
Gradient DCE for Tru64TM UNIX

Product Guide

Software Version 4.2

Notices

Gradient DCE for Tru64 UNIX Product Guide - Software Version 4.2 - Revised November 2001

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A
SEPARATE LICENSE AGREEMENT, AND MAY BE USED AND COPIED ONLY IN ACCORDANCE
WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE COPYRIGHT
NOTICE BELOW. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN
WITH ENTEGRITY SOLUTIONS CORPORATION AND OR ITS LICENSOREES.

The information contained in this document is subject to change without notice.

ENTEGRITY SOLUTIONS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
SOFTWARE, DOCUMENTATION AND THIS MATERIAL, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Entegrity Solutions shall not be liable for errors contained herein, or for any direct or indirect, incidental,
special or consequential damages in connection with the furnishing, performance, or use of this material.

Use, duplication or disclosure by the Government is subject to restrictions as set forth in Entegrity’s
standard commercial license agreement and is commercial computer software and documentation pursuant
to Section 12.212 of the FAR and 227.7202 subparagraph (c) (1) (i) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

Entegrity, Entegrity Solutions, and Gradient are registered trademarks of Entegrity Solutions Corporation.
NetCrusader is a trademark of Entegrity Solutions Corporation.

Compaq, TruCluster,and AlphaServer are registered trademarks of Compaq Computer Corporation. Tru64
is a trademark of Compaq Computer Corporation. The the names of other Compaq products referenced
herein are trademarks or service marks, or registered trademarks or service marks, of Compaq Computer
Corporation.

Kerberos is a trademark of Massachusetts Institute of Technology. UNIX is a registered trademark of The
Open Group. The Open Group is a trademark of The Open Group. DCE is copyrighted by The Open Group
and other parties. Other products mentioned in the document are trademarks or registered trademarks of
their respective holders.

Portions of this documentation were derived from materials provided by Entrust Technologies Limited.

Copyright © 1991–2001 The Open Group

Copyright © 2001 Entegrity Solutions Corporation & its subsidiaries.

All Rights Reserved.

Entegrity Solutions Corporation, 2077 Gateway Place, Suite 200, San Jose, CA 95110, USA

Contents
Notices 2

Preface 11
Intended Audience 11
Overview of this Guide 11
Conventions 11
Related Documentation 12
Contacting Entegrity Solutions 13
Obtaining Technical Support 13
Obtaining Additional Technical Information 14
Obtaining Additional Documentation 14

Chapter 1 Gradient DCE for Tru64 UNIX 15

1.1 Overview of the Software 15
1.2 Kit Contents 15

1.2.1 Runtime Services (RTS) Subset 16
1.2.2 Cell Directory Server Subset 17
1.2.3 Security Server Subset 17
1.2.4 Application Developer’s Kit Subset 18
1.2.5 Online Manual Pages Subset 18
1.2.6 Distributed File Service Runtime Services Subset 18
1.2.7 DFS Kernel Binary Subset 19
1.2.8 DFS Utilities Subset 19
1.2.9 DFS Online Manual Pages 19
1.2.10 NFS-DFS Secure Gateway Server 19

1.3 Platforms and Networks Supported by Gradient DCE for Tru64 UNIX 19
1.3.1 Interoperating with PCs 19
1.3.2 Network Support 20

1.4 Threads 20
1.5 Enhancements to OSF DCE 21

1.5.1 CDS Enhanced Browser 21
1.5.2 IDL Compiler Enhancements 21
1.5.3 The RPC Event Logger Utility 21
1.5.4 Name Service Interface Daemon for Microsoft RPC 21
1.5.5 Security Integration Architecture 22
1.5.6 RPC Support of DECnet/OSI (Phase V) 22
1.5.7 DTS Support of DECnet/OSI (Phase V) 22
1.5.8 CDS Cache Clerk Enhanced Memory Management 22
1.5.9 CDS Preferencing 22
1.5.10 DTS Support for DLI (Data Link Interface) and RPC 22
1.5.11 LDAP Directory Service 22
1.5.12 New localrpc Protocol Sequence 22
1.5.13 Kerberos 5-Compliant Utilities 23

4 NetCrusader/DCE Product Guide
1.5.14 DCE in a Tru64 UNIX TruCluster Application Server Environment 23
1.6 Diskless Support Removed from OSF DCE 23
1.7 Restrictions Using Gradient DCE for Tru64 UNIX 23

1.7.1 DCE DFS Restrictions and Limitations 23
1.7.2 Utility Restriction 24
1.7.3 DIGITAL X.500 Restrictions 24

Chapter 2 Interoperability and Compatibility 31

2.1 Overview of Compatibility with Other DCE Systems 31
2.2 Overview of Interoperability with Other DCE Systems 31
2.3 DCE DFS Interoperability and Compatibility 31
2.4 CDS and DECnet/OSI DECdns Compatibility 31
2.5 Interoperability with DECnet Phase IV and DECnet/OSI 31
2.6 Interaction Between DCE DTS and DECnet/OSI DECdts 32

2.6.1 Changing the Default for DCE DTS to RPC 34

Chapter 3 Security Integration Architecture 35

3.1 Overview of SIA 35
3.2 Benefits of SIA 35
3.3 Using SIA 36
3.4 Using the SIA Configuration Program 36
3.5 How DCE Security Affects the Security-Sensitive Commands and Routines 37

3.5.1 Login-Related Commands 37
3.5.1.1 login Command 38
3.5.1.2 The su Command 38

3.5.2 Registry Information Change Commands 40
3.5.3 Registry Information Inquiry Routines 41

3.6 Using DCE SIA With the Tru64 UNIX Enhanced Security Option 42
3.7 Performance Considerations for DCE SIA 44

3.7.1 Performance of getpwent() and getgrent() Functions 44
3.7.2 The Impact of DCE SIA on Login Performance 44
3.7.3 UID Management 44
3.7.4 Executables in /sbin 45
3.7.5 rlogin 45
3.7.6 Changing root Password 45
3.7.7 Credentials Obtained for Intercell Login are Poorly Protected 45

3.8 Performance Considerations for Registry Replication 46
3.9 Group Override and the group_override File 47

3.9.1 Use of /opt/dcelocal/etc/group_override 47
3.9.2 Effect of Local Override on Group Data 47

3.10 Additional Information 47

Chapter 4 Introduction to the
DCE Directory Service 49

4.1 Overview of DCE Directory Service 49

Contents 5
4.2 How the DCE Components Use the DCE Directory Service 49
4.3 How to Use DCE Directory Services 50
4.4 Directory Services and the Cell Environment 51
4.5 How Cells Determine Naming Environments 54

4.5.1 Global Names 54
4.5.2 Hierarchical Cell Names 55

4.6 Alias Cell Names 56
4.7 Cell-Relative Naming in a Standalone Cell 57
4.8 Cell-Relative Naming in a Hierarchy of Cells 58

4.8.1 Local Filenames 58
4.8.2 An In-Depth Analysis of DCE Names 58

4.9 CDS Names 58
4.9.1 Names 59
4.9.2 LDAP Names 62
4.9.3 DNS Names 62
4.9.4 Names Outside of the DCE Directory Service 64

Chapter 5 Cell Directory Service Enhancements 65

5.1 Overview of CDS Directory and Clearinghouse Operations 65
5.1.1 Reorganizing Existing CDS Directory Replicas 65
5.1.2 Creating Additional CDS Directory Replicas 66

5.2 Enhanced Browser 68
5.2.1 Displaying the Namespace 68
5.2.2 Filtering the Namespace Display 68

5.3 CDS Enhanced Cache Memory Control 69
5.4 CDS Clearinghouse Preferences 69

Chapter 6 LDAP Capabilities 71

6.1 Overview of LDAP 71
6.2 How NSI Works 72

6.2.1 LDAP Syntax 72
6.2.2 NSI Configuration 73
6.2.3 Configuration File Format and Syntax 73
6.2.4 NSI Call Categorization 74
6.2.5 Name Service Selection 75
6.2.6 Name Translation from CDS to LDAP 76

6.3 Using NSI 76
6.3.1 Modifying Runtime Configuration Options 76
6.3.2 Application Programming 77
6.3.3 NSI Known Limitations 78

6.3.3.1 Security 78
6.3.3.2 Schema 78
6.3.3.3 Schema for Storing RPC Entries in a Directory Service 78

6.3.4 Objects and Attributes 79
6.3.4.1 Notation 80
6.3.4.2 Object Naming 80
6.3.4.3 Object Definitions 80

6 NetCrusader/DCE Product Guide
6.3.4.4 RPC Entry 80
6.3.4.5 RPC Group 81
6.3.4.6 RPC Profile 81
6.3.4.7 RPC Server 82
6.3.4.8 Attribute Definitions 82
6.3.4.9 The rpcNsObjectID 82
6.3.4.10 The rpcNsGroup 82
6.3.4.11 The rpcNsPriority 83
6.3.4.12 The rpcNsProfileEntry 83
6.3.4.13 The rpcNsInterfaceID 83
6.3.4.14 The rpcNsAnnotation 83
6.3.4.15 The rpcNsCodeset 84
6.3.4.16 The rpcNsBindings 84
6.3.4.17 The rpcNsTransferSyntax 84

6.3.5 Usage Model 84
6.3.5.1 Relative Names 85

6.4 How GDA Works 85
6.4.1 Cell Naming 86
6.4.2 Security 86
6.4.3 Registration Utility 86

Chapter 7 Managing Intercell Naming 87

7.1 Overview of Intercell Naming 87
7.2 How the Global Directory Agent Works 87
7.3 Managing the Global Directory Agent 90
7.4 Enabling Other Cells to Find Your Cell 91

7.4.1 Defining a Cell in the Domain Name System 92
7.4.2 Defining a Cell in the Global Directory Service 93
7.4.3 Defining a Cell in an LDAP Server 94

Chapter 8 DCE Distributed File Service 97

8.1 Variation from OSF DFS 97
8.2 Using Tru64 UNIX ACLs 97

8.2.1 Tru64 UNIX ACL Limitations 98
8.2.2 DCE Responses to Tru64 UNIX ACL Operations 98
8.2.3 Mapping between DCE ACLs and Tru64 UNIX ACLs 99
8.2.4 Disabling ACL Operations 100

8.3 NFS-DFS Secure Gateway Server Administration 100
8.4 DFS Backup 100
8.5 Solutions to Common Problems with DCE DFS 100

8.5.1 Running Commands Requiring the setuid Feature 100
8.5.2 Running cron Jobs with DCE Credentials 100

Chapter 9 Compiling and Linking Applications 103

9.1 Overview of the Command Format 103

Contents 7
Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 105

10.1 Overview of Enhancements 105
10.2 Local RPC Protocol Sequence 105

10.2.1 Using localrpc with well-known endpoints 105
10.2.2 Affected RPC API calls 106
10.2.3 Suppressing localrpc (or any other protseq) 107
10.2.4 Permissions of localrpc Socket 107
10.2.5 Added dced Support 108
10.2.6 Compatibility Issues 108

10.3 DTSD Timing and Timeout Changes 108
10.3.1 Affected RPC API Call 109

10.4 Using Environment Variables to Restrict Network Interfaces and Addresses 109
10.5 IDL and ACF Enhancements 110

10.5.1 Automatic Binding Enhancement 110
10.5.2 Enumeration in IDL 110
10.5.3 The client_memory ACF Attribute 110

10.6 IDL Compiler Enhancements 111
10.6.1 The -standard Build Option 111
10.6.2 Stub Auxiliary Files 111
10.6.3 Generating Application Templates Using the IDL Compiler 112
10.6.4 Example of IDL Template Feature 113

10.6.4.1 Example Interface Definition File 113
10.6.4.2 Example Manager Template 114
10.6.4.3 Creating the Executable Manager Program 115

10.6.5 C++ Application Support 115

Chapter 11 Application Debugging with the RPC Event Logger 117

11.1 Overview of Debugging Support 117
11.2 Introduction to the RPC Event Logging Facility 117
11.3 Generating RPC Event Logs 120

11.3.1 Enabling Event Logging 121
11.3.2 Using the -trace Option 121
11.3.3 Combining Event Logs 122
11.3.4 Disabling Event Logging 124

11.4 Using Environment Variables and the Log Manager to Control
Logging Information 124

11.4.1 Controlling Logged Events with Environment Variables 125
11.4.2 Controlling Logged Events with the RPC Log Manager 125

11.5 Using the -trace Option, Environment Variables, and the Log Manager Together 128
11.6 Using Event Logs to Debug Your Application 132
11.7 Event Names and Descriptions 133
11.8 Summary 135

Chapter 12 Developing Distributed Applications with FORTRAN 137

12.1 Overview of Applications with FORTRAN 137
12.2 Interoperability and Portability 137

8 NetCrusader/DCE Product Guide
12.3 Remote Procedure Calls Using FORTRAN — Example 138
12.3.1 Where to Obtain the Example Application Files 138
12.3.2 The Interface File and Data File (payroll.idl and payroll.dat) 139
12.3.3 Compiling the Interface with the IDL Compiler 140
12.3.4 The Client Application Code for the Interface (print_pay.for) 142
12.3.5 The Server Initialization File (server.c) 143
12.3.6 The Server Application Code for the Interface (manager.for) 145
12.3.7 Client and Server Bindings 146
12.3.8 Building the Example (Makefile.unix) 146
12.3.9 Running the Example 148

12.4 Remote Procedure Calls Using FORTRAN — Reference 148
12.4.1 The FORTRAN Compiler Option 149
12.4.2 Restrictions on the Use of FORTRAN 149
12.4.3 IDL Constant Declarations 150
12.4.4 Type Mapping 151
12.4.5 Operations 152

12.4.5.1 Parameter Passing by Reference 153
12.4.5.2 Function Results 153

12.4.6 Include Files 153
12.4.7 The nbase.for File 154
12.4.8 IDL Attributes 154

12.4.8.1 Binding Handle Callout 154
12.4.8.2 ACF file 155
12.4.8.3 Generated header file 155
12.4.8.4 Generated client stub 155
12.4.8.5 Binding callout routine 155
12.4.8.6 Error handling 156
12.4.8.7 Predefined binding callout routine 156
12.4.8.8 The transmit_as Attribute 157
12.4.8.9 The string Attribute 157
12.4.8.10 The context_handle Attribute 158
12.4.8.11 The Array Attributes on [ref] Pointer Parameters 158

12.4.9 ACF Attributes 158
12.4.9.1 The implicit_handle ACF Attribute 158
12.4.9.2 The represent_as ACF Attribute 158

Chapter 13 Example Programs 159

13.1 Overview of Remote Procedure Call Programs 159
13.2 RPC Test Program #1 160
13.3 RPC Test Program #2 161
13.4 RPC Test Program #3 162
13.5 Book Distributed Calendar Program 163
13.6 The Time Operations Sample Application 164

13.6.1 Overview 164
13.6.2 Building timop_svc 164
13.6.3 Setting Up to Run timop_svc 165
13.6.4 timop_svc Message Catalog 166
13.6.5 Running the timop_svc Server 166

Contents 9
13.6.6 Running the timop_svc Client 167
13.6.7 Sample Server Output 167
13.6.8 Stopping timop_svc 168
13.6.9 timop_svc Server Options 168
13.6.10 timop_svc Client Options 169
13.6.11 timop_svc Principal And Keytab Names 170
13.6.12 timop_svc Debug Message Levels 170

13.7 Microsoft RPC Phonebook Program 170
13.7.1 Source Files for the phnbk Example 171
13.7.2 Building the Tru64 UNIX phnbk Client and Server Programs 172
13.7.3 Starting and Stopping the phnbk Server 172
13.7.4 Starting and Stopping the phnbk Client Program 172

13.8 The Echo Example Program 173
13.9 Time Provider Example Programs 175
13.10 The Serviceability API Sample Program 175

13.10.1 Building the Program 175
13.11 The Generic Sample Application 176

13.11.1 Building the Sample Application 176
13.11.2 Installing the Sample Application 176
13.11.3 Running the Sample Application 178

13.11.3.1 Running the Client 179
13.11.4 What the Sample Application Does 179
13.11.5 Viewing the Server ACL 180
13.11.6 Notes 180

13.12 Object Oriented idl Programs 180
13.12.1 Preparing to Run the Example Programs 180
13.12.2 The account Example Program 181
13.12.3 The accountc Example Program 182
13.12.4 The card Example Program 182
13.12.5 The stack Example Program 183

Index 185

Preface
Intended Audience
The audience for this guide includes the following:

■ Experienced programmers who want to write client/server applications.
■ Experienced programmers who want to port existing applications to DCE.
■ System managers who manage the distributed computing environment.
■ Users who want to run distributed applications.

Overview of this Guide
The Gradient® DCE for Tru64™ UNIX® Product Guide provides users of the
Distributed Computing Environment (DCE) with supplemental information
necessary to use Gradient DCE. This guide is best used with the documents
listed under Related Documentation .

Gradient DCE for Tru64 UNIX v4.0 is a layered product on the Tru64 UNIX
Version 5.0, 5.0a, and 5.1operating systems. It is a compatible upgrade of
DCE for Tru64 UNIX Version 3.0.. It consists of a full DCE implementation
as defined by The Open Group (TOG). This software includes these
components:

■ Remote Procedure Call (RPC)
■ Cell Directory Service (CDS)
■ Distributed Time Service (DTS)
■ DCE Security
■ DCE Distributed File Service (DFS, based on DCE Release 1.2.2)
■ Lightweight Directory Access Protocol (LDAP)

NOTE: The products named Gradient DCE for Tru64 UNIX v3.1 (and higher),
Digital DCE v3.1, and Compaq DCE v3.1 provide essentially the same
features; however, only Gradient DCE for Tru64 UNIX functions on the
Tru64 UNIX v5.x operating system. Although other company names may be
referenced within this document (Digital, Compaq, or Gradient
Technologies), this DCE product is now produced and supported by Entegrity
Solutions® Corporation.

Conventions
The following conventions are used in this guide:

12 Gradient DCE for Tru64 UNIX Product Guide
Related Documentation
The following documents are available in HTML and Acrobat format on the
Entegrity software CD:

■ Gradient DCE for Tru64 UNIX Installation and Configuration Guide
Describes how to install DCE and configure and manage your DCE cell.

■ Gradient DCE for Tru64 UNIX Product Guide (this guide) Provides
supplemental documentation for Gradient DCE for Tru64 UNIX
value-added features.

■ Gradient DCE for Tru64 UNIX Reference Guide Provides supplemental
reference information for Gradient DCE for Tru64 UNIX value-added
features.

■ Gradient DCE for Tru64 UNIX Release Notes Lists new features, bug
fixes, and known problems and restrictions.

The following OSF DCE Release 1.2.2 technical documentation is provided
on the Entegrity software CD in PDF format:

■ Introduction to OSF DCE Contains a high-level overview of DCE
technology including its architecture, components, and potential use.

