUBMITTED_MESSAGE_RD,
 /* class to be checked against */
 &inst);
 /* result */
 if (inst == OM_TRUE)
 /* the object is an instance of specified class */
 else
 /* the object is not an instance of specified class */

om_put(3xom)

Name
om_put - Places copies of the attribute values of a private or public object into
a private object.

OM_FUNCTION_INTERRUPTED The function was aborted by external intervention

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

OM_NO_SUCH_CLASS There is an undefined class identifier

OM_NO_SUCH_OBJECT You have specified a nonexistent object, or an
invalid Handle for an object

OM_NO_SUCH_SYNTAX There is an undefined syntax identifier.

OM_NOT_THE_SERVICES An object is Client generated rather than Service
generated or private.

OM_PERMANENT_ERROR The Service encountered a permanent problem for
which there is no defined error code

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument

OM_SYSTEM_ERROR The Service cannot use the operating system

OM_TEMPORARY_ERROR The Service encountered a temporary problem for
which there is no defined error code

108 Gradient DCE for Tru64 UNIX Reference Guide
Syntax
OM_return_code om_put(destination, modification, source, included_types,
initial_value, limiting_value)

C Binding
OM_return_code om_put (destination, modification, source, included_types,
initial_value, limiting_value)

OM_private_object destination,
OM_modification modification,
OM_object source,
OM_type_list included_types,
OM_value_position initial_value,
OM_value_position limiting_value

Arguments
Destination

The object into which you want to put attribute values. This function does
not affect the class of the destination.

Modification

A list of modifications to the attributes selected for copying. The
modifications you request determine how the function modifies the
destination object with the attributes, that is, where it puts them.

The Modification argument can have one of the following values:

■ OM_INSERT_AT_BEGINNING

The Service inserts the source values before all existing destination
values. This does not affect the existing destination values.

■ OM_INSERT_AT_CERTAIN_POINT

The Service inserts the source values before the value at a specified
position in the destination attribute. This does not affect the existing
destination values.

Argument Data Type Access

destination OM_private_object read

modification OM_modification read

source OM_object read

included_types OM_type_list read

initial_value OM_value_position read

limiting_value OM_value_position read

return_code OM_return_code

Chapter 4 XDS Object Management Reference Pages 109
■ OM_INSERT_AT_END

The Service inserts the source values after all existing destination
values. This does not affect the existing destination values.

■ OM_REPLACE_ALL

The Service replaces any destination values with the source values, and
discards the original destination values.

■ • OM_REPLACE_CERTAIN_VALUES

The Service replaces the values at specified positions in the destination
attribute with values from the source. The Service discards the original
destination attribute values at those positions.

Source

The object from which you want to copy attribute values. This function
ignores the class of the source.

Included Types

The types of attributes that should be copied to the destination, if they
appear in the source. If you do not specify a value for this argument, the
Service copies all attributes from the source to the destination.

Initial Value

You need to pass a value for this argument when you select the
OM_INSERT_AT_CERTAIN_POINT modification or the
OM_REPLACE_CERTAIN_VALUES modification. The following table
shows what the Initial Value argument represents in each of these cases.

Modification

Meaning of the Initial Value Argument

insert-at-certain-points

The position within each destination attribute at which the Service should
insert source values

replace-certain-values

The first value that the Service should replace

If you give this argument a value that is greater than the number of values
present in a destination attribute, or if you use the value
OM_ALL_VALUES, the Service takes Initial Value to be equal to the
number of values present in the destination attribute.

Limiting Value

You need to pass a value for this argument when you select the
OM_REPLACE_CERTAIN_VALUES modification. The argument
specifies the position within each destination attribute that is one beyond
that of the last value to be replaced. The value of Limiting Value must be
greater than that of Initial Value.

110 Gradient DCE for Tru64 UNIX Reference Guide
If you give this argument a value that is greater than the number of values
present in a destination attribute, or if you use the value
OM_ALL_VALUES, the Service takes Limiting Value to be equal to the
number of values present in the destination attribute.

Description
This function places in one private object, the destination, copies of the
attribute values of another object, the source. The source can be a public or
private object.

You must specify that the Service does one of the following:

■ Replace all the values in the destination with values from the source.
■ Replace specified values in the destination with values from the source.
■ Insert values from the source in a particular position in the destination.

Only use om_put to copy attributes from the source that occur in the definition
of the class to which the destination belongs.

The Service first converts all string values that are in the local representation
into the nonlocal representation for that syntax.

There is no attribute of type C in the source object. The destination object
therefore contains no attributes of this type, even though type C is specified in
the Included Types argument.

The destination object contains an attribute, D, which is not affected by
om_put.

Return Values

OM_SUCCESS The function has completed its task successfully

OM_FUNCTION_DECLINED The function does not apply to the object to
which it is addressed

OM_FUNCTION_INTERRUPTED The function was aborted by external
intervention

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

OM_NO_SUCH_CLASS There is an undefined class identifier

OM_NO_SUCH_MODIFICATION There is an undefined modification identifier

OM_NO_SUCH_OBJECT You have specified a nonexistent object, or an
invalid Handle for an object

OM_NO_SUCH_SYNTAX There is an undefined syntax identifier

OM_NO_SUCH_TYPE There is an undefined type identifier

OM_NOT_CONCRETE There is an abstract class where there should be
a concrete class

OM_NOT_PRESENT An expected attribute value is missing

Chapter 4 XDS Object Management Reference Pages 111
Examples
The following example shows how to put the values from a public object into
the private object.

result = om_put (modification,
 /* destination object */
 OM_REPLACE_ALL,
 /* type of modification */
 pub_mod,
 /* source of values to be put */
 0,0,0);
 /* include all attributes, all positions */

om_read(3xom)

Name
om_read - Reads a segment of a string from a private object.

OM_NOT_PRIVATE There is a public object where there should be a
private object

OM_PERMANENT_ERROR The Service encountered a permanent problem
for which there is no defined error code

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument

OM_SYSTEM_ERROR The Service cannot use the operating system

OM_TEMPORARY_ERROR The Service encountered a temporary problem
for which there is no defined error code

OM_TOO_MANY_VALUES An implementation limit prevents the addition
to an object of another attribute value

OM_VALUES_NOT_ADJACENT The descriptors for the values of a particular
attribute are not adjacent

OM_WRONG_VALUE_LENGTH There is an attribute with a value that violates
the value length constraints in force

OM_WRONG_VALUE_MAKEUP There is an attribute with a value that violates a
constraint of its syntax

OM_WRONG_VALUE_NUMBER There is an attribute with a value that violates
the value number constraints in force

OM_WRONG_VALUE_POSITION The position specified for an attribute value is
invalid

OM_WRONG_VALUE_SYNTAX There is an attribute value with an illegal syntax

OM_WRONG_VALUE_TYPE There is an attribute value with an illegal type

112 Gradient DCE for Tru64 UNIX Reference Guide
Syntax
OM_return_code om_read(subject, type, value_position, local_string,
string_offset, elements)

C Binding
OM_return_code om_read(subject, type, value_position, local_string,
string_offset, elements)

OM_private_object subject,
OM_type type,
OM_value_position value_position,
OM_boolean local_string,
OM_string_length #string_offset,
OM_string #elements

Arguments
Subject

The private object from which you want to read the segment.

Type

The type of the attribute containing the value that youwant to read.

Value Position

The position in a multivalued attribute of the value that you want to read.

Local String

If you set this argument to OM_TRUE, the Service translates the attribute
segment into the local character set. This translation may result in the loss
of some information.

String Offset

Argument Data Type Access

subject OM_private_object read

type OM_type read

value_position OM_value_position read

local_string OM_boolean read

string_offset OM_string_length read-write

elements OM_string write

return_code OM_return_code

Chapter 4 XDS Object Management Reference Pages 113
If provided by the Client, this argument denotes the position within the
attribute value of the first element that you want to read. If you give this
argument a value that exceeds the number of elements present in the
attribute value, the Service takes the argument to be equal to the number of
elements present in the attribute value.

If returned by the Service, this argument denotes the position of the next
segment within the attribute value, as an offset in octets. If the segment
just read was the last in the string, then this argument is set to zero. The
result is present only if the Return Code result is OM_SUCCESS.

The value indicating the next position can be specified in a subsequent call
as the position to start from, enabling sequential reading of the segments in
a string value.

Elements

A space into which the Service returns the segment of the attribute value
that you want to read. This argument is a string with two components,
Elements and Length.

The following shows the initial values that you should give to these
components:

You must make sure that the buffer is big enough to hold the number of
octets.

The Service modifies the Elements argument. Each element that the
function returns becomes an element in the string. The string’s length
becomes the number of octets actually required to hold the segment read
(which may be smaller than the length initially specified.)

If the value of Local Strings is OM_TRUE, the final length of the string
may not be the same as the initial length of the string. This depends on the
characteristics of the translation into the local character set.

Description
The function enables you to read a long string without requiring the Service to
place a copy of the entire string in memory.

Return Values

String Component Initial Value

Elements Pointer to a buffer

Length The number of octets required to contain
the segment that the function returns

OM_SUCCESS The function has completed its task successfully

114 Gradient DCE for Tru64 UNIX Reference Guide
Examples
The following example shows the reading of a string value from an object of
the IM class IA5 Text Body Part (body_part). The Service will return 0 when
there is no more text left to read.

OM_private_object body_part;
OM_return code result;
OM_string message;
OM_string_length offset;
char read_buffer[1024];
message.length = 1024
message.elements = read_buffer;
offset = 0;
 result = om_read (body_part,
 /* object containing value to be read */
 IM_TEXT,
 /* attribute from which value is to be read */
 0,
 /* position of value to read from */
 OM_FALSE,
 /* no translation into local char set */
 &offset,
 /* string offset of segment to be read */
 &message);
 /* the string read from the value */

The type of the attribute read is IM_TEXT. The first element of the first
value in this attribute is read into message.

OM_FUNCTION_INTERRUPTED The function was aborted by external
intervention

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

OM_NO_SUCH_OBJECT You have specified a nonexistent object, or an
invalid Handle for an object

OM_NO_SUCH_TYPE There is an undefined type identifier

OM_NOT_PRESENT An expected attribute value is missing

OM_NOT_PRIVATE There is a public object where there should be a
private object

OM_PERMANENT_ERROR The Service encountered a permanent problem
for which there is no defined error code

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument

OM_SYSTEM_ERROR The Service cannot use the operating system

OM_TEMPORARY_ERROR The Service encountered a temporary problem
for which there is no defined error code

OM_WRONG_VALUE_SYNTAX There is an attribute value with an illegal syntax

Chapter 4 XDS Object Management Reference Pages 115
om_remove(3xom)

Name
om_remove - Removes and discards specified values of an attribute of a
private object.

Syntax
OM_return_code om_remove(subject, type, initial_value, limiting_value)

C Binding
OM_return_code om_remove(subject, type, initial_value, limiting_value)
OM_private_object subject,

OM_type type,
OM_value_position initial_value,
OM_value_position limiting_value

Arguments
Subject

The private object from which you want to remove attribute values. The
function does not affect the class of the subject.