■ OSF DCE Administration Guide - Introduction Describes the issues
and conventions concerning DCE as a whole system and provides
guidance for planning and configuring a DCE system.

■ OSF DCE Administration Guide - Core Components Provides specific
instructions on how core components should be installed and configured.

UPPERCASE

and lowercase

The operating system differentiates between lowercase and
uppercase characters. Literal strings that appear in text, examples,
syntax descriptions, and function definitions must be typed exactly as
shown.

bold Boldface type in interactive examples indicates typed user input.
In general text reference, bold indicates file names and commands.

italics Italic type indicates variable values, placeholders, and function
argument names.

special type Indicates system output in interactive and code examples.

% The default user prompt is your system name followed by a right
angle bracket (>). In this manual, a percent sign (%) is used to
represent this prompt.

A number sign (#) represents the superuser prompt.

Ctrl/x This symbol indicates that you hold down the Ctrl key while pressing
the key or mouse button that follows the slash.

<Return> Refers to the key on your terminal or workstation that is labeled with
Return or Enter.

Preface 13
■ OSF DCE Application Development Guide - Introduction and Style Guide
 Serves as a starting point for application developers to learn how to
develop DCE applications.

■ OSF DCE Application Development Guide - Core Components
Provides information on how to develop DCE applications using core
DCE components such as RPC and security.

■ OSF DCE Application Development Guide - Directory Services
Contains information for developers building applications that use DCE
Directory Services.

■ OSF DCE Application Development Reference Provides reference
information for DCE application programming interfaces.

■ OSF DCE Command Reference Describes commands available to
system administrators.

Contacting Entegrity Solutions

Obtaining Technical Support
If you purchased your NetCrusader™ product directly from Entegrity
Solutions Corporation or Gradient Technologies, Inc. you are entitled to 30
days of limited technical support beginning on the day the product is expected
to arrive.

Contact Address Phone/Fax/E-mail

DCE Product and Sales
Information

Entegrity Solutions Corporation
410 Amherst Street, Suite 150
Nashua, NH 03063 USA

E-mail: DCESales@entegrity.com
Web: www.entegrity.com

Telephone and Fax:

United States and Canada
Tel: +1 (603) 882-1306
Tel (US Only): 1-800-525-4343
Fax: +1 (603) 882-6092

All Other Product and Sales
Information Requests

Entegrity Solutions Corporation
2077 Gateway Place, Suite 200
San Jose, CA 95110 USA

E-mail: info@entegrity.com
Web: www.entegrity.com

Telephone and Fax:
Tel: +1 (408) 487-8600
Tel (US Only): 1-866-487-8600
Fax: +1 (408) 487-8610

Technical Support Entegrity Solutions Corporation
Technical Support
2 Mount Royal Ave.
Marlborough, MA 01752 USA

United States and Canada:
Tel: +1 (508) 229-0239
Tel (US Only): 1 (888) 368-3555
Fax: +1 (508) 229-0338

E-mail: support@entegrity.com
http://support.entegrity.com

14 Gradient DCE for Tru64 UNIX Product Guide
You may also purchase a support plan that entitles you to additional services.
You must register prior to receiving this support. For details, refer to the
customer support information package that accompanied your shipment or
refer to the Technical Support area of http://support.entegrity.com. The web
site also contains online forms for easy registration.

If you purchased NetCrusader from a reseller, please contact the reseller for
information on obtaining technical support.

Obtaining Additional Technical Information

Obtaining Additional Documentation
All documentation for your NetCrusader product is provided in electronic
format on the same CD on which the product ships. See the product CD for
information on accessing this documentation.

Documentation for all of Entegrity’s products is available at http://
support.entegrity.com. Enter the Support Web area and click the
Documentation link.

We are always trying to improve our documentation. If you notice any
inaccuracies or cannot find information, please send email to
docs@entegrity.com. We welcome any comments or suggestions.

Contact Address Phone/Fax/Email

The Open Group™
Developer of DCE (Distributed
Computing Architecture)
software and standards.

The Open Group™
29B Montvale Ave
Woburn MA 01801
U. S. A.

Tel: +1 781-376-8200
Fax: +1 781-376-9358

http://www.opengroup.org

C H A PT E R 1

Gradient DCE for Tru64 UNIX
1.1 Overview of the Software
Distributed computing services, as implemented in the Distributed Computing
Environment (DCE), provide an important enabling software technology for
the development of distributed applications. DCE makes the underlying
network architecture transparent to application developers. It consists of a
software layer between the operating system and network interface and the
distributed application. It provides a variety of common services needed to
develop distributed applications, such as name, time, and security services,
and a standard remote procedure call interface.

Gradient® DCE for Tru64™ UNIX® provides a means for application
developers to design, develop, and deploy distributed applications. Gradient
DCE for Tru64 UNIX is based upon OSF® DCE Release 1.2.2.

1.2 Kit Contents
Gradient DCE for Tru64 UNIX consists of the following distributed
computing technologies:

■ DCE Remote Procedure Call (RPC), which allows you to create and run
client/server applications.

■ DCE Cell Directory Service (CDS), which provides location-independent
naming for servers.

■ DCE Distributed Time Service (DTS), which synchronizes time in
distributed network environments.

■ DCE Security Service, which provides secure communications and
controlled access to resources.

■ DCE Distributed File Service (DFS), which provides transparent file
access to a single namespace in a distributed computing environment.

The Gradient DCE for Tru64 UNIX product consists of twelve subsets:

■ Runtime Services (RTS) subset
■ Security Server (SEC) subset
■ Cell Directory Server (CDS) subset
■ Six Distributed File Service (DFS) subsets
■ Application Developer’s Kit (ADK) subset
■ Online Command Reference Manual Pages (MAN) subset

16 Gradient DCE for Tru64 UNIX Product Guide
■ Online Application Developer’s Manual Pages (ADKMAN) subset

The rest of this chapter describes the subsets, additional support, and
restrictions for this product.

1.2.1 Runtime Services (RTS) Subset
You must install the DCE Runtime Services subset on all systems on which
you want to run DCE applications. This subset includes the DCE client
software necessary to run DCE distributed applications and the administrative
tools required to configure and maintain the DCE environment. This subset is
a prerequisite for all the other subsets. For DCE server configurations, you
must install the appropriate subsets described in the following sections. .

Specifically, this subset includes the following components:

■ Remote Procedure Call runtime library

The RPC runtime library includes routines that manage communications
between client and server stubs. The DCE host daemon (dced) maintains
the endpoint map (addresses). The RPC Event Logger (rpclm) is also
provided in this subset.

■ Cell Directory Server (CDS) clerk and CDS advertiser

The CDS clerk (cdsclerk) runs on the client node and serves as an
intermediary between client applications and CDS servers. Clerks learn
about CDS servers by listening to messages sent out by the CDS advertiser
(cdsadv).

■ DIGITAL X.500 XDS Library

The XDS library provides support for use of XDS with DCE naming.

■ Distributed Time Service (DTS) clerk and server

The DTS clerk and server (dtsd) synchronize time in distributed network
environments.

■ PC name service interface daemon

The Runtime Services subset provides the name service interface daemon
(nsid), also called the PC Nameserver Proxy Agent, to allow
interoperability with machines running Microsoft® RPC on MS-DOS®,
Windows®, Windows NT™, or Windows 95™. If the PC is running DCE
services, the nsid is not necessary.

■ Audit Service daemon

The Audit Service daemon (auditd) records and logs significant events
(such as creating a user, logging in, or obtaining a ticket) in an audit trail
file. Application servers can be designed to use the Audit Service for
logging purposes.

■ Administrative tools

Chapter 1 Gradient DCE for Tru64 UNIX 17
The administrative tools include the control program dcecp and the
enhanced CDS Browser (cdsbrowser). The Browser provides a graphical
user interface for viewing the CDS namespace. The dcecp program
replaces the earlier control programs rpccp for RPC, cdscp for CDS, and
dtscp for DTS. These control programs remain available for special
purposes, however.

The administrative tools also include rgy_edit, passwd_import,
passwd_export, acl_edit, getcellname and sec_admin.

■ DCE Configuration Program

The DCE configuration program (dcesetup) allows you to configure your
DCE environment.

■ DCE Login Facility

The dce_login command allows you to log in to DCE.

■ Other DCE tools

kinit
kdestroy
klist
UUID Generator (uuidgen)

1.2.2 Cell Directory Server Subset
The Cell Directory Service (CDS) Server subset provides a consistent
mechanism for naming and locating users, applications, files, and systems
within a DCE cell. The CDS Server subset requires the Security Server subset
to be installed. The CDS Server subset includes the following components:

■ CDS server (cdsd)
■ Global Directory Agent (gdad)

The Global Directory Agent (GDA) allows you to link multiple CDS or
LDAP namespaces using the Internet Domain Name System (DNS) or X.500.
To link multiple CDS namespaces using X.500, you must install the DIGITAL
X.500 Base kit and the DIGITAL X.500 API kit on your CDS server.
Optionally, you can install the DIGITAL X.500 Administration Facility kit for
debugging and general administrative support. LDAP directory services using
X.500 can be enabled during configuration.

The XDS library allows applications to access the CDS and X.500 directory
services. The XDS routine library reference pages are provided in the
Gradient DCE for Tru64 UNIX Reference Guide.

1.2.3 Security Server Subset
The Security Server (SEC) subset provides secure communications and
controlled access to resources in a DCE environment. DCE Security includes
authentication, secure communication, and authorization. The Security Server
subset includes these components:

■ Security server (secd)

18 Gradient DCE for Tru64 UNIX Product Guide
■ Tool used to create the security database (sec_create_db)
■ Tool used to move the security database (sec_salvage_db)

1.2.4 Application Developer’s Kit Subset
The Application Developer’s Kit (ADK) subset provides the files necessary to
develop DCE client and server applications using RPC, CDS, DTS, and
Security application programming interfaces. Specifically, this subset
includes these components:

■ Interface Definition Language (IDL) stub compiler
■ Required DCE application development include files
■ Sample time-provider routines
■ Sample DCE applications
■ Symbols and message strings (SAMS) compiler for building DCE

message files, as described on the sams reference page.

1.2.5 Online Manual Pages Subset
Product Name provides two sets of online reference (manual) pages:
administrative commands for managing DCE, and application development
routines for programming distributed applications. To use the online reference
pages on Tru64 UNIX systems, specify the command or routine name with
the man command. For example, this command displays the reference page
for uuidgen:

% man uuidgen

If more than one reference page exists for a topic (for example, intro), you
must specify the section number. For example, this command displays the
introduction reference page for security:

% man 3sec intro

For multiple-word commands, use underscore characters to connect the words
in the command. For example, this command displays the reference page for
rpccp show entry:

% man rpccp_show_entry

1.2.6 Distributed File Service Runtime Services Subset
You must install the Distributed File Service (DFS) Runtime Services subset
on all systems on which you want to run DCE DFS. This subset provides
runtime services, including the DCE DFS client software necessary to run
DCE DFS, and the administrative tools required to configure and maintain the
DCE DFS environment.

Specifically, this subset includes the following components:

■ User-level commands that include the DCE DFS configuration program
(dfssetup), Basic OverSeer (BOS) Server commands (bos, bosserver),
Cache Manager commands (cm), user-space services to the Cache
Manager or File Exporter (dfsbind), Cache Manager daemon (dfsd),
non-DCE LFS partitions exporter (dfsexport), Fileset Location Database

Chapter 1 Gradient DCE for Tru64 UNIX 19
Server daemon (flserver), Fileset Server and Fileset Location Server
commands (fts), Fileset Server daemon (ftserver), File Exporter daemon
(fxd), Update Server daemon for clients (upclient), and Update Server
daemon for servers (upserver).

■ Error message files

■ DFS shared library (libcedfs.so)

1.2.7 DFS Kernel Binary Subset
This subset contains the kernel binary files.

1.2.8 DFS Utilities Subset
This subset contains DCE DFS utilities:

■ scout displays File Exporter statistics.

■ dfstrace helps you diagnose problems in the kernel or within server
processes that interface with dfstrace.

■ udebug displays Ubik status information.

1.2.9 DFS Online Manual Pages
This subset contains the online reference (manual) pages for the
administrative commands for managing DCE DFS. See Section 1.2.5 on
page 18 for information on displaying the online manual pages.

1.2.10 NFS-DFS Secure Gateway Server
This subset contains the NFS-DFS Secure Gateway server components. It
includes the gateway authentication daemon and the local authentication
registration utility.

See the Gradient DFS for Tru64 UNIX Configuration Guide for more
information on configuring DFS.

1.3 Platforms and Networks Supported by Gradient DCE for Tru64 UNIX

1.3.1 Interoperating with PCs
Your DCE server can interoperate with a PC client that has Microsoft RPC
software installed on it. To use RPC from a PC, you need not make any
changes to the DCE server system.

20 Gradient DCE for Tru64 UNIX Product Guide
1.3.2 Network Support
Gradient DCE for Tru64 UNIX supports Tru64 UNIX Version 5.0a. Gradient
DCE for Tru64 UNIX provides RPC communications over UDP/IP, TCP/IP,
and the DECnet/OSI (Phase V) network protocol family. This network family
includes both NSP and OSI transport protocols.

DECnet/OSI support provides upward compatibility for applications on
OpenVMS™ nodes running DECnet™ Phase IV. Client applications that run
over DECnet Phase IV on OpenVMS can use DECnet Phase IV addressing
semantics to communicate with server applications running over the DECnet/
OSI Phase V protocol families on Tru64 UNIX.

Application writers can establish a relationship between a client and server by
specifying a protocol sequence in one of three ways: in an explicit string
binding, in an interface definition, or by registering in the Cell Directory
Service. (See the OSF DCE Application Development Reference, intro(3rpc),
for a list of valid DCE protocol sequences.) A server that prints addresses as
part of its runtime operation prints network addresses and endpoint semantics
as string bindings. (For a complete description of the format of string
representations of binding information, see the OSF DCE Application
Development Guide)

The following string bindings are examples for each protocol supported on
Tru64 UNIX platforms. In any DCE implementation that supports the OSI
protocol stack, whether from Entegrity Solutions® or another vendor, string
bindings such as these are printed when an application fully implements all
supported protocols.

String Bindings for the IP protocol:

ncacn_ip_tcp:16.20.16.155[3924]
ncadg_ip_udp:16.20.16.155[1575]

String Bindings for the DECnet Phase IV protocol:

ncacn_dnet_nsp:12.36[RPC2DD20001]

String Bindings for the DECnet/OSI (Phase V) protocols:

ncacn_osi_dna:%x49000caa000400243021[RPC52DD20001,tpid=cots]
ncacn_osi_dna:%x49000caa000400243020[RPC52DD20001,tpid=nsp]
ncacn_osi_dna:NODENAME[RPC52DD20001,tpid=cots]

1.4 Threads
The Pthreads interface is an important part of the architecture for DCE, and
the DCE services rely on it. DCE uses the Pthreads interface from POSIX
1003.4a/d4. DECthreads is provided as part of the Tru64 UNIX operating
system. Refer to the Guide to DEC Threads in the operating system’s
documentation set for information about threads.

Chapter 1 Gradient DCE for Tru64 UNIX 21
1.5 Enhancements to OSF DCE
The Gradient DCE for Tru64 UNIX kit provides the following added-value
features, which are not included in the OSF offering, to help users develop
and deploy DCE applications:

■ CDS Enhanced Browser
■ IDL compiler enhancements
■ RPC Event Logger Utility
■ NSI daemon (PC Nameserver Proxy Agent)
■ Security Integration Architecture (SIA)
■ RPC support of DECnet/OSI (Phase V)
■ DTS support of DECnet/OSI (Phase V)
■ CDS Cache Clerk Enhanced Memory Management
■ CDS Preferencing
■ DTS Support for RPC and DLI (Data Link Interface)
■ LDAP Directory Service
■ New localrpc protocol sequence
■ Kerberos 5-compliant utilities
■ DCE in a Tru64 UNIX TruCluster Application Server Environment

1.5.1 CDS Enhanced Browser
The CDS Enhanced Browser contains additional functions beyond those
contained in the OSF DCE Version 1.1 Browser. See Chapter 5 for more
information.

1.5.2 IDL Compiler Enhancements
The Gradient DCE for Tru64 UNIX IDL compiler in this kit includes
important enhancements, which are Entegrity value-added functionality
available only with Gradient DCE for Tru64 UNIX:

■ Runtime routine templates
■ DEC Fortran support

See Chapter 10 for more information about IDL.

1.5.3 The RPC Event Logger Utility
Entegrity provides the RPC Event Logger, which records information about
operations relating to the execution of an application interface.

1.5.4 Name Service Interface Daemon for Microsoft RPC
Entegrity provides the name service interface daemon (nsid), also known as
the PC Nameserver Proxy Agent, to allow RPC communication with personal
computers running the DCE-compatible Microsoft RPC. The nsid enables an
RPC application on MS-DOS, DOS Windows, and Windows NT to perform
name-service operations that are available through RPC, as if the RPC
applications on the PC were directly involved in the full CDS namespace.

22 Gradient DCE for Tru64 UNIX Product Guide
1.5.5 Security Integration Architecture
Security Integration Architecture (SIA) lets users of Gradient DCE for Tru64
UNIX use both BSD security and DCE security by using the same system
commands and routines for both.

1.5.6 RPC Support of DECnet/OSI (Phase V)
This version of Gradient DCE for Tru64 UNIX supports Entegrity’s DECnet/
OSI implementation. See Section 1.3 on page 19 for more information.

1.5.7 DTS Support of DECnet/OSI (Phase V)
This version of the Gradient DCE for Tru64 UNIX supports full functionality
of DECnet/OSI implementation.

1.5.8 CDS Cache Clerk Enhanced Memory Management
The CDS enhanced command, dcecp cdscache discard, lets an administrator
release specified structures from the cache without any need to stop and
restart DCE.

1.5.9 CDS Preferencing
This enhancement improves performance at CDS clients by providing a
ranking to the order in which clearinghouses are contacted by the client for
CDS information. This can be accomplished automatically through the use of
defaults associated with the location of CDS clients with respect to CDS
servers or by manual overrides made by cell administrators. For more
information, see Section 5.4 on page 69.

1.5.10 DTS Support for DLI (Data Link Interface) and RPC
This version of the Gradient DCE for Tru64 UNIX allows the acceptance of
messages on both RPC (a new default) and DLI (the old default).

1.5.11 LDAP Directory Service
The Lightweight Directory Access Protocol (LDAP) provides access to the
X.500 directory service without the overhead of the full Directory Access
Protocol (DAP). LDAP supports the TCP/IP protocol.

1.5.12 New localrpc Protocol Sequence
Gradient DCE for Tru64 UNIX now supports a new protocol sequence. It is
implemented with UNIX Domain sockets and can only be used by clients and
servers that are on the same node. By using UNIX Domain sockets, the IP
layer can be bypassed, providing gains in performance that may vary with the
nature of the RPC traffic. The user must explicitly choose to use the localrpc
protocol sequence in either a well-known endpoint in the IDL file, or as called

Chapter 1 Gradient DCE for Tru64 UNIX 23
out by one of the rpc_server_use_protseq*() functions wherever a protocol
sequence string can be used. String bindings can also be used to pass localrpc
binding information from server to client.

1.5.13 Kerberos 5-Compliant Utilities
Massachusetts Institute of Technology (MIT) Kerberos Version 5
authentication and key distribution service is supported. The Kerberized
secure and encrypting versions of UNIX network utilities are supported:
telnet, rlogin, rsh, and ftp.

1.5.14 DCE in a Tru64 UNIX TruCluster Application Server Environment
Compaq TruCluster™ Solutions is a fault-resilient technology that maximizes
uptime for mission-critical applications, databases, and operating systems.
Gradient DCE for Tru64 UNIX is Compaq TruCluster tolerant.

1.6 Diskless Support Removed from OSF DCE
Support for diskless workstations was removed from OSF DCE Release 1.1.
Consequently, Gradient DCE for Tru64 UNIX does not support diskless
workstations.

1.7 Restrictions Using Gradient DCE for Tru64 UNIX
This section describes the following restrictions:

■ Use of DCE DFS
■ Use of the chpass utility
■ Use of some features of the XDS Directory Interface

1.7.1 DCE DFS Restrictions and Limitations
For this release, Gradient DFS for Tru64 UNIX is based on OSF DCE
Release 1.2.2, and has the following restrictions:

■ Supports the UNIX® File System (UFS) and POLYCENTER™ Advanced
File System (AdvFS) only. Enhanced DFS server capabilities (for
example, fileset cloning) are not supported on the server side.

■ DFS built-in backup is not supported. Instead, use the Tru64 UNIX native
file system backup facility.

■ The NFS-DFS Secure Gateway server does not support remote DFS login /
logout capabilities. For authenticated access to DFS, users of
DCE-unaware NFS clients must authenticate to DCE from the Gateway
Server machine using a dfsgw add operation. Refer to the OSF DCE DFS
Administration Guide and Reference for information about authenticating
from a Gateway Server machine.

24 Gradient DCE for Tru64 UNIX Product Guide
■ Gradient DFS for Tru64 UNIX uses Tru64 UNIX ACLs. These lack some
of the features of DCE ACLs. Chapter 8 discusses how Gradient DCE for
Tru64 UNIX compensates for some ACL limitations.

■ DCE DFS uses DCE credentials to authorize access to objects in the DCE
DFS namespace. Background daemons lacking DCE Security credentials
may not be able to use the DCE DFS namespace. Processes started by
system daemons (that is, cron(8), inetd(8), rdistd(8)) may be denied
access to files in the DCE DFS namespace if they do not have DCE
credentials. For example, attempts to use the commands at(1) or rdist(1)
when the remote files are in the DCE DFS namespace may fail. This is an
important security feature of DCE and DFS. See Section 8.5 on page 100
for information on obtaining DCE credentials by using the -k flag with
dce_login.

1.7.2 Utility Restriction
If SIA is enabled, the registry information change commands, passwd
(change password), chsh (change shell) and chfn (change finger information)
can alter the information in one of the configured security mechanism
registries.

The OSF DCE chpass utility is not supported by Gradient DCE for Tru64
UNIX. The three commands noted previously provide most functions of
chpass, which is a platform-dependent tool that was originally intended only
as a reference implementation.

1.7.3 DIGITAL X.500 Restrictions
Version 3.1 of the DIGITAL X.500 Directory Service programming interface
to the XDS and XOM APIs does not support the Basic Directory Contents
Package (BDCP).

The BDCP permits certain X.500 attribute values to be expressed as OM
objects. Applications using Compaq’s implementation of XDS must instead
specify the values of the X.500 attribute supported in the BDCP as ASN.1
BER.

An important instance of this restriction occurs when representing attribute
values that are Distinguished Names, for example, when creating an alias
entry with the ds_add_entry() routine. You can still create aliases, but not as
described in the OSF DCE Application Development Guide.

The OSF DCE Application Development Guide states that, to add an alias
entry, these two attributes are required in the list of X.500 attributes specified
in the Entry argument to ds_add_entry():

DS_A_OBJECT_CLASS = DS_O_ALIAS
DS_A_ALIASED_OBJECT_NAME = alias-target-name

When the BDCP is supported, the alias-target-name value is a DS-DN OM
object. The syntax of this value in the Attribute-Value OM Attribute is
OM_S_OBJECT.

Chapter 1 Gradient DCE for Tru64 UNIX 25
The current DIGITAL X.500 Directory Service product requires that the
alias-target-name value be supplied as ASN.1 BER, with a syntax of
OM_S_ENCODING_STRING in the Attribute-Value OM Attribute.

To encode the alias-target-name from a DS-DN OM object to ASN.1 BER,
complete the following steps:

1 If the DS-DN OM object is public, make it a OM private object by calling
om_create() and om_put() routines.

2 Call the om_encode() routine to convert the DS-DN OM private object to
an Encoding OM object. Specify ‘OM_BER’ as the ‘Rules’ parameter to
om_encode() routine. The ASN.1 BER value is returned in the Encoding
OM private object.

3 Call the om_get() routine to extract the value. This value can be passed as
the alias-target-name.

You must do the same thing when supplying member names for groups. In
this case, the Entry argument to the ds_add_entry() routine requires these
attributes.

DS_A_OBJECT_CLASS = DS_O_GROUP_OF_NAMES
DS_A_MEMBER = member-name

The member-name value must be supplied as an ASN.1 BER value.

This encoding requirement applies whenever a Distinguished Name is input
as either an attribute value to the ds_compare() routine, or as a value to be
added to or removed from the ds_modify_entry() routine.

Whenever a Distinguished Name is returned as an attribute value from
ds_read(), the application must do the following:

1 Create an Encoding OM private object containing the value to be decoded
by calling om_create() and om_put() routines.

2 Call the om_decode() routine to convert the Encoding OM private object
to a DS-DN OM private object.

Entegrity’s implementation of the XDS API om_encode() and om_decode()
routines supports only DS-DN OM objects. Other types of OM objects are not
supported.

The following example shows how to create an alias without the BDCP. The
example illustrates the steps for performing a synchronous Add Entry
operation.

NOTE: The Invoke_id argument is not needed and is set to NULL. The
workspace and bound session arguments are assumed to have been set up
previously.

The entry adds the following string as an alias entry in the CDS namespace:

/C=US/O="Compaq Computer Corporation"/OU=Research/Projects/CDS

This entry, in turn points to the entry

/C=US/O="Compaq Computer Corporation"/OU=Research/Projects/DECdns

26 Gradient DCE for Tru64 UNIX Product Guide
This example shows the additional steps required to supply the attribute value
for the DS_A_ALIASED_OBJECT_NAME attribute if the Basic Directory
Contents Package (BDCP) optional XDS package is not supported.

OM_private_object bound_session; /* Assumed to be externally set up */
OM_workspace workspace; /* Assumed to be externally set up */

{
 OM_private_object name, alias, alias_enc_obj;
 OM_public_object alias_enc_string;
 OM_value_position desc_count;

 OM_descriptor cpub_dn[7];
 OM_descriptor cpub_rdn0[3];
 OM_descriptor cpub_rdn1[3];
 OM_descriptor cpub_rdn2[3];
 OM_descriptor cpub_rdn3[3];
 OM_descriptor cpub_rdn4[3];
 OM_descriptor cpub_ava0[4];
 OM_descriptor cpub_ava1[4];
 OM_descriptor cpub_ava2[4];
 OM_descriptor cpub_ava3[4];
 OM_descriptor cpub_ava4[4];

 OM_descriptor cpub_attr_list[4];
 OM_descriptor cpub_attr1[4];
 OM_descriptor cpub_attr2[4];
 OM_descriptor cpub_context[3];

 OM_return_code ds_status = DS_SUCCESS;
 OM_return_code om_status = OM_SUCCESS;

 /* Define the name AVA descriptors */

 OMX_CLASS_DESC(cpub_ava0[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava0[1], DS_ATTRIBUTE_TYPE,
 DSX_TYPELESS_RDN);
 OMX_ZSTRING_DESC(cpub_ava0[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "CDS");
 OMX_OM_NULL_DESC(cpub_ava0[3]);

 OMX_CLASS_DESC(cpub_ava1[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava1[1], DS_ATTRIBUTE_TYPE,
 DSX_TYPELESS_RDN);
 OMX_ZSTRING_DESC(cpub_ava1[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Projects");
 OMX_OM_NULL_DESC(cpub_ava1[3]);

Chapter 1 Gradient DCE for Tru64 UNIX 27
 OMX_CLASS_DESC(cpub_ava2[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava2[1], DS_ATTRIBUTE_TYPE,
 DS_A_ORG_UNIT_NAME);
 OMX_ZSTRING_DESC(cpub_ava2[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Research");
 OMX_OM_NULL_DESC(cpub_ava2[3]);

 OMX_CLASS_DESC(cpub_ava3[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava3[1], DS_ATTRIBUTE_TYPE,
 DS_A_ORG_NAME);
 OMX_ZSTRING_DESC(cpub_ava3[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "Compaq Computer Corporation");
 OMX_OM_NULL_DESC(cpub_ava3[3]);

 OMX_CLASS_DESC(cpub_ava4[0], DS_C_AVA);
 OMX_ATTR_TYPE_DESC(cpub_ava4[1], DS_ATTRIBUTE_TYPE,
 DS_A_COUNTRY_NAME);
 OMX_ZSTRING_DESC(cpub_ava4[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "US");
 OMX_OM_NULL_DESC(cpub_ava4[3]);

 /* Define the name RDN descriptors */

 OMX_CLASS_DESC(cpub_rdn0[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn0[1], DS_AVAS, cpub_ava0);
 OMX_OM_NULL_DESC(cpub_rdn0[2]);

 OMX_CLASS_DESC(cpub_rdn1[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn1[1], DS_AVAS, cpub_ava1);
 OMX_OM_NULL_DESC(cpub_rdn1[2]);

 OMX_CLASS_DESC(cpub_rdn2[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn2[1], DS_AVAS, cpub_ava2);
 OMX_OM_NULL_DESC(cpub_rdn2[2]);

 OMX_CLASS_DESC(cpub_rdn3[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn3[1], DS_AVAS, cpub_ava3);
 OMX_OM_NULL_DESC(cpub_rdn3[2]);

 OMX_CLASS_DESC(cpub_rdn4[0], DS_C_DS_RDN);
 OMX_OBJECT_DESC(cpub_rdn4[1], DS_AVAS, cpub_ava4);
 OMX_OM_NULL_DESC(cpub_rdn4[2]);

 /* And now the Distinguish Name descriptor list */

 OMX_CLASS_DESC(cpub_dn[0], DS_C_DS_DN);
 OMX_OBJECT_DESC(cpub_dn[1], DS_RDNS, cpub_rdn4);
 OMX_OBJECT_DESC(cpub_dn[2], DS_RDNS, cpub_rdn3);
 OMX_OBJECT_DESC(cpub_dn[3], DS_RDNS, cpub_rdn2);

28 Gradient DCE for Tru64 UNIX Product Guide
 OMX_OBJECT_DESC(cpub_dn[4], DS_RDNS, cpub_rdn1);
 OMX_OBJECT_DESC(cpub_dn[5], DS_RDNS, cpub_rdn0);
 OMX_OM_NULL_DESC(cpub_dn[6]);

 /* define the first entry attribute descriptor */

 OMX_CLASS_DESC(cpub_attr1[0], DS_C_ATTRIBUTE);
 OMX_ATTR_TYPE_DESC(cpub_attr1[1], DS_ATTRIBUTE_TYPE,
 DS_A_OBJECT_CLASS);
 OMX_ATTR_TYPE_DESC(cpub_attr1[2], DS_ATTRIBUTE_VALUES,
 DS_O_ALIAS);
 OMX_OM_NULL_DESC(cpub_attr1[3]);

 /* define the second entry attribute descriptor */

 OMX_CLASS_DESC(cpub_attr2[0], DS_C_ATTRIBUTE);
 OMX_ATTR_TYPE_DESC(cpub_attr2[1], DS_ATTRIBUTE_TYPE,
 DS_A_ALIASED_OBJECT_NAME);
 OMX_STRING_DESC(cpub_attr2[2], OM_S_ENCODING_STRING,
 DS_ATTRIBUTE_VALUES,
 NULL, 0); /*Do dynamic fix later*/
 OMX_OM_NULL_DESC(cpub_attr2[3]);

 /* and now the attribute descriptor list */

 OMX_CLASS_DESC(cpub_attr_list[0], DS_C_ATTRIBUTE_LIST);
 OMX_OBJECT_DESC(cpub_attr_list[1], DS_ATTRIBUTES, cpub_attr1);
 OMX_OBJECT_DESC(cpub_attr_list[2], DS_ATTRIBUTES, cpub_attr2);
 OMX_OM_NULL_DESC(cpub_attr_list[3]);

 /* create the OM private object: name */

 om_status = om_create(DS_C_DS_DN, OM_FALSE, workspace, &name);

 /* Copy the attribute list from the cpub_dn public object into */
 /* the name private object */

 om_status = om_put(name, OM_REPLACE_ALL, cpub_dn, 0,0,0);

 /* create the OM private object: alias */

 om_status = om_create(DS_C_DS_DN, OM_FALSE, workspace, &alias);

 /* For brevity in this example we reuse the cpub_dn public object */
 /* for the alias target name by fixing up one of its descriptors. */

 OMX_ZSTRING_DESC(cpub_ava0[2], OM_S_PRINTABLE_STRING,
 DS_ATTRIBUTE_VALUES,
 "DECdns");

Chapter 1 Gradient DCE for Tru64 UNIX 29
 /* Copy the attribute list from the cpub_dn public object into */
 /* the alias private object. */

 om_status = om_put(alias, OM_REPLACE_ALL, cpub_dn, 0,0,0);

 /* Additionally encode the alias private object */

 om_status = om_encode(alias, OM_BER, &alias_enc_obj);

 /* Extract the actual encoding string from the encoded object */

 om_status = om_get(alias_enc_obj, OM_NO_EXCLUSIONS, 0, OM_FALSE,
 0, 0, &alias_enc_string, &desc_count);

 /* create the OM private object: entry */

 om_status = om_create(DS_C_ATTRIBUTE_LIST, OM_FALSE, workspace,
 &entry);

 /* Fixup the cpub_attr_list to hold the encoding string */

 OMX_STRING_DESC(cpub_attr2[2], OM_S_ENCODING_STRING,
 DS_ATTRIBUTE_VALUES,
 alias_enc_string->value.string.elements,
 alias_enc_string->value.stringngth);

 /* Copy the attribute list from the cpub_attr_list public */
 /* object into the entry private object */

 om_status = om_put(entry, OM_REPLACE_ALL, cpub_attr_list,
 0, 0, 0);

 /* Call the Add Entry function using entry as a parameter */

 ds_status = ds_add_entry(bound_session, DS_DEFAULT_CONTEXT, name,
 entry, NULL);
 if (ds_status == DS_SUCCESS)
 {
 printf("ADD ENTRY request was successful\n");
 }
 else
 {
 printf("ADD ENTRY request failed\n");
 }
}

C H A PT E R 2

Interoperability and Compatibility
2.1 Overview of Compatibility with Other DCE Systems
 Gradient DCE for Tru64 UNIXis based on OSF DCE Release 1.2.2. This
product provides source-level runtime compatibility with DCE systems from
other vendors for applications that conform to the OSF DCE Application
Environment Specification (AES).

2.2 Overview of Interoperability with Other DCE Systems
Gradient DCE for Tru64 UNIX provides interoperability with DCE systems
from other vendors as long as the implementations of DCE on those systems
conform to the OSF DCE Application Environment Specification (AES).

2.3 DCE DFS Interoperability and Compatibility
Gradient DFS for Tru64 UNIX is a 64-bit implementation of OSF DCE
Release 1.2.2. DFS, capable of supporting fileset sizes larger than 2 GB. It is
compatible with the Cray 64-bit implementation of DFS.

Because most 32-bit systems cannot handle fileset sizes larger than 2 GB,
operations involving these large filesets can produce unpredictable results.
Take measures to prevent fileset interactions between 32-bit and 64-bit file
servers in your environments. One approach is to avoid mixing 32-bit and

64-bit file servers in your environments.

2.4 CDS and DECnet/OSI DECdns Compatibility
The Compaq Distributed Name Service (DECdns) and the DCE Cell
Directory Service (CDS) can coexist in a DECnet/OSI network, but they
cannot interoperate. You can run both CDS and DECdns servers on the same
machine, and you can build applications that make calls to both APIs. The
CDS and DECdns libraries are maintained separately, as are the namespaces.

2.5 Interoperability with DECnet Phase IV and DECnet/OSI
To use Gradient DCE for Tru64 UNIX over DECnet/OSI, you must use
DECnet in Phase IV compatibility mode. DECnet Phase IV compatibility
mode consists of assigning a Phase IV node address to your system. A Phase

32 Gradient DCE for Tru64 UNIX Product Guide
IV-compatible address is a DECnet/OSI address that falls within Phase IV
limits: the area number is less than 63, and the node ID number is less than
1023. For a complete explanation of Phase IV compatibility mode, refer to the
DECnet-ULTRIX Installation and Transition Guide.

Before you start or stop DECnet/OSI, you should first stop the DCE services.
Then, after you start or stop DECnet, restart the DCE services. Use the
dcesetup command clean, as described in the system configuration chapter, to
stop the DCE services.

Enter the following command sequence to stop and start DECnet and DCE
Services.

■ dcesetup clean
■ /etc/decnetshutdown or /etc/decnetstartup
■ dcesetup start

You also have to stop and restart any DCE server applications that are
running.

2.6 Interaction Between DCE DTS and DECnet/OSI DECdts
When you install Gradient DCE for Tru65 Unix, DTS is automatically
installed. Normally, DTS synchronizes system clocks with other systems that
use the RPC transport. The RPC transport runs on Tru64 UNIX and on other
DCE systems. In addition, you can choose to synchronize system clocks with
hosts running DECnet/OSI DECdts. In this section, we refer to the DTS that
runs on Tru64 UNIX as DCE DTS.

The benefit of allowing DCE DTS to synchronize with DECnet/OSI DECdts
is that the DECnet/OSI DECdts servers can be connected to time sources to
which the DCE DTS servers do not have access. In this way, resources can be
shared across a network.