Type

The type of the attribute from which you want to remove values. The type
must not be OM_CLASS.

Initial Value

The position within the attribute of the first value to be removed.

If the value of Initial Value is OM_ALL_VALUES, or if it exceeds the
number of values present in the attribute, the Service takes this argument
to be equal to the number of values present in the attribute.

Limiting Value

Argument Data Type Access

subject OM_private_object read

type OM_type read

initial_value OM_value_position read

limiting_value OM_value_position read

return_code OM_return_code

116 Gradient DCE for Tru64 UNIX Reference Guide
The position within the attribute one beyond that of the last value to be
removed. If this argument is less than theInitial Value argument, no values
are removed.

If the value of Limiting Value is OM_ALL_VALUES, or if the value
exceeds the number of values present in an attribute, the Service takes this
argument to be equal to thenumber of values present in the attribute.

Description
This function removes and discards particular values of an attribute of a
private object, the subject. If no values remain in an attribute after removal of
the values you specify, the Service removes the attribute. If one of the values
you specify is a subobject, the Service removes that value, and then applies
om_delete to make the subobject inaccessible.

Return Values

Examples
The first example shows a single value being removed from a private object
of MH class Message (message). MH_T_LATEST_DELIVERY_TIME is the
attribute type whose value is removed. This attribute has one value. The
function therefore removes the value and deletes the attribute.

OM_SUCCESS The function has completed its task successfully

OM_FUNCTION_DECLINED The function does not apply to the object to which it
is addressed

OM_FUNCTION_INTERRUPTED The function was aborted by external intervention

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

OM_NO_SUCH_OBJECT You have specified a nonexistent object, or an
invalid Handle for an object

OM_NO_SUCH_TYPE There is an undefined type identifier

OM_NOT_PRIVATE There is a public object where there should be a
private object

OM_PERMANENT_ERROR The Service encountered a permanent problem for
which there is no defined error code

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument

OM_SYSTEM_ERROR The Service cannot use the operating system

OM_TEMPORARY_ERROR The Service encountered a temporary problem for
which there is no defined error code

Chapter 4 XDS Object Management Reference Pages 117
The second example shows a range of values being removed from a private
object of the X.500 class Entry-Information-Selection (select_info).
DS_ATTRIBUTES_SELECTED is the attribute type whose values are removed.
If this attribute has five values (positions 0 to 4), then this function removes
the second, third and fourth values.

OM_private_object message;
OM_return_code result;
 result = om_remove (message,
 /* object from which to remove value */
 MH_T_LATEST_DELIVERY_TIME,
 /* attribute to remove */
 0,1));
 /* position of single value to remove */

OM_private_object select_info;
OM_return_code result;
 result = om_remove (select_info,
 /* object from which to remove value */
 DS_ATTRIBUTES_SELECTED,
 /* attribute to remove */
 1,4));
 /* range of values to remove */

om_write(3xom)

Name
om_write - Writes a segment of a string to an attribute in a private object.

Syntax
OM_return_code om_write(subject, type, value_position, syntax,
string_offset, elements)

C Binding
OM_return_code om_write(subject, type, value_position, syntax,
string_offset, elements)

Argument Data Type Access

subject OM_private_object read s

type OM_type read

value_position OM_value_position read

syntax OM_syntax read

string_offset OM_string_length read-write

elements OM_string read

return_code OM_return_code

118 Gradient DCE for Tru64 UNIX Reference Guide
OM_private_object subject,
OM_type type,
OM_value_position value_position,
OM_syntax syntax,
OM_string_length #string_offset,
OM_string elements

Arguments
Subject

The object into which you want to write the string segment.

Type

The type of the attribute to which you want to write the string segment.

Value Position

In a multi-valued attribute, the position of the value in which you want to
place the string. This argument must have a positive value, and it must not
exceed the number of values present in the attribute. If it equals the
number of values present, the Service inserts the segment at the end of the
attribute as a new value.

Syntax

If you are writing a new value to an attribute, identify in this argument the
syntax that you want the new value to have. It must be a permissible
syntax for the attribute to which you are writing. To check that the syntax
is permissible, consult the definition of the class of which the subject is an
instance.

If you are overwriting or amending a value that is already present in the
subject, the Service preserves the syntax of that value, so you can supply a
null value.

String Offset

If supplied by the Client, this argument denotes the position, p, within the
attribute value at which you want the first segment written. The position is
specified as an offset in octets relative to the start of the string value.

If this argument has a value greater than the number of elements in the
attribute value, the Service takes the argument to be equal to that number.

If returned by the Service, this argument denotes the position of the end of
the last segment written. The position is specified as an offset in octets
relative to the start of the string value.

The value returned by the Service as the position of the end of the last
segment written can be specified as the position from which to start
writing the next segment. This enables you to write segments sequentially.

Elements

Chapter 4 XDS Object Management Reference Pages 119
The string segment that you want to write to the attribute, n elements in
number. Copies of these elements occupy the positions, within the value,
in the interval between p and (p) + n. The function discards any elements
already in or beyond these positions.

The elements are bits, octets, or characters, depending on the nature of the
string.

Description
This function writes a segment of an attribute value in a private object, the
subject. The segment that the Service writes becomes the last segment in the
attribute value. The function discards any segments in the attribute value
whose offsets are equal to or greater than the offset specified in String Offset.

If the segment that the Service writes is in the local representation, the Service
converts it to the nonlocal representation. This can result in loss of
information and may result in a different number of elements than that
specified.

Return Values

OM_SUCCESS The function has completed its task successfully

OM_FUNCTION_DECLINED The function does not apply to the object to
which it is addressed

OM_FUNCTION_INTERRUPTED The function was aborted by external
intervention

OM_MEMORY_INSUFFICIENT There is not enough memory to complete the
function

OM_NETWORK_ERROR The Service cannot use the underlying network

OM_NO_SUCH_OBJECT You have specified a nonexistent object, or an
invalid Handle for an object

OM_NO_SUCH_SYNTAX There is an undefined syntax identifier

OM_NO_SUCH_TYPE There is an undefined type identifier

OM_NOT_PRESENT An expected attribute value is missing

OM_NOT_PRIVATE There is a public object where there should be a
private object

OM_PERMANENT_ERROR The Service encountered a permanent problem
for which there is no defined error code

OM_POINTER_INVALID An invalid pointer was supplied as a function
argument

OM_SYSTEM_ERROR The Service cannot use the operating system

OM_TEMPORARY_ERROR The Service encountered a temporary problem
for which there is no defined error code

OM_WRONG_VALUE_LENGTH There is an attribute with a value that violates the
value length constraints in force

120 Gradient DCE for Tru64 UNIX Reference Guide
Examples
The following example shows a string segment being written to an object of
the Interpersonal Messaging (IM) class IA5 Text Body Part (body_part).

OM_return_code result;
OM_value_position position;
input_string = OM_STRING ("Text Body");
position = 0;
 result = om_write (body_part,
 /* object containing string segment */
 IM_TEXT,
 /* attribute containing string segment */
 0,
 /* position of value to write to */
 OM_S_IA5_STRING,
 /* syntax of value */
 &position,
 /* starting position for current/next string */

 input_string);
 /* string segment to be written */

In this example the type of attribute being written to is IM_TEXT; the
position of the value being written to is 0; the syntax of the value is
OM_S_IA5_STRING.

OM_WRONG_VALUE_MAKEUP There is an attribute with a value that violates a
constraint of its syntax

OM_WRONG_VALUE_POSITION The usage of value position(s) identified in the
argument(s) of a function is invalid

OM_WRONG_VALUE_SYNTAX There is an attribute value with an illegal syntax

C H A PT E R 5

Command Reference Pages
This chapter provides revised reference pages necessary for using Gradient
DCE for Tru64 UNIX.

■ cdscache.8dce
■ clearinghouse.8dce
■ directory.8dce
■ rand.8sec
■ ldap_addcell.8dce
■ gdad.8cds
■ dtsd.8dts

cdscache(8dce)

Name
cdscache -A dcecp object for managing a local CDS cache

Synopsis
cdscache create server_name -binding server_binding
cdscache delete server_name
cdscache discard [-entry entry_name] [-replica replica_name]
cdscache dump
cdscache help [operation | -verbose]
cdscache operations
cdscache show server_name {-server | -clearinghouse}

Arguments
operation

The name of the cdscache operation that displays help information.

server_name

The single simple name of the cached server machine. A “simple name’ is
not a cell-relative name (such as /.:/hosts/pelican). Some examples of
simple names are pelican and hosts/pelican.

option

122 Gradient DCE for Tru64 UNIX Reference Guide
A specification to clarify the target of the operation (-entry, -replica).

Description
The cdscache object represents the Cell Directory Service (CDS) cache on
the local node. The CDS cache contains information about servers and
clearinghouses known to the local machine, and also contains user data about
CDS entries that have been read. The create and delete operations apply only
to the server information. The show and dump operations can display
additional information. The discard operation can selectively eliminate cache
entries on any client (given the appropriate permissions).

Errors
A representative list of errors that might be returned is not shown here. Refer
to the DCE Problem Determination Guide for complete descriptions of all
error messages.

Operations

cdscache create

Creates knowledge of a server in the local client’s cache. The syntax is:

cdscache create server_name -binding server_binding

Options

-binding server_binding

The required -binding option lets you specify the binding information
for a CDS server. This option takes a server_binding argument, which is
the protocol sequence and network address of the server node. The
string format is as follows:

protocol-sequence:network-address

The dcecp format is as follows:

{protocol-sequence network-address}

A protocol-sequence is a character string identifying the network
protocols used to establish a relationship between a client and server.
Protocol sequences have a specific format that depends on the network
address that is supplied in the binding; for example ncacn_ip_tcp (for
connection-based protocol) or ncadg_ip_udp (for datagram protocol)
The network-address is a string representing the network address of the
server node.

The create operation creates knowledge of a server in the local client’s cache.
The server_name argument is the simple name of a cached server. (An
example of a simple name would be pelican, as opposed to a cell-relative
name like /.:/hosts/pelican.) This command is typically used to provide
configuration information manually to a client that cannot configure itself

Chapter 5 Command Reference Pages 123
automatically. Providing configuration information manually may be
necessary, for instance, to provide the client with addressing information
about a server across a WAN. Once the client knows about one server, it can
find other servers through referrals. This operation returns an empty string on
success.

Privileges Required

You must have w (write) permission to the client system, /.:/hosts/hostname/
cds-clerk.

Examples

The following command creates knowledge of the server pelican in the
localclient’s cache:

dcecp> cdscache create pelican -binding ncacn_ip_tcp:16.20.15.25
dcecp>

cdscache delete

Removes knowledge of a server that you had specifically created from the
local client’s cache. The syntax is:

cdscache delete server_name

The delete operation removes knowledge of a server that was specifically
created from the local client’s cache. The required server_name argument is
the simple name of a cached server. (An example of a simple name would be
pelican,as opposed to a cell-relative name like /.:/hosts/pelican.) You can
delete only servers that you have specifically created with the cdscache
create command. This operation returns an empty string on success.