One drawback to this scheme stems from DECnet/OSI DECdts servers using
DECnet protocols to communicate with other DTS entities, such as servers
and clerks. These protocols provide a less secure environment than the RPC
protocol because the servers are unauthenticated. For example, any node can
become a DECnet/OSI DECdts server at any time and could maliciously
broadcast invalid times to other DECnet/OSI DECdts servers. Servers using
the DECnet protocols accept and propagate this time around the network.
Servers using RPC do not accept time from a server unless the server’s
authenticity is verified.

If your network must use authenticated connections, do not allow DCE DTS
entities to accept time from DECnet/OSI DECdts servers. If your network can
tolerate a small security risk, then consider allowing this interoperation.

When you answer y to the following configuration question, you are
accepting time from DECnet/OSI DECdts servers:

Should this node accept time from DECnet/OSI DECdts servers? (y/n) [n]:

To verify whether your node is accepting time from DECnet/OSI DECdts
servers, enter the following command:

% dtscp show all characteristics

Chapter 2 Interoperability and Compatibility 33
Look for the command output line that says:

DECnet Time Source = FALSE

If you want to allow a DCE DTS entity to accept time from DECnet/OSI
DECdts servers after you have configured the cell, you must reconfigure or
use the dtscp set decnet time source command, as follows:

% dtscp set decnet time source true

To prevent a DCE DTS entity from synchronizing with DECnet/OSI DECdts
servers, you must reconfigure or use the dtscp set decnet time source
command, as follows:

% dtscp set decnet time source false

NOTE: False is the default value for the decnet time source attribute.

The nodes on your network can have different DECnet time source settings.
For example, you may want to allow some DCE DTS clerks to accept time
from DECnet/OSI DECdts servers, while ensuring that other DTS clerks
receive time from DCE DTS servers only. This scheme works because DTS
clerks receive time, but they do not propagate time to other DTS entities.

However, if even one DCE DTS server can accept DECnet/OSI DECdts time,
the DECnet time eventually propagates to other DTS entities throughout the
cell. The result is the same as allowing all DCE DTS entities in a cell to accept
DECnet/OSI DECdts time.

DCE DTS servers also give time to DECnet/OSI DECdts clients. If you have
three or more Compaq DCE DTS servers and a DECnet/OS DECdts client on
your LAN, ensure that either the DCE DTS servers have access to a time
provider or that at least one DCE DTS server has the decnet time source
attribute set to true wherever the DECnet environment has access to a time
provider. Otherwise, the three DCE DTS servers do not have an accurate time
base and can give incorrect time information to a DECnet client.

You can use the DTS dtscp show command to display the names and values
of the following specified attribute groups:

■ Any local servers on a LAN segment.
■ Any DECnet local servers on a LAN segment.
■ Any DCE local servers on a LAN segment.
■ Any global servers in the network.
■ Any DECnet global servers in the network.
■ Any DCE global servers in the network.
■ The courier role of your server for both DCE DTS and DECnet/OSI

DECdts environments.
■ Whether your server is running as a DECnet/OSI DECdts courier.
■ Whether your server is running as a DCE DTS courier.

If you have DECnet/OSI installed on your system, you can also use the
DECnet/OSI NCL commands to manage the DCE DTS.

34 Gradient DCE for Tru64 UNIX Product Guide
2.6.1 Changing the Default for DCE DTS to RPC
DCE DTS is installed by the dcesetup configuration program at system
startup. Gradient DCE for Tru64 UNIX uses RPC to transport timing
synchronization. Former versions used DLI, a feature of DECnet. To return to
accepting time synchronization on DLI, you can change the default value in
the dcesetup configuration program or you can issue a dstd command with
the new -m option to override the default:

dtsd -m Accept time synchronization messages on DLI only.

DLI (Data Link Interface) is a more specific reference than DECdts. DECdts
can communicate through DECnet and DLI. DLI is narrower in meaning and
not synonymous with DECdts.

C H A PT E R 3

Security Integration Architecture
3.1 Overview of SIA
The Security Integration Architecture (SIA) is a framework that supports
multiple security mechanisms on Tru64 UNIX. All configured security
mechanisms that run on the Tru64 UNIX operating system run under the SIA.
The SIA allows you to layer various local and distributed security
mechanisms onto Tru64 UNIX with no modification to either the
security-sensitive commands (such as login, su, and passwd), or the
application programming interface (API) routines that obtain password or
group entries, particularly getpwnam and getgrgid.

The Tru64 UNIX operating system provides two local security mechanisms:
Berkeley Standard Distribution (BSD) security and C2 class security. The
default Tru64 UNIX configuration has BSD security enabled.

DCE Security, provided by OSF DCE, is a distributed network security
service based on secret-key technology. It provides secure communications
(authentication and data protection) and controlled access to resources
(authorization) in the distributed environment. Within a DCE cell, DCE
registry databases on the Security server nodes (where the Security server
daemons, secd, run) contain information about principals, groups,
organizations, accounts, and so forth. The local system administrator can
create a DCE password override file, /opt/dcelocal/etc/passwd_override, to
exclude people from using the local machine, to establish a local root
password, or to tailor the local user environments.

3.2 Benefits of SIA
The local system administrator can configure DCE security to use the local
SIA facility. Doing so permits users to establish a local terminal session and
DCE credentials with a single login command and password.

Enabling DCE SIA also integrates DCE security with the local security
mechanism. In addition, Tru64 UNIX account-related functions (such as
getpwent) can display information from both the local and DCE registries.

DCE SIA allows you to use the DCE registry as the sole repository for all user
accounts. This makes account maintenance easier because there is one central
DCE registry to manage. This means that you can log in to any DCE client
system if you have a DCE account, even if you do not have a local account on
that system.

36 Gradient DCE for Tru64 UNIX Product Guide
When a DCE system is initially configured with SIA support, you may want
to use the passwd_import utility to migrate local accounts to the DCE
registry. Account information stored on a local system in /etc/passwd and /
etc/group can selectively be merged into the DCE registry. The
passwd_import command with the check option, -c, displays a listing of the
differences between the local registry and the DCE registry. After the
command is executed, the system administrator can decide what data to
merge. Having run passwd_import to create a brand new account in the DCE
registry, you must then modify the account with rgy_edit to assign a
password and then enable the account for DCE logins. Refer to the OSF DCE
Administration Guide — Core Components for more information on
passwd_import.

3.3 Using SIA
The local security mechanism for Tru64 UNIX always uses SIA. The system
administrator can select DCE SIA when the machine is configured in a DCE
cell. The dcesetup utility asks the administrator whether DCE SIA should be
enabled. The default response is to enable SIA. See the Gradient DCE for
Tru64 UNIX Installation and Configuration Guide for further instructions.
Once you have configured a machine in a DCE cell, you can run dcesetup at
any time to enable or disable DCE SIA.

When dcesetup enables DCE SIA, it modifies a system SIA configuration
file, /etc/sia/matrix.conf. File matrix.conf is a function dispatch table used
by all Tru64 UNIX security-related commands (such as login and su).
Security commands call subcommands, which are in turn dispatched to one or
more security mechanisms that appear in the table. Users should not modify
matrix.conf, which is a text file, unless they need to implement a highly
specialized security mechanism.

When you enable or disable SIA using dcesetup, you should reboot your
machine. This ensures that account attribute inconsistencies are not
introduced into system daemons and applications running at the time this
DCE modification takes place.

When SIA is enabled and one or more servers in the cell are reconfigured, the
client systems must also be reconfigured. Otherwise, DCE services cannot
operate.

3.4 Using the SIA Configuration Program
The SIACFG configuration program helps system administrators to manage
their SIA environments. Administrators can use SIACFG to display and
resolve inconsistencies between UNIX account information stored in the
DCE/Kerberos user database and corresponding information stored in the user
database of the local machine.

SIACFG aids administrators in an environment where DCE SIA has been
selected to control system logon based on shared/network user configuration
data (that is, passwords, uids, group memberships, and gids), and where the
administrator may not have the option of discarding an existing local user
account database, replete with its own uid assignments, group memberships,
etc.

Chapter 3 Security Integration Architecture 37
The basic function of SIACFG is to compare each account and group defined
in the local user database to determine if an entity with the same name and
type exists in the DCE registry. If a match is found, a more detailed
comparison is performed to determine if there are any inconsistencies (for
example, same name but different uids, or same name but different
membership lists) between the corresponding entities.

When an inconsistency is detected, SIACFG provides the administrator with
an opportunity to resolve the conflict by designing an override entry. (See
passwd_override(5sec) in OSF DCE Command Reference for a description
of overrides and their format.)

When a local account or group has no analogous entity in the registry, the
administrator will be asked to choose whether the account or group should
have local-only or cell-wide/public significance. If local-only is chosen,
SIACFG will add an override entry to the plan. When published, the plan will
insure that the local entity remains distinct from any equivalently named and
typed entity that might be added to the DCE registry. If the administrator
chooses cell-wide, SIACFG will add directions to the plan to create a
corresponding entity in the DCE registry.

For information on activating SIACFG, see the Gradient DCE for Tru64
UNIX Installation and Configuration Guide.

3.5 How DCE Security Affects the Security-Sensitive Commands and Routines
Enabling DCE SIA affects three areas of security:

■ Login-related commands
■ Registry information change commands
■ Registry information inquiry routines

The following sections discuss these commands and routines.

A log file (/opt/dcelocal/var/adm/security/sialog) briefly logs the history of
executing DCE SIA routines and the configured security mechanisms. You
can use this file for troubleshooting or diagnosing security-related problems.
You should clean up this file occasionally.

3.5.1 Login-Related Commands
SIA isolates the security-sensitive commands (login, su, ftp, xdm, lock,
dxsession, telnet, rtools, and dtools) from the specific security mechanisms
which eliminates the need to modify them for each new security mechanism.
When DCE SIA is enabled in the matrix.conf file, SIA invokes DCE routines
in response to these commands, to authenticate the login session. The
following sections explain the login and the su commands in more detail. The
other commands are similar to the login command.

38 Gradient DCE for Tru64 UNIX Product Guide
3.5.1.1 login Command

When DCE SIA is enabled, using the login command to start a session
invokes both the local security mechanism and DCE. If the login command
accepts the password you enter, you have DCE credentials and are also logged
in to the local security system.

NOTE: You may be logged in to the local security system even if you have no
account on the local system, or if you supplied a valid DCE password that is
not your local password.

If you have identical account names in both the local BSD registry and the
DCE registry, account attributes in the DCE registry override those in the
local registry. In other words, DCE account attributes supersede attributes in /
etc/passwd and /etc/group.

If, during login, DCE security rejects your password, the local security
mechanism still attempts to validate the login. If your name is in the local
account database and your password is valid, you are logged in to the local
system, but without DCE credentials; otherwise, the login attempt fails.

Once you have successfully logged in to DCE, a shell variable called
KRB5CCNAME is created to point to the current session’s login context and
ticket cache. This variable points to a filename, such as the following:

/opt/dcelocal/var/security/creds/dcecred_68b91c00

Help prevent misuse of credentials by requiring users to remove their
credentials (by running kdestroy) before terminating their login sessions. If
your login shell is csh, you can insert the following lines as part of your
logout profile:

if (‘printenv KRB5CCNAME‘ != "") then
echo "Removing login context and ticket cache..."
kdestroy
endif

If you run ksh, you can add the following line to your .profile:

trap 'echo Removing login context and ticket cache…; kdestroy' EXIT

3.5.1.2 The su Command

DCE does not support a superuser in its environment. When you issue an su
command on a Tru64 UNIX system with DCE turned on, four results are
possible. Table 3-1 summarizes these combinations

NOTE: User1 and user2 are nonprivileged accounts.

Chapter 3 Security Integration Architecture 39
The following paragraphs discuss each combination.

Combination 1: User1 to User2

You are currently user1 and may or may not have DCE credentials. You issue
an su user2 command and are prompted for a password. The username user2
and the password are presented to DCE Security. If they pass the security
check, you get a new process with UID and DCE credentials of user2. If they
do not pass the DCE security check (see Section 3.5.1 on page 37), the
username and password are presented to BSD security. If they pass the BSD
security check, the new process has user2’s UID but does not have DCE
credentials. If they do not pass the BSD security check, the su command fails.

Combination 2: User1 to Root

You are currently user1 and may or may not have DCE credentials. You issue
an su or su root command and are prompted for a password. The username
root and the password are presented to DCE Security. Because the
passwd-override file overrides the root account, you are not allowed to log in
to DCE root. However, you get the principal credentials of the local host
machine (/.:/hosts/<hostname>/self) after you pass the BSD security check
for the root account.

Combination 3: Root to User2

If you only use BSD security, no password is required because root has the
power to become anyone. This transformation is not possible in a DCE
environment, because root (on this system) does not have any special
privileges and cannot be permitted to become any principal in the cell. In this
case, you are currently root and may or may not have DCE credentials. You
issue an su user2 command and are prompted with the following message:

(DCE) Enter DCE password to obtain DCE credentials,
(DCE) or press return for none.
Password:

The username user2 and password are presented to DCE Security. If they pass
the DCE security check, you get a new process with the UID and DCE
credentials of user2. If they do not pass the DCE security check, or if you
press <Return> at the prompt, the username user2 and password are
presented to BSD security. Because you are root, they will pass the BSD
security check and the new process has user2’s UID but does not have DCE
credentials.

Table 3-1: User Combinations

Combination Current UID New UID

1 user1 user2

2 user1 root

3 root user2

4 root root

40 Gradient DCE for Tru64 UNIX Product Guide
Combination 4: Root to Root

In this case, you are also prompted for a password, as in case 3. The username
root and the password are presented to DCE Security. Because the
passwd-override file overrides the root account, you are not allowed to log in
to DCE root. However, because you are root, you pass the BSD security
check, and the new process has a UID of zero and DCE credentials for the
local host machine principal (/.:/hosts/<hostname>/self).

3.5.2 Registry Information Change Commands
The registry information change commands — passwd (change password),
chsh (change shell), and chfn (change finger information) — change
information in one of the configured security mechanism’s registries. These
commands invoke SIA routines, which prompt for a choice of the configured
security mechanisms. In the following example, DCE SIA and BSD security
are enabled.

You are registered with the following security mechanisms

1 DCE
2 BSD

Select ONE item by number:

If you choose option 1 (DCE), SIA displays the following message:

You have selected:
DCE

SIA then invokes DCE routines that allow you to make changes in the
passwd_override file, if your requested information exists, or in the DCE
registry. The system displays the following message:

You can change information in passwd_override or DCE registry

1 passwd_override file
2 DCE registry

Select ONE item by number:

The rest of the dialog is similar to the BSD dialog. When DCE SIA is enabled,
there is no practical reason to maintain identical passwords in both the local
and DCE security registries. A login succeeds when a valid DCE account and
password are presented if the host remains configured as a DCE client and the
DCE security service is available. In any event, presenting a valid local
password always results in a successful local login.

The commands passwd, chsh, and chfn provide most functions of the OSF
DCE utility chpass, a platform-dependent tool intended as a reference
implementation from OSF. This product does not provide chpass.

The commands adduser, removeuser, and vipw do not affect the DCE
registry regardless of whether DCE SIA is enabled.

Chapter 3 Security Integration Architecture 41
Refer to the passwd_override(5sec) reference page in the OSF DCE
Command Reference for details of the passwd_override command.

3.5.3 Registry Information Inquiry Routines
There are ten registry information inquiry routines:

■ getpwent
■ getpwuid
■ getpwnam
■ setpwent
■ endpwent
■ getgrent
■ getgrgid
■ getgrnam
■ setgrent
■ endgrent

These API calls also include their reentrant routines, if they exist. For these
registry information inquiry routines, SIA invokes the configured security
mechanism routines in the order in which they are placed in the SIA
configuration file (matrix.conf file) until it finds the needed information. If
none of the configured mechanisms fulfills the request, the get call fails. For
example, the following line exists in the matrix.conf file:

siad_getgrnam=(DCE,/usr/shlib/libdcesiad.so), (BSD, libc.so)

The getgrnam (get a group entry by its name) call first calls the DCE
siad_getgrnam routine to try to extract the requested information from either
the passwd_override file, if it exists, or the DCE registry. If it succeeds, the
getgrnam call returns the DCE information in its return group structure. If
DCE fails, it continues to call the BSD siad_getgrnam routine to get the
needed information. If it succeeds, the getgrnam routine returns the BSD
information in its return group structure. If the getgrnam routine does not
find the requested information in either DCE or BSD, it returns a failure; that
is, a NULL pointer.

Operations that depend on registry information can behave more reliably
when you maintain consistency between names that exist in both the local
registry and the DCE registry. For instance, if a user account is registered in /
etc/passwd and DCE, consistent password information, default shell, and
similar information lets users log in using the same password even if the DCE
registry is not available.

Consistency between group names in the local registry and the DCE registry
is also desirable. The initial DCE cell configuration procedure declares
several standard UNIX group names (such as system, bin, and kmem) in the
DCE registry.

Because DCE SIA has precedence in the SIA matrix, a call to getgrnam() for
the bin group extracts the group attribute record from DCE rather than /etc/
group. This has a subtle effect on such programs as newgrp, which call
getgrpnam() implicitly. In the example % newgrp bin, the membership list
for the bin group is consulted to determine if the primary group of the caller

42 Gradient DCE for Tru64 UNIX Product Guide
can be set to bin. However, newgrp will simply fail if membership in the bin
group is denied in the DCE bin record, even though it is granted in /etc/
group.

NOTE: The su command does not call getgrnam() to determine membership
in the system group. Therefore users can be granted privilege to su root
simply by adding them to the system record in /etc/group. Also, note that the
attribute values of three groups (system, bin, and kmem) are further qualified
by their presence, by default, in the group_override file. See Section 3.9.2 on
page 47 for more information.

UNIX account functions such as finger and getpwent also get their attribute
data from the DCE registry. Consequently, attributes such as default directory
and shell must be properly maintained in the local and DCE registries. Any
unintentional inconsistencies between the two registries can be troublesome.
Administrators must also be careful not to inadvertently break a local account
by creating an identical account name in the DCE registry for another user
elsewhere on the network.

3.6 Using DCE SIA With the Tru64 UNIX Enhanced Security Option
This section explains special considerations for using the DCE SIA feature
with the Tru64 UNIX Enhanced Security option.

The Tru64 UNIX Enhanced Security option, also known as C2 security, is the
stricter of two security mechanisms supplied with Tru64 UNIX. The other,
BSD, is supplied with the base operating system and is enabled by default.
Enhanced Security is offered as an optional product, and is documented in the
Tru64 UNIX Security Manual.

Enhanced Security derives much of its value from a more conservative
approach toward security management. When DCE uses Enhanced Security
via SIA, it operates under restrictions that affect ease of use for the DCE user
and administrator. This added inconvenience is the price of a more secure
system.

DCE SIA under Enhanced Security is best described by a comparison with
BSD security. Table 3-2 compares the relative SIA advantages available when
the underlying security mechanism is Enhanced Security or BSD security.