Privileges Required

You must have w (write) permission to the client system, /.:/hosts/hostname/
cds-clerk.

Examples

The following command removes knowledge of the server gumby from the
client cache:

dcecp> cdscache delete gumby
dcecp>

cdscache discard

Discards the contents of the client cache. The syntax is:

cdscache discard [-entry entry_name] [-replica replica_name]

Options

-entry entry_name

Specifies the name of an entry in the clerk cache.

124 Gradient DCE for Tru64 UNIX Reference Guide
-replica replica_name

Specifies the clearinghouse name of a replica pointer.

Description

The cdscache discard operation eliminates data structures, frees memory, and
shrinks the size of the client cache on the host specified by host_name. If
host_name is not specified, the operation defaults to the cache that resides on
the local host. Only a single host name can be specified. If both -entry and
-replica options are specified, the command removes the specified replica
pointer from a cached directory entry.

If a clearinghouse becomes unreachable, attempting to contact it to look up a
replica pointer can result in a very time-consuming failure. If you use the
option -replica, all replicas referencing the clearinghouse are removed from
all cache directory entries. In this way, all references to an unreachable
clearinghouse can be removed. If successful, this operation returns a null
string.

The operation, cdscache discard with the options -entry or -replica, does the
following:

■ Deletes only the cached structures specified by the -entry and -replica
options.

■ Does not stop and restart CDS.
■ Does not stop and restart DCE.

Privileges Required

If it is a local operation you must have superuser (root) privileges on the client
system. No DCE permissions are required.

If it is a remote operation you must have permissions on the srvrconf
directory of the selected host:

■ I permission on /.:/hosts/<HOSTS>/config/srvrconf

■ x permission on the created server object (that is, x permission in the initial
object ACL of /.:/<HOSTS>/config/srvrconf)

■ d permission on the created server object (that is, d permission in the
initial object ACL of /.:/<HOSTS>/config/srvrconf)

Examples

The following command discards the entry, job_300 at the clearinghouse
named gloria_ch from the client cache on the local host:

dcecp> cdscache discard -entry /.:/ job_300 -replica /.:/gloria_ch
dcecp>

cdscache dump

Displays the entire contents of the client cache. The syntax is:

cdscache dump

Chapter 5 Command Reference Pages 125
The cdscache dump operation displays the contents of the client cache on the
screen. Use this command when solving CDS problems.

Privileges Required

You must have superuser (root) privileges on the client system. No DCE
permissions are required.

Examples

The following command displays the contents of the client cache on the
screen (the output is not shown in the example):

dcecp> > cdscache dump
dcecp> >

cdscache help

Returns help information about the cdscache object and its operations. The
syntax is:

cdscache help [operation | -verbose]

Options

-verbose

Displays information about the cdscache object.

Description

Used without an argument or option, the cdscache help command returns
brief information about each cdscache operation. The optional operation
argument is the name of an operation about which you want detailed
information. Alternatively, you can use the -verbose option for more detailed
information about the cdscache object itself.

Privileges Required

No special privileges are needed to use the cdscache help command.

Examples

dcecp> cdscache help
create Adds information about named server in local cds cache.
delete Removes information about named server in local cds cache.
discard Discards all cdsadv (CDS advertiser) cache information on the specified host.
dump Dumps all information from local cds cache.
show Shows information stored in cds cache.
help Prints a summary of command-line options.
operations Returns a list of valid operations for this command.
dcecp>

cdscache operations

Returns a list of the operations supported by the cdscache object. The syntax
is as follows:

126 Gradient DCE for Tru64 UNIX Reference Guide
cdscache operations

The list of available operations is in alphabetical order except for help and
operations, which are listed last.

Privileges Required

No special privileges are needed to use the cdscache operations command.

Examples

dcecp> cdscache operations
create delete discard dump show help operations
dcecp>

cdscache show

Returns information about clearinghouses or servers stored in the cache. The
syntax is as follows:

cdscache show server_name {-server | -clearinghouse}

Options

-clearinghouse

This option displays all the names and values of the attributes in the
specified cached clearinghouse. The following are valid attributes:

■ Creation Time

Specifies the time at which this clearinghouse was added to the cache.

■ Miscellaneous Operations

Specifies the number of operations other than read and write (that is,
skulks, new epochs, and so on) performed by this client on the cached
clearinghouse.

■ Read Operations

Specifies the number of lookup operations of any sort performed by the
client on the cached clearinghouse.

■ Towers

Specifies the protocol sequence and network address of the server that
maintains the cached clearinghouse.

■ Write Operations

Specifies the number of write operations performed by this client on the
cached clearinghouse.

-server

This option displays address information of a server in the local client’s
cache. The following attributes are valid:

■ Name

Chapter 5 Command Reference Pages 127
The directory cell name

■ Towers

The protocol sequence and network address of the server node

The show operation displays information about clearinghouses or servers
stored in the cache. The required server_name argument is the simple name of
a server or a CDS name of a clearinghouse for which you want to display
information. You must use one of the -clearinghouse or -server options to
select the information you want to display.

Privileges Required

You must have r (read) permission to the CDS client.

Examples

The following command displays all attributes of the cached clearinghouse /
.:/claire_ch:

dcecp> cdscache show /.:/claire_ch -clearinghouse
{CH_Name /.../blue.cell.osf.org/claire_ch}
{Created 1994-10-07-11:41:23.131}
{Others 458}
{Reads 150221}
{Tower {ncacn_ip_tcp 130.105.4.158}}
{Tower {ncadg_ip_udp 130.105.4.158}}
{Writes 162}
dcecp>

The following command displays all attributes of the cached server
mysystem:

dcecp> cdscache show mysystem -server
{CH_Name /.../terrapin_cell.osf.org/mysystem_ch}
{Tower {ncacn_ip_tcp 130.105.5.16}}
{Tower {ncadg_ip_udp 130.105.5.16}}

Related Information
Commands: clearinghouse(8dce), dcecp(8dce), directory(8dce), link(8dce),
object(8dce). define_cached-server(8cds). dump-clerk_cache(8cds).
show_cached-clearinghouse(8cds). show_cached-server(8cds).

clearinghouse(8dce)

Name
clearinghouse -A dcecp object that manages a clearinghouse in CDS

Synopsis
clearinghouse catalog [cell_name] [-simplename]

clearinghouse create clearinghouse_name_list

128 Gradient DCE for Tru64 UNIX Reference Guide
clearinghouse delete clearinghouse_name_list

clearinghouse disable clearinghouse_name_list

clearinghouse initiate clearinghouse_name_list -checkpoint

clearinghouse help [operation | -verbose]

clearinghouse modify object_name_list {[-add attribute_list [-single]]
[-remove attribute_list [-types]] -change attribute_list}

clearinghouse operations

clearinghouse repair clearinghouse_name_list -timestamps

clearinghouse show clearinghouse_name_list [-counters | -attributes | -all]
[-schema]

clearinghouse verify clearinghouse_name_list

Arguments
cell_name

This optional argument is the name of a single cell. The name must be a
fully qualified cell name as shown in the following:

/.../their_cell.goodco.com

clearinghouse_name_list

A list of one or more names of clearinghouses on which to operate.

operation

The name of one specific clearinghouse operation (subcommand) about
which you want to see help information.

Description
The clearinghouse object represents Cell Directory Service (CDS)
clearinghouses. Clearinghouses are databases located on CDS server
machines that store data (directories, objects, and links) in CDS. On the server
machines are files that contain the actual clearinghouse data. Clearinghouses
are also represented in the CDS namespace by an entry that contains
information about the clearinghouse.

You must run the create command on the host where you want to create the
new clearinghouse and the delete, disable, initiate, repair, and verify
commands on the host where the clearinghouse to be operated on resides.

If the _s(cds) convenience variable is set, it is treated as the name of a
clearinghouse to contact for this operation. This is the only clearinghouse that
will be contacted in an attempt to complete the operation. These commands
do not set the value of this variable after completion.

Chapter 5 Command Reference Pages 129
Attributes
The following are the CDS-defined attributes that may be present in CDS
clearinghouse objects:

CDS_AllUpTo

Indicates the date and time the clearinghouse object has been updated to
reflect the CDS_CHDirectories attribute.

CDS_CHDirectories

Specifies the full name and Universal Unique Identifier (UUID) of every
directory that has a replica in this clearinghouse.

CDS_CHLastAddress

Specifies the current reported network address of the clearinghouse.

CDS_CHName

Specifies the full name of the clearinghouse.

CDS_CHState

Specifies the state of the clearinghouse. The state on indicates the
clearinghouse is running and available.

CDS_CTS

Specifies the creation timestamp (CTS) of the clearinghouse.

CDS_DirectoryVersion

Specifies the current version of the directory in the clearinghouse in which
the directory was created.

CDS_NSCellname

Specifies the name of the cell in which the clearinghouse resides.

CDS_ObjectUUID

Specifies the UUID of the clearinghouse. This read-only attribute is set by
the system when the clearinghouse object is created.

CDS_ReplicaVersion

Specifies the current version of the replica in which the directory was
created.

CDS_UpgradeTo

A single-valued attribute used to control the upgrading of a directory from
one version of CDS to another. By modifying this attribute, the process of
upgrading a directory to a newer version of CDS may be initiated.

CDS_UTS

Specifies the timestamp of the most recent update to an attribute of the
clearinghouse.

130 Gradient DCE for Tru64 UNIX Reference Guide
Counters

The clearinghouse counters are as follows:

badchs

Specifies the number of times the clearinghouse entry missing event was
generated.

baddata

Specifies the number of times that the data corruption event was
generated.

badskulks

Specifies the number of times that a skulk of a directory, initiated from this
clearinghouse, failed to complete—usually because one of the replicas in
the replica set was unreachable.

badupgrades

Specifies the number of times that upgrades failed.

disables

Specifies the number of times that the clearinghouse was disabled since it
was last started.

enables

Specifies the number of times that the clearinghouse was enabled since it
was last started.

partials

Specifies the number of requests directed to this clearinghouse that
resulted in the return of a partial answer instead of satisfying the client’s
request.

reads

Specifies the number of read operations directed to this clearinghouse.

rootlosts

Specifies the number of times the root lost event was generated.

writes

Specifies the number of write operations directed to this clearinghouse.

See the OSF DCE Administration Guide for more information about attributes
and counters.

Operations

clearinghouse catalog

Returns a list of the names of all clearinghouses in a cell. The syntax is as
follows:

Chapter 5 Command Reference Pages 131
clearinghouse catalog [cell_name] [-simplename]

The clearinghouse catalog command returns a list of the names of all
clearinghouses in a cell. If you do not specify the optional argument, the cell
name defaults to /.:.

Privileges Required

No special privileges are needed to use the clearinghouse catalog command.