Table 3-2: Benefits of Using SIA with BSD Security or Enhanced Security

SIA BSD Security SIA Enhanced Security (C2) Option

BSD security enabled Strict C2 security enabled

Integrated login Integrated login (password consistency must be maintained
between local and remote (DCE) registries).

Local and remote registries
synchronized with
passwd_export

Manual synchronization of local and remote (DCE)
registry required. (the passwd_export utility is not
currently available.)

Local login even without an
account in the local registry

Local login requires an account in the local registry

Chapter 3 Security Integration Architecture 43
DCE SIA offers several advantages which differ somewhat depending on
whether the underlying security mechanism is BSD security or Enhanced
Security.

■ Integrated login gives a user both the local login context and the DCE
network credentials simultaneously when performing a UNIX login. When
the underlying security mechanism is Enhanced Security, additional
administrative action is usually necessary to enable integrated login. This
action will be described shortly.

■ A local login to participating hosts.

While SIA offers both of these advantages with either BSD security or
Enhanced Security, there are some administrative differences:

■ With DCE SIA and BSD security, user account information can reside
solely in the DCE Security Service registry. Account information need not
be maintained in a host’s local registry. This provides a significant
administrative advantage as all accounts can be maintained in one
convenient location rather than on separate hosts with separate login
requirements. Integrated login and local login work because the local DCE
SIA mechanism overrides the local registry.

■ The BSD security mechanism allows the use of the passwd_export and
passwd_import utilities to move account information between the local
registry and the DCE registry. If account information is also maintained in
the local registry, consistent passwords, UIDs, GIDs, and so on must be
maintained in both the local and DCE registries.

■ With DCE SIA and enhanced security, consistent user account information
must be maintained in both the DCE Security Service registry and the
host’s local registry. Section 3.5.3 on page 41 described the need for
consistent information for routines that rely on DCE registry information.
Similarly, consistent passwords must be maintained between the DCE
registry and the local registry or integrated login will fail.

■ The current version of the Enhanced Security mechanism does not support
the use of the passwd_export or passwd_import utilities and so account
information must be manually copied between DCE and participating
hosts.

As with DCE SIA and BSD security, SIA does not provide an
all-encompassing change password mechanism for SIA. But with Enhanced
Security, the local login mechanism must succeed, so if passwords are
inconsistent, integrated login is not achieved. When users run the passwd
utility to change their passwords, the system prompts the user to select one or
the other registry mechanism. The user must run passwd twice, to change the
password in both places. If passwords are inconsistent, the user may use the
local password to log in.

44 Gradient DCE for Tru64 UNIX Product Guide
3.7 Performance Considerations for DCE SIA
DCE SIA is a convenience feature that greatly simplifies account
administration and the acquisition of DCE credentials. However, its impact on
the performance of some UNIX security functions is worth noting in certain
cell and host configurations. In general, performance is constrained by a
characteristic of DCE SIA-enabled systems: whenever a BSD security
function is called, transparent DCE registry lookups can occur. Non-DCE
applications that run on the host can perform DCE registry lookups unawares,
with the result that certain functions (getpwent() and getgrent() in
particular) may take noticeably longer.

3.7.1 Performance of getpwent() and getgrent() Functions
DCE SIA affects the speed of the getpwent() and getgrent() functions.
When DCE SIA is not enabled, these operations result in a simple lookup in
the /etc/passwd and /etc/group files. When DCE SIA is enabled, each
invocation of these routines results in at least three process context switches, a
bind operation to a registry (that may be remote), and a registry lookup. If
performance is critical, an application or UNIX utility may need to be
modified to get this data directly from the UNIX files, unless DCE registry
data is specifically sought.

3.7.2 The Impact of DCE SIA on Login Performance
The UNIX login function, which is virtually instantaneous without DCE SIA,
now takes from between 2 to 5 seconds. This delay affects logins to all
accounts on a DCE SIA enabled host, even those that do not use the DCE
registry. In most cases, users will not care because the login is a single
operation performed once or twice a day.

However, some server applications, such as ftp, perform a system login as a
matter of course and for every client connect. If a server application performs
many hundreds of logins an hour, the performance of the application and the
system itself may degrade noticeably.

DCE SIA is not recommended on hosts where applications make extremely
heavy use of system login and registry query operations (such as getpwent()
and getgrent()). When administrators want such applications to use the DCE
registry, they can copy the DCE account and group data to the local system
registry by using the DCE passwd_export utility. The applications can then
get the DCE data from the local registry.

3.7.3 UID Management
When you create a DCE cell, you are responsible for managing the UIDs for
that cell. Having incompatible UIDs between the DCE registry and the local
password file is not a problem until either DCE DFS is available or DCE SIA
is enabled. The initial cell creation does not use UIDs that are already in use
on the local system. For its default accounts, DCE SIA uses UIDs 30 to 35 if
they are available. Other DCE implementations may use accounts in the range

Chapter 3 Security Integration Architecture 45
of 100 to 105. After cell creation, subsequent accounts in the DCE registry
use the next available UID. The minimum UID value used is controlled by the
rgy_edit command.

3.7.4 Executables in /sbin
The executables in the /sbin directory are statically linked. When DCE SIA is
enabled, executables such as /sbin/ls may not properly translate UIDs and
GIDs. To avoid this problem, use the executables in the /bin directory, which
are dynamically linked with the libc.so shareable image. You can do this by
putting /bin before /sbin in your PATH environment variable.

NOTE: The root account has /sbin its PATH by default.

3.7.5 rlogin
During rlogin to a host with DCE SIA enabled, if the incoming account has
an entry in the .rhosts file of the target account, no DCE credentials are
obtained and a warning message is displayed.

If the user’s home directory is specified in the DFS namespace, access to that
directory may be denied.

3.7.6 Changing root Password
If you change a machine’s root password, you should run the passwd
command twice, first to change it in the BSD location, /etc/passwd, then to
change it in the DCE registry location, /opt/dcelocal/etc/passwd_override. If
you change it in /etc/passwd but not passwd_override, you will see a DCE
informational message, when you attempt to enter the su command, that says
“Unable to validate/certify identify”. If you change it only in
passwd_override, the new password does not take effect.

3.7.7 Credentials Obtained for Intercell Login are Poorly Protected
When a user logs in as a principal of a foreign cell to a machine running DCE
SIA (or any other integrated login system that performs a local system login
on behalf of a DCE user), his or her UID identity on that machine is that of the
Kerberos cross cell proxy principal created for the foreign cell. If multiple
users log in to the same machine from the same cell, the local credential files
created for each are owned by the same UID. As a result, users from the same
cell can tamper with or borrow the credentials of others. Because exclusive
control of one’s credential files is an important part of DCE security, this
behavior may be unacceptable for some customers running multicell
environments who have strict security requirements.

46 Gradient DCE for Tru64 UNIX Product Guide
NOTE: This problem does not affect the trustworthiness of intercell credentials,
only those obtained during integrated login where other users from the same
cell are not trusted. Administrators can disable intercell login from a foreign
cell by setting the valid flag of the foreign cell principal to be not valid for
login.

3.8 Performance Considerations for Registry Replication
Registry replication is a method of achieving robustness and redundancy in
DCE cells. If one registry becomes unavailable, users or applications can rely
on other replicas for security information. Unfortunately, replication does not
always improve response, as DCE presently has no intelligent algorithm for
selecting the fastest replica to bind to.

During login, the DCE runtime may choose to bind to a replica in another
LAN (in the case of a multi-LAN cell), or time out waiting to connect to a
replica that is not operational. With DCE SIA enabled, this behavior may
present unacceptable delays in such routine UNIX shell commands as % ls -l.

You might consider the following guidelines and suggestions as ways to
minimize replication-related latencies:

■ You must actively monitor and maintain the availability of all replicas in
the cell. A sound strategy is to have two hosts per LAN that serve as
dedicated security replica servers, and to have a process that constantly
monitors the replicas to sense their availability. Because some registry
operations will bind first to a read-only replica, a multi-LAN cell should
have at least one additional read-only replica on the LAN that has the
master replica.

■ If the cell spans LANs, be aware of latencies that may be introduced if a
user in one LAN attempts to bind to and operate on a replica in another
LAN. You can avoid the CDS overhead of binding to a replica, and offer a
specific list of candidate replicas by inserting bindings in the pe_site file.
This technique requires administrative attentiveness and is not generally
recommended, but may be useful in some situations. Normally the pe_site
file is used only during configuration time, to facilitate access to a registry
server without reliance on CDS. It contains a hard coded list of registry
bindings, one being selected randomly during a site bind. Use of this file is
activated by setting the BIND_PE_SITE environment variable, and the
effect is only for the process in which the variable is declared. A pe_site
file is created when a host is configured, and placed in /opt/dcelocal/etc/
security.

■ Should you choose to define the BIND_PE_SITE environment variable,
as a regular DCE management strategy, you should monitor the status of
servers listed in the pe_site file. If a client goes to the pe_site file and is
unable to bind successfully, the client will simply fail to bind. There is no
fall-through to other registry servers that may be available.

Chapter 3 Security Integration Architecture 47
3.9 Group Override and the group_override File
This section describes how to use the group_override file and its effect on
local data.

3.9.1 Use of /opt/dcelocal/etc/group_override
Whenever a DCE host is initially configured, a group_override file is created
automatically in the /opt/dcelocal/etc directory. This file contains override
GIDs for the bin and kmem groups. Its purpose is to correct GID
inconsistencies between /etc/group on Tru64 UNIX systems and the registry
for these standard UNIX-style group names. Without this adjustment, a host
running DCE SIA reports incorrect group names for these standard group
UIDs with the ls\ -l command and produces other undesirable effects.

3.9.2 Effect of Local Override on Group Data
The new group override feature may affect local system routines, such as
groups and ls, that use group name attributes. The local group_override file
may override membership and GID attributes for group names stored in the
registry. System routines such as chgrp, which confer access rights based on
group membership, assign rights according to the following rule:

A user is given membership in a group in one of three ways:

■ When granted in /etc/group and the group name does not appear in the
registry

■ When granted on the group’s member list in the registry and no explicit
group_override file entry exits to prevent it

■ When a group override entry for a given group lists the user as a member

3.10 Additional Information
The following books provide more information about SIA and managing
security registries:

■ DIGITAL UNIX Guide to System Administration. This book provides a
detailed explanation of SIA.

■ OSF DCE Administration Guide — Core Components. The DCE Security
Service part provides information on performing routine maintenance and
importing UNIX accounts to DCE.

■ OSF DCE Command Reference. This book contains reference pages for
passwd_import(8sec), passwd_export(8sec), and
passwd_override(5sec).

C H A PT E R 4

Introduction to the
DCE Directory Service
4.1 Overview of DCE Directory Service
Distributed processing involves the interaction of multiple systems to do work
that is done on one system in a traditional computing environment. One
challenge resulting from this network-wide working environment is the need
for a universally consistent way to identify and locate people and resources
anywhere in the network.

The DCE Directory Service makes it possible to contact people and to use
resources such as disks, print queues, and servers anywhere in the network
without knowing their physical location. The directory service is much like a
telephone directory assistance service that provides a phone number when
given a person’s name. Given the unique name of a person, server, or
resource, it can return the network address and other information associated
with that name.

The DCE Directory Service stores addresses and other relevant information as
attributes of the name. For example, attributes can contain the name of an
organizational unit, such as European Sales; a location, such as the first floor
of Building A; or a telephone number. Users can search for a name by
supplying one or more of its attributes. For example, given the search criteria
of John Smith and Chicago, the directory service could produce a list of
telephone numbers for users in Chicago named John Smith.

NOTE: Search capabilities are currently limited to the global part of the DCE
Directory Service environment.

4.2 How the DCE Components Use the DCE Directory Service
The DCE Directory Service is a fundamental service that applications can rely
on and use to their advantage. This section describes how other DCE
components use the DCE Directory Service.

The DCE remote procedure call (RPC) interface facilitates the development
and use of distributed applications that follow a client/server model. In the
RPC model, clients are programs that make remote procedure calls, and
servers are programs that carry out the procedures. The DCE RPC software
stores information in the directory service about the addresses of RPC servers
and the interfaces they support.

50 Gradient DCE for Tru64 UNIX Product Guide
When an RPC client wants to make a call to a particular server, it can query
the directory service for the information necessary to contact that server. If the
client wants to access a specific resource that is named in the directory
service, it can query for that specific name. If a client application knows the
type of service that it wants, such as C compilers, printers, or employee
information, but does not know the address of a specific server, it can also use
the directory service to find that information.

The DCE Security Service, which verifies the identity of users when they log
in, uses the directory service to store the addresses of its authentication
servers.

The Distributed File Service (DFS) provides a location service for filesets
(logical groups of files) so that users can access remote files as if they are on
the local system. DFS uses the DCE Directory Service to find out how to
contact its fileset location servers.

The Distributed Time Service (DTS) is responsible for synchronizing system
clocks in the network. Synchronized clocks are important to any distributed
application that needs to keep track of the order in which events occur across
multiple systems. DTS uses the DCE Directory Service to find out how to
locate its time servers.

4.3 How to Use DCE Directory Services
Other than DCE administrators, the people who use directory services
normally do so indirectly, through an application interface. An application can
interact with the directory service on behalf of users who create a name for a
resource and subsequently refer to it by that name.

The following examples, both real and hypothetical, explain some of the ways
that users can use the directory service:

■ A user invokes a spell-checking application on a new document. The
application contains DCE RPC client code on the user’s local system. The
RPC client contacts the directory service for information on an available
spell-checking server. The directory service returns the address of the
server, the protocol type it uses to communicate, and a universal unique
identifier (UUID) that represents an interface. Using this information, the
RPC client makes a remote call to the server and the server checks the
spelling in the user’s document. The user is unaware that use of the spell
checker involved a call to the directory service and interaction with a
remote server.

■ A user logging into a system enters a name and password. The directory
service helps the login program locate an authentication server, which
verifies the user’s identity in an authentication database.

■ A user enters a file specification. The directory service provides the
address of a DFS fileset location database, which contains the network
address of a server that allows the user to access the file.

■ A user enters the name of a computer conference or electronic bulletin
board and the directory service provides an address, allowing the
application to connect to the conference service.

Chapter 4 Introduction to the DCE Directory Service 51
■ By entering a name or some information about a printer’s capabilities, a
user can learn the printer’s network address. For example, the user may
want to find the address of the closest and fastest available color printer.

■ A user needs information from an employee in the marketing department.
The user remembers that the employee’s last name is Wong, but cannot
remember the first name. By entering the last name and department name
in an employee locator application, the user can check the directory
service for information on all Wongs in the marketing department and find
out how to contact the employee.

■ A user enters a report in a problem-tracking database. Although the
database was recently moved to a new node, the user is not aware of the
change because the database is always referred to by its name only. The
directory service stores the current network address and provides it to the
problem-tracking application and any other application that requests it.

The remainder of this chapter explains how the DCE Directory Service
environment works with regard to cells. It introduces the main directory
service components: the Cell Directory Service (CDS), the Global Directory
Service (GDS), and the Global Directory Agent (GDA), which is a gateway
between the local and global naming environments. The chapter also
discusses DCE support for the Domain Name System (DNS) and LDAP
Server, which are global name services that are not parts of the DCE
technology offering.

4.4 Directory Services and the Cell Environment
This section introduces the following main components of the DCE naming
environment and explains their relationship to the cell:

■ CDS
■ GDS Client/Server
■ DNS
■ LDAP Client/Server
■ GDA

CDS is a high-performance distributed service that provides a consistent,
location-independent method for naming and using resources inside a cell
(intracell). CDS can also be used for communication between cells (intercell)
when cells are connected into a hierarchy.

GDS supports the global naming environment inside cells (intracell) and
outside of cells (intercell). GDS is an implementation of a directory service
standard known as X.500. This standard is specified by the International
Organization for Standardization (ISO) 9594 and the International Telegraph
and Telephone Consultative Committee (CCITT) X.500 series. Because it is
based on a worldwide standard, GDS offers the opportunity for a universally
interoperable global directory.

52 Gradient DCE for Tru64 UNIX Product Guide
The X.500 server is a server that will accept the directory access protocol
(DAP) from an X.500 client to access objects in its directory. In DCE, the
server is the GDS server and the client is the GDS client. The GDA
communicates with the GDS client via the XDS/XOM API. The GDS client
and server are based on the 1988 X.500 standard.

The LDAP client is a client that is implemented in two libraries, libldap.a and
liblber.a and they are shipped with DCE. The client is based on the University
of Michigan 3.3 source code. The LDAP client accepts the LDAP API from
the GDA and communicates with the LDAP server via the LDAP protocol.

The LDAP server is a server that will accept the LDAP protocol from an
LDAP client to access objects in its directory. The LDAP server may be an
X.500 server that also accepts the LDAP protocol or any proprietary directory
service that accepts the LDAP protocol. The LDAP server is not provided by
DCE and must be provided by the user. The GDA communicates with the
LDAP client via the LDAP API.

Figure 4-1 represents a hypothetical configuration of two cells that each use
X.500 or an LDAP server to access names in the other cell. Names that are
stored directly in X.500 or the LDAP Server also are accessible from each
cell. CDS is the directory service within each cell. The same organization
administers both cells, which are configured based on geographic location and
network topology.

Figure 4-1: Cell and Global Naming Environments

DNS is a widely used existing global name service for which DCE offers
support. Many networks currently use DNS primarily as a name service for
Internet host names. Although DNS is not a part of the DCE technology
offering, the directory service contains support for cells to interoperate
through DNS.

X500
GDS or
LDAP
server

CDS CDS

Cell 1 Cell 2

Chapter 4 Introduction to the DCE Directory Service 53
The GDA is the DCE component that makes cell interoperation possible. The
GDA enables CDS to access a name in another cell through one of the global
naming environments (X.500, LDAP, or DNS), or through the CDS of the
parent cell, if the cell is part of a hierarchical cell configuration. The GDA is
an independent process that can exist on a system separate from a CDS server,
although by default the DCE configuration script configures the GDA on the
same machine as a CDS server. CDS needs to be able to contact at least one
GDA to participate in the global naming environment.

Figure 4-2 shows how the GDA helps CDS access names outside of a cell.
When CDS determines that a name is not in its own cell, it passes the name to
a GDA, which searches the appropriate naming environment (CDS, X.500,
LDAP, or DNS) for more information about the name. The GDA returns
information that enables the original CDS server to contact the CDS server in
whose cell the name resides. The GDA can help CDS find names in a cell that
is registered in DNS (Scenario A), a cell that is registered in an X.500 or
LDAP server (Scenario B), or a cell that is registered in the originating cell’s
parent cell (not shown). The GDA decides which name service to use based
on the syntax of the name. Section 4.8.2 on page 58 describes name syntaxes
in detail.

NOTE: The interface between the GDA and the X.500, GDS, or LDAP server is
dependent on the type of server being used. The GDA uses the XDS/XOM
API to interface with the GDS client. The GDS client uses the DAP protocol
to interface with the X.500 Server. The GDA uses the LDAP API to interface
with the LDAP client. The LDAP client uses the LDAP protocol to interface
with the LDAP server.

Figure 4-2: Interaction of CDSs, GDAs, and Global Directory Services

DNS

GDA GDA

CDS CDS CDS CDS

 The GDA helps CDS resolve names:
Scenario A–in another cell that is registered in DNS
Scenario B–in another cell that is registered in GDS

Scenario A Scenario B

X500
GDS or
LDAP
server

5

41

2 3 2 3

41

5

54 Gradient DCE for Tru64 UNIX Product Guide
4.5 How Cells Determine Naming Environments
In addition to delineating security and administrative boundaries for users and
resources, cells determine the boundaries for sets of names. Because different
naming components operate in a cell and outside of a cell, naming
conventions in the cell and global environments differ as well. The DCE
naming environment supports two kinds of names: global names and
cell-relative, or local, names. The following subsections introduce the concept
of global and local names. Section 4.8.2 on page 58 describes CDS, GDS,
X.500, LDAP, and DNS names in detail.

4.5.1 Global Names
All entries in the DCE Directory Service have a global name that is
universally meaningful and usable from anywhere in the DCE naming
environment. The prefix /... indicates that a name is global. A global name can
refer to an object within a cell (named in CDS) or an object outside of a cell
(named in DNS), or an object outside of a cell (named in X.500).

The following example shows the global name for an entry in the X.500
namespace. The name represents user Ellie Bloggs, who works in the
administrative organization unit of the Widget organization, a British
corporation.

/.../C=GB/O=Widget/OU=Admin/CN=Ellie Bloggs

The X.500 name syntax consists of a global prefix /... and a set of elements,
called relative distinguished names (RDNs). Each RDN consists of one or
more pairs of parts separated by an = (equal sign) character. The items that are
separated by an equal sign are multiple attribute value assertions (AVAs). See
the OSF DCE GDS Administration Guide and Reference for more information
about AVAs. The first part of a pair is an abbreviation that indicates a type of
information. Some common abbreviations are Country (C), Organization (O),
Organization Unit (OU), and Common Name (CN). The second part of the
pair is a value. (See Section 4.9.1 on page 59 for more information on X.500
names.)

The following example shows a global name for a price database server
named in CDS. The server is used by the Portland sales branch of XYZ
Company, an organization in the United States.

Figure 4-3: Global Name in CDS

Cell name CDS name

/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_server1

Chapter 4 Introduction to the DCE Directory Service 55
As the example illustrates, global names for entries that are created in CDS
look slightly different from pure X.500 -style names. The first portion of the
name, /.../C=US/O=XYZ/OU=Portland, is a global cell name that exists in
an X.500 server or LDAP server. The remaining portion, /subsys/PriceMax/
price_server1, is a CDS name.

The cell name exists because cells must have names to be accessible in the
global naming environment. The GDA looks up the cell name in the process
of helping CDS in one cell find a name in another cell. Cell names are
established during initial configuration of the DCE components. Before
configuring a cell that will participate in standard intercell communication
(that is, the name is resolved via DNS, X.500, or LDAP server), the DCE
administrator must obtain a unique cell name from either of the global naming
environments, depending on whether the cell needs to be accessed through
X.500 or DNS.

NOTE: The GDA transforms an X.500 cell name to the LDAP name syntax if
using an LDAP server to access cell information.

The next example shows the global name of a host at ABC Corporation. The
global name of the company’s cell, /.../abc.com, exists in DNS.

Figure 4-4: Global Name Including a DNS Cell Name

4.5.2 Hierarchical Cell Names
In a hierarchy of cells, the names of one or more cells, called child cells, are
registered in a cell’s CDS; this cell is called the parent cell. The cell at the top
of the hierarchy must be registered in a global directory service (X.500,
LDAP, or DNS server), but the cells underneath do not need to be since they
use CDS to communicate. A child has one and only one parent at any given
time, while a parent can have more than one child.

The GDA is the communications gateway between the CDS namespaces of
cells in a hierarchy, as it is between CDS and the global directory services.
When the GDA receives a request for information about a cell, and the cell is
a child cell, the GDA returns information about the CDS in the parent cell.
The CDS of the parent cell provides the pointers to the child cell.

A child cell’s name begins with the parent’s global cell name; that is, the name
of the cell beginning at the global root /... prefix. (This name is also known as
the parent cell’s fully qualified name.) It ends with the specific child cell
name. The parent’s global name can contain CDS syntax as well as X.500 or
DNS syntax, depending on where the parent cell is located in the hierarchy.

The following example shows the global cell names of two child cells:

Cell name CDS name

/.../abc.com/hosts/mysystem

56 Gradient DCE for Tru64 UNIX Product Guide
Figure 4-5: Global Names and Child Cells

The global cell name for each child includes:

■ The parent’s global name, /.../C=US/O=XYZ/OU=Portland
■ The child’s unique CDS name, /Sales1 or /Marketing

If a DCE administrator is establishing a hierarchy of cells during initial cell
configuration, he or she must obtain a unique X.500 or DNS cell name for the
cell at the top of the hierarchy from the X.500 or DNS global directory service
authorities. All of the cells beneath this cell share this name. The OSF DCE
Administration Guide—Introduction provides details on how to obtain X.500
and DNS cell names.

If a DCE administrator establishes a hierarchy of cells after the cells have
been configured, the global names of the child cells change to point to the
parent’s cell name. The OSF DCE Administration Guide—Core Components
provides details on how to establish a hierarchy of cells.

4.6 Alias Cell Names
You can give a cell more than one global name by creating an alias name for
the cell. In this case, the cell has a primary name, which is the name that DCE
services return for the cell when queried, and one or more cell aliases that the
DCE services recognize in addition to the primary name. For example, if your
cell is registered in the DNS global directory service, and you want to register
it in X.500 as well, you obtain a X.500 name for the cell and set it up as a cell
alias. The DNS name remains the primary name.

Parent Global Cell Name

Global Cell Name for Sales1

Child Cell

/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/Sales1

Parent Global Cell Name

Global Cell Name for Marketing

Child Cell

/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/Marketing

Chapter 4 Introduction to the DCE Directory Service 57
Chapter 6 of the OSF DCE Administration Guide—Core Components
explains how to use the dcecp cellalias task object to manage your cell names.
Chapter 21 of the OSF DCE Administration Guide—Core Components
explains how to create a hierarchical cell.

4.7 Cell-Relative Naming in a Standalone Cell
In addition to their global names, all CDS entries have a cell-relative, or local,
name that is meaningful and usable only from within the local cell where that
entry exists. The local name is a shortened form of a global name, and thus is
a more convenient way to refer to resources within a user’s own cell. Local
names have the following characteristics:

■ They do not include a global cell name.
■ They begin with the /.: prefix.

Local names do not include a global cell name because the /.: prefix indicates
that the name being referred to is within the local cell. When CDS encounters
a /.: prefix on a name, it automatically replaces the prefix with the local cell’s
name, forming the global name. CDS can handle both global and local names,
but it is more convenient to use the local name when referring to a name in the
local cell. For example, these names are equally valid when used within the
cell named /.../C=US/O=XYZ/OU=Portland:

/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_server1

/.:/subsys/PriceMax/price_server1

The naming conventions required for the interaction of local and global
directory services may at first seem confusing. In an environment where
references to names outside of the local cell are necessary, the following
simple guidelines can help make the conventions easy to remember and use:

■ Know your cell name.

■ Know whether a name that you are referring to is in your cell.

■ When using a name that is within your cell, you can omit the cell name and
include the /.: prefix.

■ When using a name that is outside of your cell, enter its global syntax,
including the /... prefix and the cell name.

■ When someone asks for the name of a resource in your cell, give its global
name, including the /... prefix.

■ When storing a name in persistent storage (for example, in a shell script),
use its global name, including the /... prefix. Local names (that is, names
with a /.: prefix) are intended only for interactive use and should not be
stored. (If a local name is referenced from within a foreign cell, the /.:
prefix is resolved to the name of the foreign cell and the resulting name
lookup either fails or produces the wrong name.)

58 Gradient DCE for Tru64 UNIX Product Guide
4.8 Cell-Relative Naming in a Hierarchy of Cells
In a hierarchy of cells, cell-relative names and local names may not be the
same. A parent cell can reference a name in a child cell by using cell-relative
naming (/.:). Consequently, you can no longer determine whether a cell is in
your local cell by merely looking at its name. In the following example, the
child cell (eng) is named relative to its parent cell:

/.:/eng

This type of naming allows you to access names in a child cell (for example, /
.:/eng/hosts/admin) from the parent cell, without having to specify the global
name of the cell.

NOTE: When referencing names in a child cell from a parent cell, you should
be mindful that your status is that of a foreign user. Therefore, the child cell
may have access controls imposed on it that will deny you access to its
namespace.

4.8.1 Local Filenames
When referring to pathnames of files in the local cell, you can shorten a local
name even further by using the /: prefix. This prefix translates to the root of
the cell file system. The default name of the file system root is /.:/fs, which is
one level down from the root of the cell namespace. So, for example, the
following are all valid ways to refer to the same file from within the /.../
widget.com cell:

/.../widget.com/fs/smith/myfile
/.:/fs/smith/myfile
/:/smith/myfile

(See the OSF DCE DFS Administration Guide and Reference for more
information on local file system abbreviations.)

4.8.2 An In-Depth Analysis of DCE Names
The rest of this chapter describes in depth the different kinds of names that
make up the DCE namespace. The OSF DCE Administration Guide—Core
Components and the OSF DCE GDS Administration Guide and Reference
contain further details about valid characters and naming conventions in CDS,
GDS, and DNS names.

4.9 CDS Names
Every cell contains at least one server that is running a CDS server. A CDS
server stores and maintains names and handles requests to create, modify, and
look up data. The total collection of names shared by CDS servers in a cell is
called a cell namespace. The cell namespace administrator can organize CDS

Chapter 4 Introduction to the DCE Directory Service 59
names into a hierarchical structure of directories. CDS directories, which are
conceptually similar to the directories in your operating system’s file system,
are a logical way to group names for ease of management and use.

In a cell namespace, any directory that has a directory beneath it is considered
the parent of the directory beneath it. Any directory that has a directory above
it is considered a child of the directory above it. The top level of the cell
namespace is called the cell root. You can refer to the cell root either by the
global name of the cell or by the short-form /.: prefix.

Figure 4-6 shows a simple cell namespace hierarchy, starting at the cell root.
The cell root (/.:) is the parent of the directories named /.:/hosts and /.:/
subsys. The /.:/subsys directory is a child of the cell root directory and the
parent of the /.:/subsys/dce directory.

Figure 4-6: Sample CDS Namespace Hierarchy

The complete specification of a CDS name, going left to right from the cell
root to the entry being named, is called the full name. Each element within a
full name is separated by a / (slash) and is called a simple name. For example,
suppose the /.:/hosts directory, shown in Figure 4-6, contains an entry for a
host whose simple name is bargle. The CDS full name of that entry is /.:/
hosts/bargle. Multiple consecutive slashes are turned into a single slash in a
full name.

Multiple directory levels enable flexibility in distributing, controlling access
to, and managing many names. A directory hierarchy also reduces the
probability of duplicate names. For example, the names /.:/subsys/
Hypermax/printQ/server1 and /.:/subsys/ABC/spell/server1 are unique.

4.9.1 Names
The operation of X.500 is similar to that of CDS, but some important
differences exist in the structure of names and the ways they can be looked up.
Like CDS, X.500 and the LDAP Server have a server process that provides
access to and management of names for X.500. This process is called a
Directory System Agent (DSA). The combined knowledge of all DSAs that
participate in the same global directory service implementation is called the
Directory Information Base (DIB). This collective knowledge is viewed as a
single global directory consisting of many entries.

hosts subsys

dce

/.:

60 Gradient DCE for Tru64 UNIX Product Guide
Information exists in the X.500 global directory in the form of a rooted
hierarchy that is called a directory information tree (DIT). The DIT is similar
to a CDS namespace. However, unlike a namespace, which has no inherent
rules regarding structure and content, the X.500 hierarchy is influenced by a
set of rules that is called a schema. Every X.500 DSA must define a standard
schema to which all of the entries in its portion of the DIB conform.

Although the X.500 standard does not mandate a specific schema, it does
make general recommendations that are based largely on existing X.400
standards for electronic mail. For example, countries and organizations
should be named close to the root of the DIT; people, applications, and
devices should be named further down in the hierarchy. X.500 supplies a
default schema that complies with these recommendations.

Every X.500 entry has a distinguished name, which uniquely and
unambiguously identifies that entry. The distinguished name consists of a
sequence of valid relative distinguished names (RDNs). Each RDN consists
of one or more assertions of the type and value of an attribute at a particular
position in the DIT. Attribute types indicate the nature of the information that
is stored in the attribute value. A pair consisting of an attribute type and value
is known as an attribute value assertion (AVA). RDNs can have multiple
AVAs. For example, the distinguished name:

/C=us/O=osf/OU=branch1/CN=nollman,OU=doc-team

consists of four RDNs. The final RDN consists of two AVAs that are
separated by a comma.

Figure 4-7 illustrates the concepts of RDNs and distinguished names and how
they relate to the DIT. The figure shows the following:

■ A DIT consisting of a hierarchy of schema-defined attribute types
■ RDNs that result from assertions of an attribute type and value
■ Distinguished names that result from a concatenation of the RDNs

An X.500 name is understood by the GDA, and it contacts either an X.500
client (GDS) via the XDS/XOM API or an LDAP client via the LDAP API to
resolve the X.500 cell name.

The LDAP server contacted by the LDAP client may be proprietary or could
be an X.500 server that supports the LDAP access protocol. Therefore, you
may need to contact the supplier of your LDAP server for this information.

Chapter 4 Introduction to the DCE Directory Service 61
Figure 4-7: RDNs and Distinguished Names

The shaded boxes in the DIT represent the entries that are named in the
column labeled relative distinguished name. The schema dictates that
countries are named directly below the root, followed by organizations,
organization units, and names of users. Each attribute value that makes up an
RDN (and thus a distinguished name) is called a distinguished value.

As the rightmost column in Figure 4-7 illustrates, the distinguished name of
the entry at each level of the DIT is a concatenation of RDNs from the root of
the global directory to that entry’s level. The lowest entry in the hierarchy, /.../
C=US/O=ABC/OU=Sales/CN=Smith, represents the name of a user, John
Smith, who works in the sales division of ABC Company, an organization in
the United States. The abbreviated attribute type labels stand for Country (C),
Organization (O), Organization Unit (OU), and Common Name (CN).

Figure 4-7 shows the global DCE convention for distinguished names. Each
distinguished name starts with the representation of the global root (/...).
Attribute types and values are separated by equal signs, and RDNs are
separated by slashes. These conventions for specifying names are not
followed by all X.500 implementations. In addition, these conventions are
only used at the X.500 administration interface level. Internally, distinguished
names are specified in other ways.

The structure of X.500 names points out another important difference
between X.500 and CDS. A CDS name is distinct from its attributes; that is, it
consists of a string of directory names ending with the simple name of the
entry. In contrast, a X.500 name consists solely of a series of attribute types
and their values.

Figure 4-8 illustrates this difference in the construction of CDS and X.500
names. The CDS full name /.:/Admin/Personnel/Employee_DB is the
complete directory specification of an entry with the simple name
Employee_DB. Attributes and their values are not a part of the CDS full
name. The X.500 distinguished name /.../C=US/O=ABC/OU=Sales is a
concatenation of attribute types and values, one from each level of a DIT
schema.

DIT Relative Distinguised Name Distinguished Name

Schema-Defined
Attribute Type

Distinguished
Value

C = US

O = ABC

OU = Sales

CN = Smith

/.../C=US

/.../C=US/O=ABC

/.../C=US/O=ABC/OU=Sales

/.../C=US/O=ABC/OU=Sales/CN=Smith

62 Gradient DCE for Tru64 UNIX Product Guide
Figure 4-8: Comparison of CDS and X.500 Names

NOTE: The LDAP name /.../OU=Sales,O=ABC,C=US is not valid in DCE.
The name must be specified as an X.500 distinguished name (/.../C=US/
O=ABC/OU=Sales).

X.500 supports the ability to search for names by supplying the values of one
or more attributes. This results in what is called descriptive naming; in a
sense, users can describe the name they are looking for. Although the search
capability is valuable, it can be expensive and time consuming; so, X.500
allows users to restrict the scope of a search. Support for the search operation
is limited to the X.500 environment.

4.9.2 LDAP Names
The LDAP name contains the same information as an X.500 name, but differs
in its syntax. LDAP names start with the last RDN of an X.500 name and use
a comma (,) instead of a slash (/) for RDN separators. The following example
shows these differences:

X.500 name: /C=us/O=osf/OU=branch1/CN=nollman/OU=doc_team
LDAP name: OU=doc_team,CN=nollman,OU=branch1,O=osf,C=us

DCE only supports X.500 cell names. GDA will convert an X.500 cell name
to LDAP syntax when accessing an LDAP server via the LDAP client.

4.9.3 DNS Names
The DCE naming environment supports the version of DNS that is based on
Internet Request for Comments (RFC) 1034 and RFC 1035. Many networks
currently use DNS primarily as a name service for host names. The most
commonly used implementation of DNS is the Berkeley Internet Naming

/.:

Admin

Personnel

/...

C=US

O=ABC

Attribute
name

Attribute
value

Employee_DB

OU Sales

CDS full name:
/.:/Admin/Personnel/Employee_DB x.500 distinguished name:

/.../C=US/O=ABC/OU=Sales

LDAP distinguished name:
OU=Sales, O=ABC, C=US

Chapter 4 Introduction to the DCE Directory Service 63
Domain (BIND). The BIND namespace is a hierarchical tree with its topmost
levels under the control of the Network Information Center (NIC). (See the
OSF DCE Administration Guide—Introduction for information on how to
contact the NIC Domain Registrar to register a domain name.)

The names directly under the root of the BIND namespace include 2-letter
codes for countries, such as us and gb, as defined in ISO Standard 3166,
“Codes for the Representation of Names of Countries.” Other names one level
below the root include several generic administrative categories, such as com
(commercial), edu (educational), gov (government), and org (other
organizations). The owners of these names can grant permission to companies
and organizations to create new subordinate names. Figure 4-9 shows a
sample portion of the BIND namespace. (The double quotes indicate that the
root of the namespace has a null name and is not addressable.)

NOTE: Like CDS names, DNS names are not typed; that is, they do not consist
of pairs of attribute types and values.

Figure 4-9: Sample Portion of the BIND Namespace

A DNS name consists of a string of hierarchical names that are separated by .
(dots) and arranged right to left from the root of the namespace. For example,
the name ai.mit.edu represents the branch of the namespace owned by the
Massachusetts Institute of Technology artificial intelligence department.