Examples

dcecp> clearinghouse catalog
/.../dcecp.cell.osf.org/frick_ch
dcecp> clearinghouse catalog -simplename
frick_ch

clearinghouse create

Creates a new clearinghouse on the local machine. The syntax is as follows:

clearinghouse create clearinghouse_name_list

The clearinghouse create operation creates a new clearinghouse on the local
machine. The clearinghouse_name argument is a list of one or more names of
the clearinghouses you want to create. Clearinghouses should only be named
in the root directory—that is, /.:. This operation also stores a read-only replica
of the root directory in the new clearinghouse. The process that creates the
new clearinghouse initiates a skulk of the root directory, so all replicas of the
root should be reachable when you enter the clearinghouse create command.
To ensure this, perform an immediate skulk of /.: prior to invoking the
command, using the directory synchronize /.: command. The operation
returns an empty string on success.

Privileges Required

You need w (write) permission to the server on which you intend to create the
clearinghouse and A (Admin) permission to the cell root directory. The server
principal needs r (read), w (write), and A (Admin) permission to the cell root
directory.

Examples

The following command creates a clearinghouse named /.:/Boston_CH on
the local server system:

dcecp > clearinghouse create /.:/Boston_CH

clearinghouse delete

Deletes the specified clearinghouse from the local machine. The syntax is as
follows:

clearinghouse delete clearinghouse_name_list

132 Gradient DCE for Tru64 UNIX Reference Guide
The clearinghouse delete operation deletes the specified clearinghouse from
the local server system. The clearinghouse_name_list argument is a list of one
or more names of the clearinghouses you want to delete. Clearinghouses that
contain master replicas of directories are not deleted (and also return errors).
This command also automatically deletes all read-only replicas from the
clearinghouse; however, you should delete all read-only replicas by hand (see
directory delete -replica) before invoking this command since invoking
many skulks will cause the command to execute more slowly. The command
returns an empty string on success.

CDS does not permit you to delete a disabled (cleared) clearinghouse. Before
you can delete a disabled (cleared) clearinghouse, you must recreate it using
the clearinghouse create command.

Privileges Required

You must have w (write) and d (delete) permission to the clearinghouse and
A (Admin) permission to all directories that store replicas in the
clearinghouse. The server principal must have d (delete) permission to the
associated clearinghouse object entry and A (Admin) permission to all
directories that store replicas in the clearinghouse.

Examples

The following command deletes a clearinghouse named /.:/Orion_CH from
the local server system:

dcecp > clearinghouse delete /.:/Orion_CH

clearinghouse disable

Removes knowledge of the specified clearinghouse from the local server’s
memory. The syntax is as follows:

clearinghouse disable clearinghouse_name_list

The clearinghouse disable operation removes knowledge of the specified
clearinghouse from the local server’s memory. The clearinghouse_name_list
argument is a list of names of one or more clearinghouses you want to disable.
Use this command when relocating a clearinghouse. This command removes
the name of the prefix of the clearinghouse files from the /opt/dcelocal/var/
directory/cds/cds_files file and notifies the local CDS server that the
clearinghouse is disabled. The clearinghouse entry is not removed from the
namespace, nor are the datafiles associated with the clearinghouse removed.
The operation returns an empty string on success.

Privileges Required

You must have w (write) permission to the CDS server on which the
clearinghouse resides.

Examples

The following command disables the clearinghouse /.:/Paris2_CH so that it
can be moved to another server:

dcecp > clearinghouse disable /.:/Paris2_CH

Chapter 5 Command Reference Pages 133
clearinghouse help

Returns help information about the clearinghouse object and its operations.
The syntax is as follows:

clearinghouse help [operation | -verbose]

Options

-verbose

Displays information about the clearinghouse object.

Used without an argument or option, the clearinghouse help command
returns brief information about each clearinghouse operation.

The optional operation argument is the name of an operation about which
you want detailed information.

Alternatively, you can use the -verbose option for more detailed information
about the clearinghouse object itself.

Privileges Required

No special privileges are needed to use the clearinghouse help command.

Examples

dcecp>clearinghouse help
catalog Returns the names of all clearinghouses in a cell.
create Creates the named clearinghouse.
delete Deletes the named clearinghouse.
disable Disables the named clearinghouse.
initiate Initiates an action on the named CDS clearinghouse.
modify Add, remove or change an attribute in the named
 clearinghouse.
repair Repairs an aspect of the named CDS clearinghouse.
show Returns the attributes of a clearinghouse.
verify Verifies the consistency of the clearinghouse.
help Prints a summary of command-line options.
operations Returns a list of the valid operations for this command.

clearinghouse initiate

Initiates a defined action on the specified clearinghouse on the local machine.
The syntax is

clearinghouse initiate clearinghouse_name_list -checkpoint

Options

-checkpoint

Forces the clearinghouse to checkpoint to disk.

134 Gradient DCE for Tru64 UNIX Reference Guide
The clearinghouse initiate operation initiates a defined action on the
specified clearinghouse. The required clearinghouse_name_list argument is a
list of one or more names of clearinghouses you want to initiate actions on.
Currently, only a checkpoint action is available. This operation returns an
empty string on success.

Privileges Required

You need write permission on the clearinghouse server and administer
permission on the cell root directory. The server principal needs read, write,
and administer permission on the cell root directory.

Examples

The following command initiates a checkpoint operation on the clearinghouse
named /.:/oddball_ch on the local system.

dcecp > clearinghouse initiate /.:/oddball_ch -checkpoint

clearinghouse modify

Adds or removes attributes or changes attribute values for clearinghouse
entries in the Cell Directory Service. This task is usually done through a client
application.

The syntax is as follows:

clearinghouse modify object_name_list {[-add attribute_list [-single]]
[-remove attribute_list [-types]] -change attribute_list}

Options

-add

Adds one or more new attributes to an clearinghouse entry.

-single

Optionally used with the -add option to specify that the attribute is
single-valued.

-remove

Removes one or more attribute values from an attribute type of a
clearinghouse entry. For instance, removing a value from an attri-bute with
three values leaves the attribute with two values.

{{attribute_name attribute_value}... \\
{attribute_name attribute_value}}

To remove an attribute type as well as its values, use the -types option with
the -remove option. For example:

clearinghouse modify /.:/foo \
-remove {RPC_CLASS RPC_CLASS_VERSION} \
-types

Chapter 5 Command Reference Pages 135
If an attribute is not present, an error is returned. Fixed CDS attribute
types, such as the CDS creation Timestamp (CDS_CTS), cannot be
removed.

-types

Can be used with the -remove option to remove the attribute type as well
as its values. This option is invalid without the -remove option.

-change

Changes one attribute value to another for a clearinghouse entry. The value
of this option is an attribute list. The existing value of each attribute named
in the list is replaced by the new value given for each attribute attribute in
the list. For multivalued attributes, all existing values are replaced by all
the values listed for the attribute in the attribute list. If an attribute or value
is not present, an error is returned.

The clearinghouse modify operation adds or removes attributes or changes
attribute values for clearinghouse entries in the Cell Directory Service. This
task is usually done through a client application. The required
clearinghouse_name argument is the full CDS name of the clearinghouse
entry to be modified.

Privilege Required

You must have w (write) permission to the clearinghouse entry.

Examples

To change the value of the sales_record attribute to region2 of an
clearinghouse entry named /.:/Q1_records, follow these steps:

1 Read the cds_attributes file to check that the attribute sales_record is
listed, as shown in the following display:

2 Enter the following command to assign the value region2 to the
attributesales_record of an clearinghouse entry named /.:/Q1_records.

dcecp > clearinghouse modify /.:/Q1_records -add {sales_record region2}
dcecp >

clearinghouse operations

Returns a list of the operations supported by the clearinghouse object. The
syntax is as follows:

clearinghouse operations

OID LABEL SYNTAX

1.3.22.1.3.66 sales_record char

136 Gradient DCE for Tru64 UNIX Reference Guide
The clearinghouse operations command takes no arguments and returns a
list of the available operations for the clearinghouse object. The order of the
elements is alphabetical with the exception that help and operations are listed
last.

Privileges Required

No special privileges are needed to use the clearinghouse operations
command.

Examples

dcecp> clearinghouse operations
catalog create delete disable initiate modify repair show verify help operations

clearinghouse repair

Repairs a specific problem on a specified clearinghouse on the local machine.
The syntax is:

clearinghouse repair clearinghouse_name_list -timestamps

Options

-timestamps

Analyzes and repairs invalid timestamps found in a clearinghouse.

Use the clearinghouse repair operation to fix various problems that can
occur in a clearinghouse. The required clearinghouse_name_list argument is a
list of one or more names of clearinghouses you want to initiate repair actions
on. Currently, only invalid timestamps can be repaired. This operation returns
an empty string on success.

Privileges Required

You need write permission on the clearinghouse server and administer
permission

on the cell root directory. The server principal needs read, write, and
administer

permission on the cell root directory.

Examples

The following command repairs invalid timestamps in a clearinghouse named
/.:/blech_ch on the local system.

dcecp > clearinghouse repair /.:/blech_ch -timestamps

clearinghouse show

Displays attribute and counter information associated with specified
clearinghouses on local or remote machines. The syntax is as follows:

clearinghouse show clearinghouse_name_list [-counters | -attributes |
-all][-schema]

Chapter 5 Command Reference Pages 137
Options

-attributes

Returns the attributes for the clearinghouse (default).

-counters

Returns the counters for the clearinghouse.

-schema

Indicates whether attributes are singlevalued or multivalued.

The clearinghouse show operation displays attribute and counter information
associated with the clearinghouses specified by clearinghouse_name_list,
which is a list of one or more names of the clearinghouses. If more than one
clearinghouse is specified, the attributes of all the clearinghouses are
concatenated into one list. The order of the returned attributes is the lexical
order of the object identifiers (OIDs) of each attribute for each clearinghouse.

If you supply no options, clearinghouse show returns the attributes
associated with the specified clearinghouse.

Privileges Required

You must have r (read) permission to the clearinghouse. If you specify a
wildcard clearinghouse name, you also need r (read) permission to the cell
root directory.