NOTE: The order of elements in the name is the reverse of the order for CDS
and GDS names.

To use a DNS cell name as part of a global DCE name, specify the DNS name
intact between two slashes. For example, a cell whose DNS name is
ai.mit.edu might contain a directory whose CDS name is /.:/profiles. Users
should enter /.../ai.mit.edu/profiles to refer to the directory by its global
name.

com edu gov org gb

mit usc

" "

64 Gradient DCE for Tru64 UNIX Product Guide
4.9.4 Names Outside of the DCE Directory Service
Not all DCE names are stored directly in the DCE Directory Service. Some
services connect into the cell namespace by means of specialized CDS entries
called junctions. A junction entry contains binding information that enables a
client to connect to a server outside of the directory service.

For example, the security service keeps a database of principals (users and
servers) and information about them, such as their passwords. The default
name of the security service junction is /.:/sec.

The following example illustrates the parts of a global DCE principal name:

Figure 4-10: Global DCE Principal Name

The cell name, /.../C=US/O=ABC/OU=west, is a GDSan X.500 name. The
sec portion is the junction entry in CDS, and principals/mozart is a principal
name that is stored in the security service database.

Another service that uses junctions is DFS. The DFS fileset location service
keeps a database that maps DFS filesets to the servers where they reside. The
junction to this database has a default name of /.:/fs. The following example
illustrates the parts of a global DCE filename:

Figure 4-11: Global DCE Filename

The global name contains a DNS cell name, /.../ai.mit.edu. The fs portion is
the file system junction entry in CDS, and /users/mozart/myfile is the name
of a file.

Thus, the DCE namespace is a connected tree of many kinds of names from
many different sources. The GDA component of the directory service
provides connections out of the cell and to other cells through a global
namespace, such as GDS or X.500 or DNS. In a similar manner, junctions
enable connections downward from the cell namespace to other services.

Cell name
CDS
name

Security Service
name

/.../C=US/O=ABC/OU=west/sec/principals/mozart

Cell name
CDS
name File name

/.../ai.mit.edu/fs/users/mozart/myfile

C H A PT E R 5

Cell Directory Service
Enhancements
5.1 Overview of CDS Directory and Clearinghouse Operations
Product Name offers some enhancements that extend the capabilities provided
by OSF DCE Release 1.2.2 software. These enhancements include:

■ CDS directory and clearinghouse convenience operations
■ Enhanced CDS browser
■ CDS Enhanced Cache Memory Control
■ CDS Preferencing

CDS directory and clearinghouse convenience operations enable cell
administrators to easily reorganize CDS directories and subtrees and to
automate some tedious directory replication tasks.

5.1.1 Reorganizing Existing CDS Directory Replicas
After you have worked with a DCE cell for a period of time, you may observe
that new CDS directories have been created in one or more clearinghouses
within the cell.

When cells have multiple clearinghouses, CDS directory proliferation can
cause problems or have overhead not associated with single-clearinghouse
cells. For instance, at some point in the CDS directory hierarchy, master and
read-only replicas of directories can become disorganized with master
replicas spread among different or inappropriate clearinghouses.

For convenience in backing up your part of the namespace, you might want all
of the master replicas in your part of the namespace to reside in one
clearinghouse. With this strategy you need to back up a single clearinghouse
because master replicas contain the most recent updates to CDS.

Gradient DCE for Tru64 UNIX provides special options (-propagate and
-force) to the directory modify operation. These options reorganize master
and read-only replicas in a CDS subtree to match the directory configuration
of the subtree root directory that you name as an argument to the directory
modify operation.

Say a directory subtree’s replicas are spread among four clearinghouses
(CH_A, CH_B, CH_C, and CH_D) as shown in Table 5-1. In the table, the
master replica for /.:/subsys/dec/srvs/vsrv (the subtree root directory) is in
CH_A. However, master replicas for its descendants reside in CH_B and
CH_D. To back up the master CDS databases for this subtree, you must back
up clearinghouses CH_A, CH_B, and CH_D.

66 Gradient DCE for Tru64 UNIX Product Guide
You can perform a directory modify operation to reorganize all master and
read-only directories to be in the same clearinghouse as the subtree root
directory. Once all master replicas are in the same clearinghouse (CH_A in
our example), you need only back up clearinghouse A.

Items 1, 2, 3, and 4 depict the master directory organization before
reorganizing them with the directory modify operation. Item 5 illustrates the
results of the following directory modify operation:

% directory modify /.:/subsys/dec/srvs/vsrv -propagate -force

Note that the preceding directory modify operation removes the replica from
clearinghouse C (CH_C) because the root directory (/.:/subsys/dec/srvs/vsrv)
has no replicas in clearinghouse C.

5.1.2 Creating Additional CDS Directory Replicas
You can also use a directory modify -propagate operation to automate the
manual steps formerly needed to create additional (read-only) replicas of new
directories you have created. This operation creates read-only replicas of the
new directory. Note that this operation also affects any siblings of the new
directory and all of their descendants.

When you create a new directory or directory subtree in a CDS clearinghouse,
the directory create operation creates only the master replica. By default, the
replica is created in the same clearinghouse where the parent directory’s
master replica resides.

You can use a directory modify -propagate operation to create read-only
replicas of the new directory or directory subtree. The new replicas will be
created and organized so that their master and read-only replicas will be in the
same clearinghouses as the subtree root directory (the parent directory) which
you name as the argument to the directory modify operation.

The next table illustrates the behavior of the directory modify -propagate
operation used for creating read-only replicas of a new directory.

Table 5-1: Reorganizing Existing CDS Directory Replicas

Item Description CH_A CH_B CH_C CH_D

1 /.:/subsys/dec/srvs/vsrv
(subtree root) configuration

master r-only r-only

2 /.:/subsys/dec/srvs/vsrv/vdat1 r-only master r-only

3 /.:/subsys/dec/srvs/vsrv/vdat2 r-only r-only master

4 /.:/subsys/dec/srvs/vsrv/vdat3 r-only r-only r-only master

5 All directories in subtree master r-only r-only

Chapter 5 Cell Directory Service Enhancements 67
Item 1 shows the initial configuration of the parent directory. The master
replica is in clearinghouse A (CH_A). Read-only replicas of the parent
directory reside in clearinghouses B and D. Clearinghouse C does not contain
any replicas of the parent directory.

Item 2a illustrates the result of the default directory create operation which
creates the new directory in the same clearinghouse where the parent
directory’s master replica resides. Default means not specifying an alternative
clearinghouse in which to create the new directory.

Item 2b shows the results of the directory modify -propagate operation
which creates master and read-only directory replicas in the same
clearinghouses that contain the parent’s master and read-only directory
replicas.

Item 3a illustrates the result of a directory create operation which creates the
new directory in a different clearinghouse than where the parent directory’s
master replica resides. An optional -clearinghouse option to the directory
create operation specifies to create the new directory in clearinghouse B.

Item 3b shows the results of the directory modify -propagate -force
operation. Here, the -force option must be used. Otherwise, an error occurs
because the new directory’s master replica is in a different clearinghouse than
the parent directory’s master replica. The -force option performs an extra step,
causing the new directory master and read-only replicas to conform to the
same configuration as the parent directory replicas.

The directory modify -propagate operation affects all the descendant
directories of the named directory. For example, assume your cell has the
following subtree configuration:

/.:/subdir1/subdir2/newdir1
/.:/subdir1/subdir2/olddir1/oldsubdir1
/.:/subdir1/subdir2/olddir2/oldsubdir2

The following operation organizes the replicas of all three child directories (
newdir1 , olddir1 , and olddir2) and their descendant directories to match
the master and read-only replica configuration of the parent directory (/.:/
subdir1/subdir2) which is named in the operation.

% directory modify /.:/subdir1/subdir2 -propagate -force

Table 5-2: Creating Additional CDS Directory Replicas

Item Description CH_A CH_B CH_C CH_D

1 Initial parent replica
configuration

master r-only r-only

2a Create new child directory
using default

master

2b Use -propagate option master r-only r-only

3a Create new child directory
using default

master

3b Use -propagate -force options master r-only r-only

68 Gradient DCE for Tru64 UNIX Product Guide
Of course you can have the master replicas of child directories in different
clearinghouses than their parent’s master replicas. However you must
manually create any read-only replicas using separate directory create
operations for each replica you want to create.

5.2 Enhanced Browser
The Browser is a Motif-based tool for viewing the CDS namespace. The
Browser can display an overall directory structure as well as show the
contents of directories, enabling you to monitor growth in the size and number
of directories in your namespace. You can customize the Browser so that it
displays only a specific class of object names. The Gradient DCE for Tru64
UNIX Enhanced Browser contains some additional functions beyond those
contained in the OSF DCE Version 1.1 Browser.

5.2.1 Displaying the Namespace
When you start the Browser, an icon representing the root directory is the first
item to appear in the window. Directories, soft links, and object entries all
have distinct icons associated with them. Most object entries have unique
icons based on their class; the class indicates the type of resource that the
entry represents (for example, clearinghouse object entries). When the
Browser does not recognize the class of an entry, it displays a generic icon.

The following figure shows the Enhanced Browser icons and what they
represent.

Figure 5-1: Enanced Browser Icons

5.2.2 Filtering the Namespace Display
Using the Filters menu, you can selectively display object entries of a
particular class. With the Enhanced Browser, you can choose from either the
RPC_Class or CDS_Clearinghouse object classes. For example, if you are
interested in seeing the entries for clearinghouse objects only, choose the class

Directory

Object entry (generic)

Soft Link

Clearinghouse object entry

Group

Icon Entry Type

Chapter 5 Cell Directory Service Enhancements 69
CDS_Clearinghouse from the Filters menu. If you are interested in seeing
object entries used in the name service interface (NSI), choose RPC_Class.
You can filter only one object class at a time.

Setting a filter does not affect the current display, but when you next expand a
directory, you see only object entries whose class matches the filter. Note that
soft links and directories still appear because only object entries can be
filtered out. To reset the filter to view all object entries, choose the asterisk (*)
from the Filters menu.

For a full description of the Browser, see the CDS part in the OSF DCE
Administration Guide — Core Components.

5.3 CDS Enhanced Cache Memory Control
Two options for the cdscache discard command allow administrators to
control the release of memory from the cache clerk without having to stop and
shut down DCE. The new options -entry and -replica specify structures in the
cache for deletion. The following command shows how to delete a replica:

dcecp -c cdscache discard -replica /.:/foo_ch

where foo_ch should be replaced by a valid clearinghouse name.

5.4 CDS Clearinghouse Preferences
With this release, CDS is able to make more intelligent choices about which
clearinghouse to contact in satisfying a user request. This has the potential of
greatly improving performance, depending on your cell configuration. Each
client machine ranks clearinghouses in the order in which they should be
contacted by the client for CDS information. Default behavior prioritizes
those located “closest” to the client on the network. However, the
administrator of a client node can override the default rankings.

This enhancement is useful in situations where, for example, there are
multiple high-performance LANs, each with its own CDS server, connected
by a low-performance WAN. With this feature, the clearinghouse with the
best ranking is the one on the machine with the server, followed by one on the
same LAN with the client. Local clearinghouses are preferred over distant
clearinghouses. Clients use distant clearinghouses only when local
clearinghouses cannot satisfy a request. The administrator can override the
defaults as needed.

Clearinghouse preferences are achieved by assigning a numeric rank to each
clearinghouse. A rank is a 16-bit unsigned integer (range 0-65535). Lower
numbers are preferred over higher numbers (and a rank of 65535 means “don't
ever use this clearinghouse”).

To override defaults, ranks must be specified in a text file called opt/dcelocal/
etc/cds_serv_pref. The format of the file is one clearinghouse name and one
rank on each line of the file. Blank lines and comments (“#” to the end of the
line) are ignored. Ranks can be 0-65535 (0x0000-0xffff) and can be specified
in decimal, octal (with leading “0”), or hex (with leading “0x”).
Clearinghouse names can be in any of the following formats:

70 Gradient DCE for Tru64 UNIX Product Guide
/.../cellname/foo_ch
/foo_ch
foo_ch
/.:/foo_ch

If the clearinghouse’s cell name is not specified, the local cell is assumed.

Example file:

/.:/foo_ch 50 # most preferred clearinghouse
/.:/bar_ch 100
/.../mycellname/baz_ch 100

If a clearinghouse is not mentioned in the preferences file, a rank is calculated
for it. Thus, you need to specify rank for a clearinghouse only when you want
to override its default rank.

The default ranks are calculated based on IP address:

■ Clearinghouses with addresses that match the local host address get a
default rank of 5000.

■ Clearinghouses on the same IP subnet as the local host get a default rank of
20000.

■ Clearinghouses on the same IP network as the local host get a default rank
of 30000.

■ All other clearinghouses get a default rank of 40000.

The clearinghouse preferences file is read upon cdsadv startup and the values
are cached. If you change rank values, you must stop the CDS client, remove
the cache, then restart the CDS client.

The following commands now include a rank attribute:

dcecp -c cdscache show -clearinghouse /.:/foo_ch
cdscp show cached clearinghouse /.:/foo_ch

where foo_ch should be replaced by a valid clearinghouse name.

C H A PT E R 6

LDAP Capabilities
6.1 Overview of LDAP
The Lightweight Directory Access Protocol (LDAP) provides access to the
X.500 directory service without the overhead of the full Directory Access
Protocol (DAP). The simplicity of LDAP, along with the powerful capabilities
it inherits from DAP, has made it a defacto standard for Internet directory
services.

DCE has relied on CDS to provide both intra-cell and inter-cell directory
service. Inside a cell, the directory service is accessed mostly through the
name service interface (NSI), implemented as part of the runtime library.
Cross-cell directory service is controlled by a global directory agent (GDA),
which looks up foreign cell information on behalf of the application in either
the Domain Naming Service (DNS) or X.500 database. Once that information
is obtained, the application contacts the foreign CDS in the same way as the
local CDS.

DCE gains LDAP support for both NSI and GDA. From an application
standpoint, any application within NSI can now reach the LDAP directory
service. From a GDA standpoint, GDA can now look up foreign cell
information by communicating through LDAP to either an LDAP-aware
X.500 directory service or a standalone LDAP directory service, in addition to
DNS and DAP.

This release provides LDAP as an optional directory service that is
independent of CDS. From an application standpoint, it duplicates CDS
functionality. LDAP does not replace CDS as the directory service for DCE
nor does it coexist with CDS Version 3.0 of DCE for Compaq Tru64 UNIX .
LDAP is provided as an option for customers looking for an alternative that
offers TCP/IP and internet support.

Gradient DCE for Tru64 UNIX does not automatically install LDAP. Prior to
installing DCE, a DCE administrator must obtain LDAP software and install
it as an LDAP server in the environment. Next, a DCE administrator must
choose LDAP during the DCE installation and configuration procedure and
configure LDAP directory service for a cell. Once LDAP is configured,
applications can request directory services from either CDS or LDAP, or both.
Whether or not LDAP is configured, DCE system processes continue to rely
on CDS to provide directory service.

72 Gradient DCE for Tru64 UNIX Product Guide
6.2 How NSI Works
NSI stores and retrieves RPC binding, group, and profile information in either
the CDS directory service or LDAP, or both.

NSI implements the name service switch (NSS), which selects among
configured directory services when executing an NSI call.

Exactly which name service(s) are selected by NSS depends upon the name
and syntax arguments to the NSI call, the NSI runtime configuration options,
and the nature of the call itself, as shown in Figure 6-1

Figure 6-1: NSI Architecture

6.2.1 LDAP Syntax
In addition to the CDS syntax, rpc_c_ns_syntax_dce (previously supported
by NSI), the LDAP-enabled NSI supports a new name syntax,
rpc_c_ns_syntax_ldap.

If this new syntax is specified in an NSI call, the corresponding name must be
an LDAP Distinguished Name (DN), which NSI uses to obtain information
from the LDAP directory service.

If the CDS syntax is used in an NSI call, it is not apparent from the syntax
which directory service, LDAP or CDS, is to be contacted. The run-time NSI
configuration options and the nature of the call join in the decision. If LDAP
is selected, NSS translates the name from CDS syntax to LDAP syntax. The
purpose of the syntax translator is to make LDAP accessible from
applications using a CDS syntax.

NSI API

CDS NSI LDAP NSI

CDS Clerk
CDS Advertiser

CDS Server LDAP Server

NSS

Chapter 6 LDAP Capabilities 73
6.2.2 NSI Configuration
A one-time initialization executes when an application accesses NSI for the
first time. The initialization determines which name services the application
wants to use and the priority of each name service. The easiest way to provide
the required information is with a configuration file.

If the LDAP name service is specified, the initialization must be able to find
the address of the host where the LDAP server is running, the port it is
listening on, and the cell name mapping from DNS or X.500 syntax to LDAP
syntax. If more than one name service is configured, the export mode that
determines if updates need to be sent to all name services has to be specified.

The environment variable RPC_CONFIG_FILE can be used to specify a
configuration file. A configuration file can specify a DNS name to query for
configuration information, allowing central control of client configuration.
Storing LDAP configuration information in the TXT records of a DNS name
is the recommended way of configuring the LDAP NSI.

Here is the recommended way to use a configuration file for LDAP:

1 Choose a DNS name. (Consult with the DNS administrator.)

2 Store the configuration information in the TXT records of a DNS name for
use before the first process that uses RPC is executed.

3 Create a file using the LDAP NSI configuration file syntax, and include all
the options and values appropriate to your site, as explained in the next
section.

4 Ask the DNS administrator to create a TXT record for each line in this file
and to add these TXT records to the set of records belonging to the domain
name you chose.

5 Use the RPC_CONFIG_FILE environment variable to specify the
location of the file you want to be the configuration file. This file contains
only a single line, specifying the target DNS name you chose previously:

RPC_NS_DNS_CONFIG_INFO domain_name

The syntax of the LDAP NSI configuration file maps easily to a set of
attribute type/value pairs. The pairs are described in the next section.

6.2.3 Configuration File Format and Syntax
The configuration file contains values for various configuration options used
by the NSI runtime library. Each line of the file is of the following form:

config_option_name config_option_value

If multiple values are specified for a particular configuration option separated
by a tab or a space character. Each value must be specified as a separate
option name/option value pair on a separate line.

The following table describes the possible values for the config_option_name
and config_option_value fields in the LDAP configuration file.

74 Gradient DCE for Tru64 UNIX Product Guide
6.2.4 NSI Call Categorization
Usually, an NSI call is either read or write. A read NSI call obtains
information from the directory service but makes no changes. A write call
creates, deletes, or updates a directory. An example of the read NSI call is
rpc_ns_binding_lookup_next. The call rpc_ns_binding_export is an
example of write NSI call.