Examples

The following command displays the attributes of the clearinghouse /.:/
drkstr_ch.

dcecp> clearinghouse show /.:/drkstr_ch
{CDS_CTS 1994-06-18-20:16:22.150-05:00I0.000/00-00-c0-f7-de-56}
{CDS_UTS 1994-06-19-17:17:43.911-05:00I0.000/00-00-c0-f7-de-56}
{CDS_ObjectUUID 0066ccea-d978-1db3-8259-0000c0f7de56}
{CDS_AllUpTo 1994-07-01-21:30:18.948-05:00I0.000/00-00-c0-f7-de-56}
{CDS_DirectoryVersion 3.0}
{CDS_CHName /.../terrapin/drkstr_ch}
{CDS_CHLastAddress
 {Tower ncacn_ip_tcp 130.105.5.16}
 {Tower ncadg_ip_udp 130.105.5.16}}
{CDS_CHState on}
{CDS_CHDirectories
 {{Dir_UUID 00146037-d97b-1db3-8259-0000c0f7de56}
 {Dir_Name /.../terrapin}}
 {{Dir_UUID 0043797a-d991-1db3-8259-0000c0f7de56}
 {Dir_Name /.../terrapin/subsys}}
 {{Dir_UUID 004faa42-d992-1db3-8259-0000c0f7de56}
 {Dir_Name /.../terrapin/subsys/HP}}
 {{Dir_UUID 004fa65a-d993-1db3-8259-0000c0f7de56}
 {Dir_Name /.../terrapin/subsys/HP/sample-apps}}
 {{Dir_UUID 004b1130-d994-1db3-8259-0000c0f7de56}
 {Dir_Name /.../terrapin/subsys/dce}}
 {{Dir_UUID 00498a0e-d995-1db3-8259-0000c0f7de56}
 {Dir_Name /.../terrapin/subsys/dce/sec}}
 {{Dir_UUID 003ed80c-d996-1db3-8259-0000c0f7de56}

138 Gradient DCE for Tru64 UNIX Reference Guide
 {Dir_Name /.../terrapin/subsys/dce/dfs}}
 {{Dir_UUID 003d4d8e-d997-1db3-8259-0000c0f7de56}
 {Dir_Name /.../terrapin/hosts}}
 {{Dir_UUID 003bc522-d998-1db3-8259-0000c0f7de56}
 {Dir_Name /.../terrapin/hosts/drkstr}}
 {{Dir_UUID 0089ee8c-44e0-1dbe-929b-0000c0f7de56}
 {Dir_Name /.../terrapin/help}}
 {{Dir_UUID 001c6cea-00fb-1dc5-929b-0000c0f7de56}
 {Dir_Name /.../terrapin/test_1}}
 {{Dir_UUID 00440fe8-02a1-1dc5-929b-0000c0f7de56}
 {Dir_Name /.../terrapin/dirmod}}}
{CDS_ReplicaVersion 3.0}
{CDS_NSCellname /.../terrapin}

The following command displays the current values of the counters associated
with the /.:/Chicago1_CH clearinghouse:

dcecp> clearinghouse show /.:/Chicago1_CH -counters
{corruptions 0}
{disables 0}
{enables 1}
{failedupgrades 0}
{missingentries 0}
{reads 2336}
{returnedrefs 2}
{rootunreachables 0}
{skulkfailures 0}
{writes 68}

clearinghouse verify

Verifies the consistency of the specified clearinghouse on the local machine.
The syntax is:

clearinghouse verify clearinghouse_name_list

The clearinghouse verify operation verifies the consistency of the specified
clearinghouse by checking internal attributes. The required
clearinghouse_name_list argument is a list of one or more names of
clearinghouses you want to verify. This operation returns an empty string on
success.

Privileges Required

You need write permission on the clearinghouse server and administer
permission on the cell root directory. The server principal needs read, write,
and administer permission on the cell root directory.

Examples

The following command verifies the consistency of clearinghouses named /.:/
gumby_ch and /.:/pokey_ch.

dcecp > clearinghouse verify {/.:/gumby_ch /.:/pokey_ch}

Chapter 5 Command Reference Pages 139
Related Information
Commands: cdscache(8dce), directory(8dce), link(8dce), object(8dce),
clear_clearinghouse(8cds), create_clearinghouse(8cds),
delete_clearinghouse(8cds), show_clearinghouse(8cds).

directory(8dce)

Name
directory -A dcecp object that manages a name service directory

Synopsis
directory add directory_name_list -member child_pointer_list
-clearinghouse clearinghouse_name

directory create directory_name_list [-attribute attribute_list [-single]]
[[-replica -clearinghouse clearinghouse_name]|
[-clearinghouse clearinghouse_name]]

directory delete directory_name_list [[-tree]| [-replica -clearinghouse
clearinghouse_name]]

directory help [operation | -verbose]

directory list directory_name_list [-directories][-objects][-links]
[-simplename | -fullname]

directory merge source_directory_name -into destination_directory_name
[-clearinghouse clearinghouse_name][-tree][-nocheck]

directory modify directory_name_list {
[[-add attribute_list][-single]]
[[-remove attribute_list [-types]] [-change attribute_list]
[-propagate [-force]] [-upgrade [-tree]]}

directory operations

directory remove directory_name_list -member child_pointer_list

directory show directory_name_list
[-member child_pointer_list | -replica -clearinghouse clearinghouse_name]
[-schema]

directory synchronize directory_name_list

Arguments
directory_name_list

A list of one or more specific directory names to be operated on. The last
simple name can contain wildcard characters.

child_pointer_list

A list of one or more specific child pointers to be operated on.

140 Gradient DCE for Tru64 UNIX Reference Guide
clearinghouse_name

The name of a single clearinghouse to use during directory operations.

clearinghouse_name_list

A list of one or more clearinghouses to use during the directory modify
operations.

source_directory_name

The name of one specific directory whose contents are to be copied into a
destination directory using a directory merge operation.

destination_directory_name

The name of one specific directory that will contain the results of a
successful directory merge operation.

operation

The name of one specific directory operation about which you want to see
help information.

attribute_list

A list of one or more legal attributes to use during directory operations.

Description
The directory object represents Cell Directory Service (CDS) directories.
CDS directories are containers for other objects, links, and other directories
(as well as clearinghouses). Any of these items that reside in a directory are
called children of that directory. Directories also contain attributes that may
be viewed or modified.

This object also represents CDS replicas. Replicas are read-only copies of
directories stored in other clearinghouses. Several of the supported operations
take options to indicate that the command is to operate on a specific replica.

If the _s(cds) convenience variable is set, it is treated as the name of a
clearinghouse to contact for this operation. This is the only clearinghouse that
will be contacted in an attempt to complete the operation. These commands
do not set the value of this variable after completion. If a -clearinghouse
option is used (as described in some commands below), then it overrides the
value of _s(cds) but the command will not change the setting of _s(cds).

Attributes
The following are the CDS defined attributes that may be present in
directories and replicas in CDS:

CDS_AllUpTo

Indicates the date and time of the last successful skulk on the directory. All
replicas of the directory are guaranteed to receive all updates whose
timestamps are less than the value of this attribute.

CDS_Convergence value

Chapter 5 Command Reference Pages 141
Specifies the degree of consistency among replicas. This attribute’s value
is defined as one of the following:

■ low

CDS does not immediately propagate an update. The next skulk
distributes all updates that occurred since the previous skulk. Skulks
occur at least once every 24 hours.

■ medium

CDS attempts to immediately propagate an update to all replicas. If the
attempt fails, the next scheduled skulk makes the replicas consistent.
Skulks occur at least once every 12 hours.

■ high

CDS attempts to immediately propagate an update to all replicas. If the
attempt fails (for example, if one of the replicas is unavailable), a skulk
is scheduled for within one hour. Skulks usually occur at least once
every 12 hours. Use this setting temporarily and briefly, because it uses
extensive system resources.

By default, every directory inherits the convergence setting of its parent at
creation time. The default setting on the root directory is medium.

CDS_CTS

Specifies the creation timestamp (CTS) of the CDS directory.

CDS_DirectoryVersion

Specifies the current version of the directory (derived from the
CDS_DirectoryVersion attribute of the clearinghouse in which the
directory was created). Multiple directory versions are supported in a cell.

CDS_Epoch

A Universal Unique Identifier (UUID) that identifies a particular
incarnation of the directory.

CDS_GDAPointers

A set-valued attribute that is only present in the root directory of a cell.
This attribute contains location information about registered Global
Directory Agents (GDAs) for that cell, similar to the CDS_Replicas
attribute. It is created and only used by a GDA.

CDS_InCHName

Indicates whether a directory or any of its descendants can store
clearinghouse names. If this value is true, the directory can store
clearinghouse names. If it is false, the directory cannot store clearinghouse
names.

CDS_LastSkulk

Records the timestamp of the last skulk performed on this directory.

CDS_LastUpdate

142 Gradient DCE for Tru64 UNIX Reference Guide
Records the timestamp of the most recent change to any attribute of a
directory replica, or any change to an entry in the replica.

CDS_ObjectUUID

Specifies the unique identifier of the directory. This is read-only to the user
and is set by the system at creation time.

CDS_ParentPointer

Contains a pointer to this directory’s parent in the namespace.

CDS_Replicas

Specifies the address, UUID, and name of every clearinghouse where a
copy of this directory is located. This attribute also specifies whether the
replica in a particular clearinghouse is a master or read-only replica.

CDS_ReplicaState

Specifies whether a directory replica can be accessed.

CDS_ReplicaType

Indicates whether a directory replica is a master or read-only replica.

CDS_ReplicaVersion

Specifies the version of a replica of the directory.

CDS_RingPointer

Specifies the UUID of a clearinghouse containing another replica of this
directory.

CDS_UpgradeTo

A single-valued attribute used to control the upgrading of a directory from
one version of CDS to another. By modifying this attribute, the process of
upgrading a directory to a newer version of CDS may be initiated.

CDS_UTS

Specifies the timestamp of the most recent update to an attribute of the
directory.

Operations

directory add

Creates a child pointer in the parent directory. The syntax is as follows:

directory add directory_name_list -member child_pointer_list
-clearinghouse clearinghouse_name

Options

-member child_pointer_list

Chapter 5 Command Reference Pages 143
This required option names the child pointers to be added to parent
directories in the clearinghouse named by the required -clearinghouse
option.

-clearinghouse clearinghouse_name

This required option names the clearinghouse where the child pointers are
to be added.

The directory add operation creates a child pointer in the parent directory.
The directory_name_list argument is a list of one or more names of parent
directories to have child pointers added to them. The value of the required
-member option is a list of names of child pointers to be added to each of the
directories listed in the argument. Each child pointer name entered should
contain only the last relative distinguished name (RDN) of the name. The
child object must exist or the command returns an error. The full name of a
clearinghouse that holds a replica of the child directory is given as the value to
the required -clearinghouse option.

This option may only have one value and is used for each of the values of the
-member option. The operation returns an empty string on success. If a child
pointer of the same name already exists an error is returned. This command is
needed only to recreate a child pointer that was accidentally deleted, such as
in a troubleshooting situation. Normally child pointers are created internally
by CDS when creating directories with the directory create command.

Privileges Required

You must have i (insert) permission to the parent directory.

Examples

dcecp > directory add /.: -member foo -clearinghouse /.:/darkstr_ch

directory create

Creates a new directory of the specified name. The syntax is as follows:

directory create directory_name_list [-attribute attribute_list [-single]]
[[-replica -clearinghouse clearinghouse_name]|
[-clearinghouse clearinghouse_name]]

Options

-attribute attribute_list

Allows you to specify the CDS_Convergence attribute or the
CDS_UpgradeTo attribute in an attribute list. The format is as follows:

-attribute {{attr value}{attr value}}

See the ATTRIBUTES section of this reference page for descriptions of
the CDS_Convergence attribute and the CDS_UpgradeTo attribute.

-single

Valid only with the -attribute option, this specifies that attribute values
are single-valued. Otherwise, attributes are multivalued.

144 Gradient DCE for Tru64 UNIX Reference Guide
-replica

This option specifies that the directory created is a replica of an existing
directory. If you use the -replica option, you must specify a clearinghouse
by using the -clearinghouse option.

-clearinghouse clearinghouse_name

Required with the -replica option and optional when -replica option is not
present, the -clearinghouse option names the clearinghouse to which the
child pointers are to be added.

The directory create operation creates a new directory of the specified name.
The directory_name_list argument is a list of names of directories to be
created.

An optional -attribute option specifies a list of attributes to be included in
each created directory. The attribute values are multivalued unless the -single
option is specified, in which case all attributes are single-valued. The -single
option is valid only if the -attribute option is specified.

The -clearinghouse option specifies one clearinghouse to create all the
directories in. If this option is not specified, the new directories are created in
the master clearinghouse as the parent directory. The directory create
command also takes a -replica option which indicates that a directory replica
is created; when this option is used, the -clearinghouse option is required.
The operation returns an empty string on success.

Privileges Required

You must have the following permissions in order to create a directory: r
(read) and i (insert) permission to the parent directory, and w (write)
permission to the clearinghouse in which the master replica of the new
directory is to be stored.

In addition, the server principal must have r (read) and i (insert) permission
to the parent directory.

Examples

The following command creates a directory named /.:/sales.

dcecp > directory create /.:/sales

directory delete

Deletes a directory. The syntax is as follows:

directory delete directory_name_list
[[-tree]| [-replica -clearinghouse clearinghouse_name]]

Options

-tree

Removes the directory and everything (all directories, objects, links, and
clearinghouses) beneath it.

-replica

Chapter 5 Command Reference Pages 145
Specifies that the directory to delete is a replica of an existing directory. If
you use the -replica option, you must specify a clearinghouse using the
-clearinghouse option.

-clearinghouse

Required with the -replica option, the -clearinghouse option names one
clearinghouse (not a list of clearinghouses) from which the replica is to be
deleted.

The directory delete operation deletes a directory from the CDS name
service. The directory_name_list argument is a list of names of directories to
be deleted. If the directory is not empty, the command returns an error unless
the -tree option is used. The -tree option, which takes no value, removes the
directory and everything (all directories, objects, links, and clearinghouses)
beneath it.

The -replica and -clearinghouse options (they must be used together) let you
delete a replica instead of a directory. The -clearinghouse option specifies the
clearinghouse that contains the replica; only one value can be specified, not a
list. The operation returns an empty string on sucess. If a specified directory
does not exist, an error is generated.

The -replica and -clearinghouse options cannot be used with the -tree option.

Privileges Required

You must have (delete) permission to the directory and w (write) permission
to the clearinghouse that stores the master replica of the directory. The server
principal needs A (Admin) permission to the parent directory or d (delete)
permission to the child pointer that points to the directory you intend to delete.

Examples

The following command deletes the directory /.:/eng from the namespace:

dcecp> directory delete /.:/eng

The following command tries to delete a nonempty directory /.:/depts/
phrenology and gets an error. The second attempt uses the -tree option to
delete the directory and all the directories and objects beneath it.

dcecp> dir delete /.:/depts/phrenology

Error: Directory must be empty to be deleted

dcecp> dir delete /.:/depts/phrenology -tree

directory help

Returns help information about the directory object and operations. The
syntax is as follows:

directory help [operation | -verbose]

Options

-verbose

Displays information about the directory object.

146 Gradient DCE for Tru64 UNIX Reference Guide
The optional operations argument returns information about the operation
and its options. Used without an argument or option, the help command
returns brief information about each directory operation.

Privileges Required

No special privileges are needed to use the directory help command.

Examples

dcecp> directory help
add Creates a child pointer in the specified directory.
create Creates the named directory.
delete Deletes the named directory.
list Lists the descendants of a directory.
merge Merges the contents of one directory into another.
modify Adds, removes or changes attributes in the named directory.
remove Removes a child pointer in the specified directory.
show Returns the attributes of a directory or replica.
synchronize Skulks the named directory.
help Prints a summary of command-line options.
operations Returns a list of the valid operations for this command.

directory list

Returns a list of the names of all the descendants of a directory. The syntax is
as follows:

directory list directory_name_list [-directories][-objects][-links]
[-simplename] | -fullname]

Options

-directories

This option lists the names of all descendent directories.

-objects

This option lists the names of all descendent objects.

-links

This option lists the names of all descendent softlinks.

-simplename

Returns just the RDN of the name.

-fullname

Returns the entire name.

The directory list operation returns a list of the names of all the descendents
of a directory. Descendents can include all directories, objects, links, and
clearinghouses of the directory. The directory_name_list argument is a list of
names of directories to be operated on. This command returns only the names
of descendents, so there is no way to tell the class of each name unless by
convention (for instance, most clearinghouses end with _ch). Use the
following options to specify the types of descendents to return: -directories,

Chapter 5 Command Reference Pages 147
-objects, -links. The options take no values and can be used in combination.
By default or if the -fullname option is specified, fullnames are returned. Use
the -simplename option to return merely the last RDN of the name.

Privileges Required

You must have r (read) permission to the directory named in the argument.

Examples

The following example lists a softlink in the /.:/depts/administration
directory that points to a server entry in the /.:/depts/phrenology/
applications directory:

dcecp> dir list /.:/depts/administration -links
/.../ward_cell.osf.org/depts/administration/bump_server1

directory merge

Copies the contents of one directory into another directory. The syntax is as
follows:

directory merge source_directory_name -into destination_directory_name
[-clearinghouse clearinghouse_name][-tree][-nocheck]

Options

-tree

Copies the contents of child directories (as well as the child directories
themselves) into the destination directory.

-into destination_directory_name

The argument to this required option specifies the name of the destination
directory. The destination directory must exist.

-clearinghouse clearinghouse_name

Places the new objects (the resulting merged directory) in a clearinghouse
other than that of the destination directory.

-nocheck

Lets the directory merge operation proceed without checking first for
object name collisions or access control list (ACL) problems. Use this
option to save time when you’re sure problems don’t exist.

The directory merge operation copies the contents of one directory into
another. The argument is the name of the source directory. This command
takes a required -into option to specify the destination directory which must
exist. For example, if /.:/a has two child objects /.:/a/b and /.:/a/c, then
directory merge /.:/a -into /.:/x would result (assuming no errors) in the
following objects: /.:/x/b and /.:/x/c.

Normally only the immediate contents of the directory are merged. This
means all objects, links, and directories, but not the contents of child
directories. To merge these as well, use the -tree option.

148 Gradient DCE for Tru64 UNIX Reference Guide
By default, the new objects are placed in the destination directory’s master
clearinghouse, and all children (no matter how many levels down) are placed
in the same clearinghouse. To place any descendant directories in another
clearinghouse, use the -clearinghouse option with a value. There can only be
one clearinghouse specified for all directories involved in the merge
operation. To specify more than one, either change this after the merge has
happened, or use separate commands.

This command first checks for any collisions or ACL problems before
beginning to merge any objects. If there are any problems encountered, an
error is generated (not immediately; all objects are checked first), and the
names of all problem objects, links or directories are returned in a list. The
administrator should then address these problems and rerun the merge
command. If the -nocheck option is specified the check is not performed.
This way time can be saved when trying a known nonproblematic merge. This
is not an atomic operation and other changes to the involved objects can cause
problems. This command should be issued when others are not modifying the
involved directories. Changing ACLs can be done to ensure this. If an error
does occur during the actual merging process, it is generated and the operation
aborts immediately.

The merge command actually recreates the objects with the same writable
attributes of the source objects. This means that some read-only attributes will
change between the source and destination. For example, the creation
timestamp attribute (CDS_CTS) changes.

The resulting merged directory inherits its ACLs from the destination
directory’s Initial Container or Initial Object ACLs. Consequently, the ACLs
of the destination objects are likely to differ from the ACLs of the source
objects.

Privileges Required

You must have r (read) and i (insert) permission to the destination directory.

Examples

The following command merges the directories but not the contents of the /.:/
depts/phrenology directory into the /.:/depts/radiology directory:

dcecp> dir list /.:/depts/phrenology -simple
applications services staff users
dcecp> directory merge /.:/depts/phrenology -into /.:/depts/radiology
dcecp > dir list /.:/depts/radiology -simple
applications services staff users

directory modify

Adds, removes, or changes a directory’s attributes and their values. The
syntax is as follows:

directory modify directory_name_list
{[[-add attribute_list][-single]]
[[-remove attribute_list [-types]] [-change attribute_list]
[-propagate [-force]] [-upgrade [-tree]]}

Chapter 5 Command Reference Pages 149
Options

-add

Adds a value to a modifiable, set-valued attribute (including
application-defined attributes) of a directory. If you enter a byte data type,
you must enter an even number of digits in length. You can only enter pairs
of hexadecimal values for user-defined attributes.

-single

Used with the -add option to specify that the attributes to be added are to
be single-valued. Normally all user-defined attributes are defined to be
multivalued, even if only one value is specified. This option is not legal
without the -add option.

-remove

Removes a value from a set-valued or single-valued attribute (including
application-defined attributes) of a directory. If you do not specify a value,
the command removes the entire attribute. This command can delete
attributes created with the -add and -change options.

-types

Used with the -remove option to specify that the value of the -remove
option is a list of attribute types. The entire attribute is to be removed, not
just a value. (This option is not legal without the -remove option.)

-change

Changes the value of a modifiable, single-valued attribute of a directory.
You can specify an application-defined attribute or the following attribute,
which specifies the degree of consistency among replicas:

{CDS_Convergence value}

Specify one of the following for value:

■ low

CDS does not immediately propagate any updates. The next skulk
distributes all updates that occurred since the previous skulk. Skulks
occur at least once every 24 hours.

■ medium

 CDS attempts to immediately propagate an update to all replicas. If the
attempt fails, the software lets the next scheduled skulk make the
replicas consistent. Skulks occur at least once every 12 hours.

■ high

CDS attempts to immediately propagate an update to all replicas. If that
attempt fails (for example, if one of the replicas is unavailable), a skulk
is scheduled for within one hour. Background skulks occur at least once
every 12 hours. Use this setting temporarily and briefly because it uses
extensive system resources.

150 Gradient DCE for Tru64 UNIX Reference Guide
-propagate

Changes the replica set of the child directories to match that of the parent
directory. This recursive call modifies the replica set of all child directories
found beneath the parent directory. Refer to the Gradient DCE for Tru64
UNIX Product Guide for information about cell migration.

-force

Used with the -propagate option to specify that the child’s replica set be
synchronized with the parent’s replica set even if the current replica set of
the child directories contains a different master replica and does not
contain the same number of replica sets.

-upgrade

Upgrades the directories to CDS directory version 4.0. This option is
provided as part of a migration tool for upgrading from a Digital DCE
V1.3 (OSF DCE R1.0.3+) to Digital DCE V2.0 (OSF DCE R1.1+) base.
Refer to the Gradient DCE for Tru64 UNIX Installation and Configuration
Guide for information about cell migration.

-tree

Used with the -upgrade option to specify recursive upgrading of all
directories and child directories found beneath the directories named in the
operation argument.

The directory modify operation adds, removes, or changes a directory’s
attributes and their values. The argument is a list of one or more names of
directories to be operated on. Attribute options are not supported; use one or
more of the -add, -remove,or -change options, each of which takes an
attribute list as an argument.

Use the -remove option to remove a value from an attribute. You can use the
-types option along with the -remove option to remove an entire attribute or
list of attributes.

Some attributes in CDS are multivalued. For instance, the CDS_Replicas
attribute can specify the locations and names of several clearinghouses that
maintain copies of a directory. The -add operation needs to be instructed
whether to operate on single-valued or multivalued attributes. Omit the
-single option to operate on multivalued attributes. Include the -single option
to operate on single-valued attributes.

The -upgrade and -tree, options support cell migration to Digital DCE
Version 2.0 (based on OSF DCE Release 1.1). For information about cell
migration, refer to the Gradient DCE for Tru64 UNIX Installation and
Configuration Guide.

The -propogate and -force options support synchronization and creation of
child directory replica sets. For information about synchronizing replica sets,
refer to the Gradient DCE for Tru64 UNIX Product Guide.

Chapter 5 Command Reference Pages 151
Most attributes are usually managed by the client application. See the OSF
DCE Administration Guide for more information about attributes. All
modifications are made to each directory listed in the argument. An error in
any one causes the command to abort immediately and generate an error. The
operation returns an empty string on success.

Privileges Required

You must have w (write) permission to the directory to add, remove, or
change attributes.

Examples

The following command sets the CDS_Convergence attribute on the
/.:/depts/radiology directory to a value of low:

dcecp> directory modify /.:/depts/radiology -change {CDS_Convergence low}

To add the value ontario to the attribute myname of a directory named /.:/
sales, read the cds_attributes file to verify that the attribute shown in the
following display exists:

Enter the following command to assign the value ontario to the attribute
myname:

dcecp> directory modify /.:/sales -add {myname ontario}

To remove the value 1 from the user-defined, set-valued attribute dirregion of
a directory named /.:/sales, follow these steps:

1 Read the cds_attributes file to check that the attribute dirregion is listed,
as shown in the following display:

2 Enter the following command to remove the value 1 from the attribute
dirregion:

dcecp> directory modify /.:/sales -remove {dirregion 1}

directory operations

Returns a list of the operations supported by the directory object. The syntax
is as follows:

directory operations

OID LABEL SYNTAX

1.3.22.1.3.91 myname char

OID LABEL SYNTAX

1.3.22.1.3.66 dirregion small

152 Gradient DCE for Tru64 UNIX Reference Guide
The directory operations command takes no arguments, and returns a list of
the available operations for the directory object. The order of the elements is
alphabetical with the exception that help and operations are listed last.

Privileges Required

No special privileges are needed to use the directory operations command.

Examples

dcecp> directory operations
add create delete list merge modify remove show synchronize help operations

directory remove

Deletes a child pointer from the directories specified. The syntax is as
follows:

directory remove directory_name_list -member child_pointer_list

Options

-member child_pointer_list

This required option names the child pointers to be removed from each
directory in the operation argument.

The directory remove operation deletes a child pointer from the directories
specified. The directory_name_list argument is a list of names of one or more
directories to be operated on. The required -member option allows you to list
the child pointers to be removed from each specified directory. The operation
returns an empty string on success.

The child_pointer_list argument value of the required -member option is a
list of one or more child pointers (specified as only one RDN each) to be
removed from each directory in the argument.

This command is needed only to delete a child pointer that accidentally
remains after the child directory is deleted. Normally child pointers are
removed internally by CDS when deleting directories with the directory
delete command.

Privileges Required

You must have d (delete) permission to the child pointer or A (Admin)
permission to the parent directory.

Examples

The following command deletes the child pointer that accidentally remains
after the /.:/sales/east directory is deleted:

dcecp> directory remove /.:/sales -member east

Chapter 5 Command Reference Pages 153
directory show

Returns a list of attributes for the specified directories and optionally, their
specified contents. The syntax is as follows:

directory show directory_name_list
[-member child_pointer_list | -replica -clearinghouse clearinghouse_name]
[-schema]

Options

-member child_pointer_list

The optional -member option takes one required value which is the last
RDN of the child pointer in the directory specified by the operation
argument. The returned list describes the child pointer information for the
specified member stored in the specified directories. This option may not
be combined with the -replica or -clearinghouse option.

-replica

This option specifies that the directory shown is a replica of an existing
directory. If you use the -replica option, you must specify a clearinghouse
with the -clearinghouse option.

-clearinghouse clearinghouse_name

Required with the -replica option, the -clearinghouse option names the
clearinghouse where the named replica exists.

-schema

This option returns whether an attribute is single or multivalued. This is
specific to a directory, meaning that the same attribute can be
single-valued on one directory and multivalued on another directory. This
option may not be used with other options.

The directory show operation returns a list of attributes for the specified
directories and optionally, their specified contents. The directory_name_list
argument is a list of one or more names of directories to be operated on. When
used without any options, this command returns the attributes associated with
the named directories. If more than one directory is specified, then all the
arguments are grouped together in one list. The order of the returned
arguments is the lexical order of the object indentifiers (OIDs) of each
attribute for each directory.

You can request attributes of specific replicas in specific clearinghouses by
using the -replica and -clearinghouse options. Alternatively, you can request
attributes of child pointers by using the -member option.

Privileges Required

You must have r (read) permission to the directories named in the argument
list.

154 Gradient DCE for Tru64 UNIX Reference Guide
Examples

The following example shows the attributes for the /.:/depts/radiology
directory:

dcecp> directory show /.:/depts/radiology
{RPC_ClassVersion
 {01 00}}
{CDS_CTS 1994-07-08-17:01:03.115+00:00I0.000/00-00-c0-8a-df-56}
{CDS_UTS 1994-07-08-19:36:31.719+00:00I0.000/00-00-c0-8a-df-56}
{CDS_ObjectUUID 2df03af4-9a76-11cd-8f2b-0000c08adf56}
{CDS_Replicas
 {{CH_UUID b32648c6-928d-11cd-b4b5-0000c08adf56}
 {CH_Name /.../ward_cell.osf.org/pmin17_ch}
 {Replica_Type Master}
 {Tower ncacn_ip_tcp:130.105.1.227[]}
 {Tower ncadg_ip_udp:130.105.1.227[]}}}
{CDS_AllUpTo 1994-07-08-17:01:05.945+00:00I0.000/00-00-c0-8a-df-56}
{CDS_Convergence medium}
{CDS_ParentPointer
 {{Parent_UUID 8eeb369a-9a4b-11cd-8f2b-0000c08adf56}
 {Timeout
 {expiration 1994-07-09-17:13:31.959}
 {extension +1-00:00:00.000I0.000}}
 {myname /.../ward_cell.osf.org/depts/radiology}}}
{CDS_DirectoryVersion 3.0}
{CDS_ReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1994-07-08-17:01:05.945+00:00I0.000/00-00-c0-8a-df-56}
{CDS_LastUpdate 1994-07-08-19:36:31.719+00:00I0.000/00-00-c0-8a-df-56}
{CDS_RingPointer b32648c6-928d-11cd-b4b5-0000c08adf56}
{CDS_Epoch 2f617aa6-9a76-11cd-8f2b-0000c08adf56}
{CDS_ReplicaVersion 3.0}

The following example uses the -schema option to show whether the
attributes for the /.:/depts/radiology directory are single-valued or
multivalued:

dcecp> directory show /.:/depts/radiology -schema
{RPC_ClassVersion multi}
{CDS_CTS single}
{CDS_UTS single}
{CDS_ObjectUUID single}
{CDS_Replicas multi}
{CDS_AllUpTo single}
{CDS_Convergence single}
{CDS_ParentPointer multi}
{CDS_DirectoryVersion single}
{CDS_ReplicaState single}
{CDS_ReplicaType single}
{CDS_LastSkulk single}
{CDS_LastUpdate single}
{CDS_RingPointer single}
{CDS_Epoch single}
{CDS_ReplicaVersion single}

Chapter 5 Command Reference Pages 155
directory synchronize

Initiates an immediate skulk of the directories specified. The syntax is as
follows:

directory synchronize directory_name_list

The directory synchronize operation initiates an immediate skulk of the
directories specified. The directory_name_list argument is a list of names of
one or more directories to be operated on. Skulks begin immediately in
sequence. The command does not return until all skulks complete. The
operation returns an empty string on success.

Privileges Required

You must have A (Admin), w (write), i (insert), or d (delete) permission to
the directory. The server principal needs A (Admin), r (read), and w (write)
permission to the directory.

Examples

The following command begins a skulk on the /.:/admin directory:

dcecp> directory synchronize /.:/admin

Related Information

Commands: dcecp(8dce), clearinghouse(8dce), link(8dce), object(8dce),
add directory(8cds), create directory(8cds), delete directory(8cds), list
directory(8cds), remove directory(8cds), set directory(8cds), show
directory(8cds).

ldap_addcell(8dce)

Name
ldap_addcell - Registers DCE cell information in a server that supports
LDAP.

Synopsis
ldap_addcell -h ldap_server -a authentication_DN -p password
[-o object_class, object_class...] | [-d]

Options
-h ldap_server

The name of the LDAP server targeted to hold the binding.

-a authentication_DN

The distinguished name (DN), specified in LDAP name syntax, that is to
be authenticated for successive operations to use.

-p password

156 Gradient DCE for Tru64 UNIX Reference Guide
The password that is used to authenticate the distinguished name (DN).

-o object_class, object_class...

Value or values of the attribute object_class for the entry being created or
modified. If you are listing more than one object_class value, you must
separate them with commas. If no object_class value is specified, it is
assumed that the object exists and an attempt is made to modify its
attributes, CDS_CELL and CDS_REPLICAS.

If this attempt fails, another attempt is made with the addition of the
object_class value of dceCellInfoO. “dceCellInfoO” is the recommended
auxilliary object class for the CDS_CELL and CDS_REPLICAS
attributes

-d

Deletes the DCE cell information attributes from the entry in the directory.
It does not remove the directory entry.

Description
The ldap_addcell command registers DCE cell information in a server that
supports LDAP. It returns a zero (0) on success and a one (1) on error.

Privileges Required

You must log in as superuser (root) to run the ldap_addcell command.

Examples
The following ldap_addcell examples assume the following:

■ The ldap server machine name is mymachine.mycity.mycompany.com.
■ gdatest is a user that has write access to the ldap server.
■ gdatest is also the password of the user gdatest.
■ An organizational unit is allowed to contain the auxiliary object

dceCellInfo.
■ The ldap server does schema checking.

Example 1 shows the normal creation of the cell bindings in the ldap server.

ldap addcell -h mymachine.mycity.mycompany.com -a \
"cn=gdatest, ou=mycity, o=mycompany, c=mycountry" \
-p "gdatest" -o organizationalUnit, dceCellInfo

Example 2 shows the deletion of the CDSCELL and CDSREPLICAS
attributes.

ldap addcell -h mycountry.mycity.mycompany.com -a \
"cn=gdatest, ou=mycity, o=mycompany, c=mycountry" \
-p "gdatest" | -d

Example 3 shows the changing of the CDSCELL and CDSREPLICAS
attributes in an object that exists.

Chapter 5 Command Reference Pages 157
ldap addcell -h mycountry.mycity.mycompany.com -a \
"cn=gdatest, ou=mycity, o=mycompany, c=mycountry" \
-p "gdatest"

Environment Variables Used
Each parameter of the ldap_addcell command has a corresponding
environment variable, which is used when the corresponding parameter is not
present on the ldap_addcell command invocation. The ldap_addcell
parameters and the corresponding environment variables are as follows:

If the cell entry is already registered, the CDSCELL and CDSREPLICAS
attributes are replaced with new values for this cell.

Related Information
None

gdad(8cds)

Name
gdad - Starts the global directory agent (GDA) daemon.

Synopsis
gdad [-b][-d routing][-D][-r resolve.conf file][-u][-w route]\
[-x][-l]| [-h addr_LDAP_server [port] -a authentication_DN \
-p password_for authentication_DN]| [-h addr_LDAP_server [port]]

Options
-b

Disables the use of DNS as the global directory service.

-d routing

Sets the debug routing. This option is for debugging use only.

-D

Sets up a debugging condition that refuses to let the gdad process fork.

-r resolve.conf file

-h LDAP_SERVER

-a LDAP_AUTH_DN

-p LDAP_AUTH_DN_PW

-o LDAP_OPJECT_CLASS

158 Gradient DCE for Tru64 UNIX Reference Guide
Specifies the file name of the resolve configuration file. The default is /etc/
resolv.conf.

-s named.ca file

Indicates the file name of the bind server namec data file. The default is /
etc/named.data.

-u

Prevents gdad from updating the GDA parent pointer on /.:. This option is
for debugging use only.

-w route

Routes serviceability messages.

-l

Disables the use of LDAP as global directory service.

-h addr_LDAP_server port

Specifies the address of the LDAP server in which DCE cell information is
registered. The value addr_LDAP_server and port is the port on which
the LDAP server is listening. This is needed if the default port [389] is not
used. Alternatively, the host can be specified as an IP address in dotted
decimal format. The -h option is required when -l is not present.

-a authentication_DN

Authenticates a distinguished name (DN).

-p password_for authentication_DN

Specifies the password used to authenticate the distinguished name (DN).

-x

Disables X.500 name resolution.

Description
The gdad command starts the Global Directory Agent (GDA) daemon. The
GDA enables intercell communication, serving as a connection to other cells
through the global environment.

Privileges Required

You must log in as superuser (root).

Notes
This command is ordinarily executed by a DCE configuration or startup
script. Use this command interactively only when a gdad process fails to start
automatically after a reboot, or if you want to restart the GDA daemon after
disabling it to perform a backup or do diagnostic work on the host system.

Chapter 5 Command Reference Pages 159
Examples
To start the gdad process, follow these steps:

1 Log in to the system as superuser (root).

2 Verify that the dced and gdad processes are running.

3 3. Enter the following command to restart the gdad process:

gdad

To stop the GDA, enter the following command:

kill pid

where pid is the process identifier of the gdad process.

Related Information
Books: DCE Administration Guide - Core Components

dtsd(8dts)

Name
dtsd - Restarts the DTS daemon

Synopsis
dtsd -s [server options][common options]
dtsd -c [common options]

Server Options
-k courier

Runs dtsd as a courier.

-k noncourier

Runs dtsd as a noncourier.

-o

When enabling as a server, set the clock immediately. Equivalent to the
command enable set clock true in dtscp or to the command dcecp dts
activate -abruptly.

-g

Runs dtsd as a global server.

-s

Runs dtsd as a server. The default is backup courier and local server. -s
or -c must be on the command line to specify server type.

160 Gradient DCE for Tru64 UNIX Reference Guide
-c

Runs dtsd as a clerk. -s or -c must be on the command line to specify
server type.

Common Options
-d

Debug mode. The command runs in the foreground.

-w serviceability

See the svcroute(5dce) reference page for the full description of the
appropriate format for this entry. Only the three-field format,
severity:how:where is used. An example is:

FATAL:TEXTFILE:/dev/console

-m

Accept timing messages in DLI. (Default is RPC only.)

Description
The dtsd command invokes the DTS daemon (server or clerk process). This
command is usually executed as part of the overall DCE startup script,
dcesetup.

You can enter the command manually under the following conditions:

■ If a DTS daemon fails to start automatically upon reboot
■ If you want to restart a daemon that you shut down to perform a backup or

do diagnostic work

In normal rebooting, the rc.dce script automatically provides arguments
appropriate to the choice of configuration options.

The command line options shown here can also be provided to dced as part of
the fixed configuration strings, if dced is configured to automatically start
dtsd.

If dtsd is started with no arguments (other than -d and -w), then the server
must be started with dcecp. The following example configures a local server:

dcecp> dts configure -notglobal
dcecp> dts activate

Privileges Required

DTS runs as the host machine principal, which is usually root. See the
security reference section for information about principals.

Chapter 5 Command Reference Pages 161
Notes
Use dtsd interactively only when troubleshooting; otherwise use the /sbin/
rc3.d/S66dce script to start the DTS daemon. On some systems the superuser
is associated with the machine principal.

Examples
To restart the daemon, follow these steps:

1 Log into the system as superuser (root).

2 Use the ps command to make sure that dced and cdsadv are running. (The
DCE daemon provides the endpoint mapping and security services, and
cdsadv provides CDS.)

3 Use the following command to restart the dts daemon as a clerk:

dtsd -c

To restart the dts daemon as a server use the following command:

dtsd -s

To restart the dts daemon as a global server, setting the clock on startup,
use the following command:

dtsd -s -g -o

Related Information
Commands: dtscp (8dts), dtsdate (8dts), dcecp (8dce).

Files: svcroute(5dce).

Books: DCE Administration Guide - Core Components

randd(8sec)

Name
randd - Stops and restarts the RAND daemon

Synopsis
randd

Description
The randd command is executed as part of the overall DCE startup script,
dcesetup. Super (root) users can stop and restart the RAND daemon. The
daemon, which has a low priority, takes over idle central processing unit (cpu)
resources, which it uses to produce random numbers. The random numbers

162 Gradient DCE for Tru64 UNIX Reference Guide
are stored in memory until requested by processes, often security processes. If
the daemon is not present, security daemons calculate the random numbers as
they did in the past.

Privileges Required

Superuser (root) priviledge is required.

Examples
To restart the daemon, follow these steps:

1 Log into the system as superuser (root).

2 Use the ps command to check whether the randd is running.

ps auxw | grep randd

Related Information
None

	Notices
	Preface
	Intended Audience
	Overview of this Guide
	Conventions
	Related Documentation
	Contacting Entegrity Solutions
	Obtaining Technical Support
	Obtaining Additional Technical Information
	Obtaining Additional Documentation

	dcesetup Reference Page
	Description
	Permissions Required

	idl Reference Page
	Name
	Synopsis
	Arguments
	Description
	Restrictions
	Cautions
	Files
	Examples
	Related Information

	XDS Directory Services Reference Pages
	ds_intro(3xds)
	Name
	Syntax
	Description
	DCE Notes

	ds_abandon(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	DCE Notes
	Return Value
	Errors
	Example

	ds_add_entry(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	DCE Notes
	Return Value
	Errors
	Examples
	Example 1
	Example 2

	ds_bind(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	DCE Notes
	Return Value
	Errors
	Example

	ds_compare(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	DCE Notes
	Return Value
	Errors
	Examples
	Example 1
	Example 2

	ds_initialize(3xds)
	Name
	Syntax
	C Binding
	Description
	Return Value
	Errors
	Example

	ds_list(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	DCE Notes
	Return Value
	Errors
	Examples
	Example 1
	Example 2

	ds_modify_entry(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	DCE Notes
	Return Value
	Errors
	Examples
	Example 1
	Example 2

	ds_modify_rdn(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	DCE Notes
	Return Value
	Errors
	Example

	ds_read(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	DCE Notes
	Return Value
	Errors
	Examples
	Example 1
	Example 2
	Example 3

	ds_receive_result(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	DCE Notes
	Return Value
	Errors
	Example

	ds_remove_entry(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	DCE Notes
	Return Value
	Errors
	Examples
	Example 1
	Example 2

	ds_search(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	DCE Notes
	Return Value
	Errors
	Examples
	Example 1
	Example 2

	ds_shutdown(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Value
	Errors
	Example

	ds_unbind(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Value
	Errors
	Example

	ds_version(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Value
	Errors
	Example

	dsX_trace_object(3xds)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Errors
	Example

	XDS Object Management Reference Pages
	om_intro(3xom)
	Name
	Syntax
	Description

	om_copy(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	om_copy_value(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	om_create(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	om_decode(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	om_delete(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	om_encode(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	om_get(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	om_instance(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	om_put(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	om_read(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	om_remove(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	om_write(3xom)
	Name
	Syntax
	C Binding
	Arguments
	Description
	Return Values
	Examples

	Command Reference Pages
	cdscache(8dce)
	Name
	Synopsis
	Arguments
	Description
	Errors
	Operations
	cdscache create
	cdscache delete
	cdscache discard
	cdscache dump
	cdscache help
	cdscache operations
	cdscache show

	Related Information

	clearinghouse(8dce)
	Name
	Synopsis
	Arguments
	Description
	Attributes
	Counters

	Operations
	clearinghouse catalog
	clearinghouse create
	clearinghouse delete
	clearinghouse disable
	clearinghouse help
	clearinghouse initiate
	clearinghouse modify
	clearinghouse operations
	clearinghouse repair
	clearinghouse show
	clearinghouse verify

	Related Information

	directory(8dce)
	Name
	Synopsis
	Arguments
	Description
	Attributes
	Operations
	directory add
	directory create
	directory delete
	directory help
	directory list
	directory merge
	directory modify
	directory operations
	directory remove
	directory show
	directory synchronize

	ldap_addcell(8dce)
	Name
	Synopsis
	Options
	Description
	Privileges Required

	Examples
	Environment Variables Used
	Related Information

	gdad(8cds)
	Name
	Synopsis
	Options
	Description
	Privileges Required

	Notes
	Examples
	Related Information

	dtsd(8dts)
	Name
	Synopsis
	Server Options
	Common Options
	Description
	Privileges Required

	Notes
	Examples
	Related Information

	randd(8sec)
	Name
	Synopsis
	Description
	Privileges Required

	Examples
	Related Information