NSI calls that are neither read nor write calls are miscellaneous calls, of which
an example is rpc_ns_binding_select.

Table 6-1: LDAP NSI Configuration Options and Values

config_option_name config_option_value

RPC_NS_NAME_SERVI
CE

integer: l 100 CDS|LDAP
An integer priority value followed by the name of a name service
known to the NSI. Currently, the only known services are CDS and
LDAP. Multiple name services may be configured and are tried in
priority order subject to the service selection rules. Lower priority
values indicate higher priority

No default. At least one name service must be specified. Multiple
name services may be specified, if desired. If the same name
service is specified more than once, the last priority value specified
is used. If more than one name service has the same priority value,
it is undefined which service has (effectively) the highest priority.

RPC_NS_EXPORT_MOD
E

write_one|write_all
Specifies whether export operations should write only to the first
possible name service or all possible name services. Services are
tried in priority order.

Default is write_one; in the case that the option is specified
multiple times, only the last-specified value is used

RPC_NS_LDAP_SERVE
R

hostname_or_ip_addr[:port]

The name or IP address of an LDAP server to which the NSI can
connect. The appropriate port number may also be specified.

The default port number (389) is used if another is not specified.
Multiple LDAP servers can be specified, but only the first
specified server will be used.

RPC_NS_LDAP_CELLM
APPING

dce_cell_name ldap_dn

Associates the ldap_dn with the dce_cell_name so that names in
the specified cell are searched for in the specified LDAP subtree.

No default. Multiple options may be specified; if multiple
mappings for the same cellname are specified, the last-specified
mapping is used.

RPC_NS_DNS_CONFIG
_INFO

domain_name

A domain name the NSI can query to obtain configuration
information. This domain name should possess TXT records
formatted exactly like lines in the configuration file: each TXT
record has an initial config_option_name followed by white space
and a config_option_value.

No default. Multiple options may be specified; the effect is to read
each specified DNS name for configuration information.

Chapter 6 LDAP Capabilities 75
A read NSI call completes when the information is obtained from a
configured directory service. NSI does not guarantee the consistency of
information between different configured name services.

A write NSI call may or may not complete when the operation succeeds in
one configured directory service, depending on the export mode run-time
configuration option.

6.2.5 Name Service Selection
For a read NSI call, the following pseudocode describes the NSS selection
algorithm:

for each configured name service in the specified priority {
if the name is in the native syntax of the name service {
 or
 a translation routine exists to the native syntax {
append the name service to the trial list
}
}

if there is no name services on the trial list {
return rpc_s_name_service_unavailble
}

for each name service on the trial list {
make the call
if the call succeeds {
return success
} else if the call fails with other than rpc_s_entry_not_found {
return the error
} else if there is no more name services {
return rpc_s_entry_not_found
}
}
For a write NSI call, the following pseudocode describes the NSS selection
algorithm:
for each configured name service in the specified priority {
if the name is in the native syntax of the name service {
 or
 a translation routine exists to the native syntax {
append the name service to the trial list
}
}

if there is no name services on the trial list {
return rpc_s_name_service_unavailble
}

for each name service on the trial list {
make the call
if the call succeeds {
if export mode is to update one name service {
return success
}

76 Gradient DCE for Tru64 UNIX Product Guide
} else {
return the error
}
}

Among the read NSI calls, contexts provide a way to maintain information
across successive calls. An example of a read NSI call with context is
rpc_ns_binding_lookup_next. The context is built in a previous
rpc_ns_binding_lookup_begin and destroyed in
rpc_ns_binding_lookup_done. NSS manages calls to assure that only the
call to construct the context runs the selection algorithm. Successive calls
bypass the algorithm and use the same selected name service.

6.2.6 Name Translation from CDS to LDAP
The NSI controls the CDS-syntax-to-LDAP-syntax translation of names.
CDS-to-LDAP translation supports applications using the LDAP directory
service with names based on CDS syntax. Another, larger purpose of name
translation is to separate applications from dependence on particular directory
services.

A configuration file controls NSI. A specific DCE cell name is associated
with the DN of a subtree in the LDAP name space. The mapping of a DCE
cell name in either DNS or X.500 style to the distinguished name (DN) must
be provided in the NSI configuration file.

To translate a name in CDS syntax to LDAP syntax, the cell name part is
translated using the mapping(s) specified in the NSI configuration file. The
cell relative part is transformed with the order of the component names
reversed. The component name is prefixed with cn=, commas are substituted
for slash separators. Quoted special characters in CDS, and unquoted and
unquoted special characters in LDAP, are quoted.

For example, if the mapping between /.../dce.mycompany.com and
ou=dce,o=mycompany,c=us is defined, the name /.../dce.mycompany.com/
foo/bar is translated as cn=bar,cn=foo,ou=dce,o=mycompany,c=us. The name
/.../dce.mycompany.com/foo=bar is translated as
cn=foo\=bar,ou=dce,o=mycompany,c=us. Note the handling of special
characters in the second example.

6.3 Using NSI
This section describes NSI configuration issues and possible differences
between CDS and LDAP.

6.3.1 Modifying Runtime Configuration Options
The NSI initialization process first checks if a value (file name) is set for the
environment variable, RPC_CONFIG_FILE. If it finds the environment
variable and the name of a file, the contents of the file is used to initialize the
NSI. If no environment variable is present, the NSI initialization process
looks for the default system runtime configuration file, /opt/dcelocal/etc/
rpc.conf.

Chapter 6 LDAP Capabilities 77
If neither the default configuration file nor the environment variable exists,
NSI initialization fails with the error status rpc_s_file_not_found. If the file
is not in the format as described earlier or is corrupted, NSI initialization fails
with error status rpc_s_invalid_file_format.

Note that the default configuration file is very important. Modifying the
default configuration file, /opt/dcelocal/etc/rpc.conf, affects configuration
options for all DCE processes on the same host machine.

DCE installation configures CDS. DCE system processes rely on CDS to
provide directory service security and reliability. Poorly-considered changes
to the system defaults in the NSI configuration file can have particular
consequences for the security daemon and CDS advertiser, and thereby
compromise a DCE cell.

Please note that it is strongly recommended that you leave the default
configuration file unchanged. Instead, use the environment variable
RPC_CONFIG_FILE to alter runtime NSI configuration options. By
providing a user-specified configuration file rather than altering the system
default file, you safeguard an environment in which CDS and LDAP can
continue to work properly.

6.3.2 Application Programming
For the sake of source and binary compatibility, the application programming
interface (API) for the name service is unchanged. Note that an application
might behave differently if LDAP is configured. A difference may result from
LDAP itself or the availability of multiple name services.

A programmer must keep several things in mind:

■ CDS is a directory service that has no schema support. Any kind of data
can be written to any kind of entry. Although users are advised to follow
certain styles, they are not required to do so. LDAP mandates the use of
schema, as X.500 does. It is likely that if a program does not follow the
style and it succeeds in CDS, it might fail with LDAP configured.

■ Security is not supported in LDAP in Gradient DCE for Tru64 UNIX. All
NSI calls are unauthenticated. The NSI call rpc_ns_set_authn has no
effect on LDAP operations.

■ NSI calls for setting expiration ages have no effect on LDAP operations as
LDAP does not support caching.

■ LDAP does not guarantee consistency among different directory services.
Searching an entry in the LDAP directory service can return completely
different results from the corresponding entry in CDS. Also, setting export
mode to updating all configured directory services does not guarantee
transactional behavior, which means the update procedure may succeed in
one directory service and fail in another one and not try yet others.

To use multiple directory services, the understanding of NSS selection
algorithms is essential.

78 Gradient DCE for Tru64 UNIX Product Guide
6.3.3 NSI Known Limitations

6.3.3.1 Security

LDAP NSI offers no support for security. The lack of security makes an
LDAP directory service vulnerable to spoofing or denial of service attacks.

6.3.3.2 Schema

Although CDS does not support schemas, it does support the following
concepts:

■ Default Entry Stores bindings
■ UUID Entry Stores universal unique identifiers
■ Group Entry Stores members information
■ Profile Entry Stores profile elements

In LDAP, the object schema implements those same concepts and reinforces
them.

As a result of the schema, certain kinds of data can only be exported to certain
kinds of entries. For example, bindings cannot be exported to group entries
and group members cannot be exported to profile entries. If an LDAP NSI
operation is called for an incompatible kind of entry, the call fails with
rpc_s_entry_not_found even if the entry indeed exists in the name space.

However, both CDS and LDAP support the notion of “upgrade.” Namely, one
can perform operations that are permissible to a server entry on a default
entry, in which case the default entry is “upgraded” to a server entry. The
same applies to group entry and profile entry.

There is one exception to the rule. In CDS, it is legal to export only UUIDs to
a default entry, but this is not allowed in LDAP. Because the default entry
does not allow UUIDs, LDAP would have to “upgrade” it. But both server
entry and group entry allow UUIDs, there is no way of knowing which type of
entry to “upgrade” to. This implementation of LDAP NSI chooses to return an
error in an ambiguous case like this.

6.3.3.3 Schema for Storing RPC Entries in a Directory Service

This section defines a schema that conforms closely to the DCE conceptual
model for RPC entries. This schema allows an RPC NSI implementation to
use LDAP to store RPC entries and to use LDAP queries to implement the
RPC NSI lookup APIs.

The implementation supports three kinds of RPC Name Service Entries:

■ Server Entries—Support the retrieval of a set of string bindings for any
combination of Entry Name, Interface ID and version, Object ID, Transfer
Syntax, and transfer syntax version.

■ Group Entries—A set of RPC entries identified by an Entry name.

■ Profile Entries—A profile establishes a priority-based search order
through a set of entries. This is essentially a “list of sets” with the outer list
ordered by priority and each inner set at the current priority.

Chapter 6 LDAP Capabilities 79
DCE RPC defines the concept of a “mixed entry” in which a single entry
serves multiple purposes—for example, entries that serve as both Group and
Server entries. Mixed entries are not supported by this schema. This
seldom-used DCE RPC feature leads to unnecessary complexity for both
implementers and users of the RPC NSI.

To meet these requirements, a schema defines six object classes:

■ rpcEntry
■ rpcGroup
■ rpcServer
■ rpcServerElement
■ rpcProfile
■ rpcProfileElement

A schema also defines nine attribute types:

■ rpcNsObJectID
■ rpcNsGroup
■ rpcNsPriority
■ rpcNsProfileEntry
■ rpcNsInterfaceID
■ rpcNsAnnotation
■ rpcNsCodeset
■ rpcNsBindings
■ rpcNsTransferSyntax

Taken together, these object classes and attributes implement the DCE-RPC
concept of an entry.

The rpcEntry object class is the class from which all other RPC objects
derive, so that they may be easily located in a search.

An rpcGroup, rpcServer, or rpcProfile object forms the “root” of an entry.
The type of entry is determined by the object class. Note that the types are
mutually exclusive; an entry cannot serve multiple purposes. Separating the
entry types into distinct object classes, as shown in Table 6-2, simplifies the
task of the NSI provider in determining how to handle a given entry.

6.3.4 Objects and Attributes
The following treats a number of items for programmers.

Table 6-2: Entry Types and Object Groups

Entry Type Object Class(es)

Group rpcGroup holds a set of references to other rpcEntry objects

Profile rpcProfile, a container holding a set of rpcProfileEntry objects, each
holding a list of references to entries with a given priority

Server rpcServer, a container holding a set of rpcServerElement objects, each
holding the identification of one or more interfaces (and/or objects)
offered by a given server

80 Gradient DCE for Tru64 UNIX Product Guide
6.3.4.1 Notation

The notation used in this document is the same as that used in Lightweight
Directory Access Protocol: Standard and Pilot Attribute Definitions, with the
following difference: the referenced notation does not allow the expression of
both permissible parentage and class inheritance. The BNF in the cited draft
for defining object classes is therefore extended as follows:

<ObjectClassDescription> ::= “(“
<oid> -- ObjectClass ldentifier
[”NAME” <DirectoryStrings>]
[”DESC” <DirectoryStrings>]
[“OBSOLETE”]
[·”SUP” <oids>] – ObjectClass[es] from which this class is derived
[·”PARENT” <oids>] - Permissible parents of this object class
[(·”ABSTRACT” | ·”STRUCTURAL” | ·”AUXILIARY”)]
[·”MUST” <oids>] -- AttributeTypes
[·”MAY” <oids>] -- AttributeTypes
“)”

6.3.4.2 Object Naming

All objects have cn (common name) as their naming attribute; this attribute
provides the RDN for the object.

6.3.4.3 Object Definitions

In addition to the object classes listed in the sections below as allowed
parents, there must be at least one other object class allowed as a parent to
root the tree. Furthermore, we recommend that the following object classes
also be allowed to parent RPC object classes:

■ country
■ organization
■ organizational Unit
■ locality
■ container

These object classes are included in the Lightweight Directory Access
Protocol: Standard and Pilot Attribute Definitions, an ETF standard
document, still in progress.

6.3.4.4 RPC Entry

The RPC Entry is the class from which all other RPC classes are derived.

(1.2.840.113556.1.5.27
NAME 'rpcEntry'
SUP top
PARENT (rpcEntry $ rpcGroup $ rpcProfile $ rpcServer)
STRUCTURAL
MUST cn
)

Chapter 6 LDAP Capabilities 81
NOTE: The implementation treats rpcEntry as a structural, rather than an
abstract, object class.

6.3.4.5 RPC Group

The rpcGroup object defines an RPC Group. The cn is the RDN
component of the entry name provided by the user in the NSI API call that
creates the group. The rpcNsObjectID attribute contains string UUIDs of
objects added to the group entry by applications. These object IDs are not
used by the NSI provider during lookup operations.

(1.2.840.113556.1.5.80
NAME ’rpcGroup’
SUP rpcEntry
PARENT (rpcEntry $ rpcGroup $ rpcProfile $ rpcServer)
STRUCTURAL
MAY rpcNsGroup
MAY rpcNsObjectID
)

The next-to-last code line, MAY rpcNsGroup, is changed here from the Open
Group specification, which uses MUST. To make the attribute rpcNsGroup
mandatory not only disallows the notion of empty groups, but also makes
deleting a last member of a group impossible. Because both those operations
must be supported by DCE, it is best to make the rpcNsGroup attribute
optional instead of mandatory.

6.3.4.6 RPC Profile

RPC Profile entries are implemented by two object classes. The rpcProfile
object class is a container used to gather profile elements into a single profile
instance. The cn is the RDN component of the entry name provided by the
user in the NSI API call that creates the profile.

(1. 2 . 840.113556.1.5.82
NAME ’rpcProflle’
SUP rpcEntry
PARENT (rpcEntry $ rpcGroup $ rpcProflle $ rpcserver)
STRUCTURAL
)

The rpcProfileElement object describes a single element in the profile. The
entire profile is retrieved with a single-level LDAP search rooted at the parent
rpcProfile container. The cn is a string UUID generated by the NSI provider
when the rpcProfileElement instance is created.

(1.2.840.113556.1.5.26
NAME ’rpcProfileElement’
SUP rpcEntry
PARENT rpcProfile
STRUCTURAL
MUST (rpcNsPriorlty $ rpcNsProfileEnt an $ rpcNsInterfacQId)
MAY rpcNsAnnotation
)

82 Gradient DCE for Tru64 UNIX Product Guide
6.3.4.7 RPC Server

RPC Server entries are implemented by two object classes. The rpcServer
object class is a container. It is used to gather rpcServerElement entries into
a single server instance. The cn is the user-provided RDN component of the
entry name in the NSI API call that creates the server entry.

(1.2.840.113556.1.5.81
NAME ’rpcServer’
SUP rpcEntry
PARENT (rpcEntry $ rpcGroup $ rpcProfile $ rpcServer)
STRUCTURAL
MAY (rpcNsObjectID $ rpcNsCodeSet)
)

The rpcServerElement object describes a single interface in the server entry.
The entire Server entry is retrieved with a single-level LDAP search rooted at
the parent rpcServer container. The attributes of the rpcServerElement
object allow for efficient searching using straightforward LDAP query
expressions. The cn is a string UUID generated by the NSI provider when the
rpcServerElement instance is created.

(1.2.840.113556.1.5.73
NAME 'rpcServerElement’
SUP rpcEntry
PARENT rpcServer
STRUCTURAL
HOST (rpcNsInterfaceID $ rpcNsBindings $ rpcNsTransferSyntax)
)

6.3.4.8 Attribute Definitions

RPC Name Service implementations search on a well-known set of attributes.
Implementations of this schema are advised for performance reasons to index
the following attributes:

■ rpcNsObjectID
■ rpcNsInterfaceID

6.3.4.9 The rpcNsObjectID

A set of string UUIDs for objects (in the DCE RPC sense of objects):

(1.2.840.113556.1.4.312
NAME 'rpcNsObjectID’
EQUALITY caseIgnoreListMatch
SYNTAX directoryString
USAGE userApplications

6.3.4.10 The rpcNsGroup

A set of DNs for RPC entries that are members of a given RPC group:

(1.2.840.113556.1.4.11d
NAME 'rpcNsGroup'
EQUALITY distinguishedNameMatch
SUBSTRING distinguishedNameMatch

Chapter 6 LDAP Capabilities 83
SYNTAX DN
D8AGE userApplications
)

6.3.4.11 The rpcNsPriority

An integer value indicating the priority of a given RPC profile element:

(1.2.840.113556.1.d.117
NAME ’rpcNsPriority’
EQUALITY integerMatch
SYNTAX INTEGER
USAGE userApplicationa
)

6.3.4.12 The rpcNsProfileEntry

The DN of a single RPC entry that is a member of a given RPC profile:

(1.2.840.113556.1.4.118
NAME ’rpcNsGroup’
EQUALITY distinguishedNameMatch
SUBSTRING distinguishedNameMatch
SYNTAX DN
SINGLE-VALUE
USAGE userApplications
)

6.3.4.13 The rpcNsInterfaceID

A string composed of the UUID for an interface exported by an RPC server
and the interface major and minor version numbers in the form:

 string-UUID'',’'major'’.’’minor

The BNF description of this item is:

 (1 2 840 113556 1 4 115
NAME 'rpcNsInterfaceID'
EQUALITY caseIgnoreMatch
SYNTAX directoryString
SINGLE-VALUE
USAGE userApplications
)

6.3.4.14 The rpcNsAnnotation

A string describing a given RPC Profile element:

(1 2 840 113556 1 4 366
NAME 'rpcNsAnnotation’
EQUALITY caseIgnoreMatch
SUBSTRING caseIgnoreMatch
SYNTAX directoryString
SINGLE-VALUE
USAGE userApplications
)

84 Gradient DCE for Tru64 UNIX Product Guide
6.3.4.15 The rpcNsCodeset

A set of strings identifying the character sets supported by a given RPC
server:

(1 2 840 113556 1 4 367
NAME ’rpcNsCodeset’
EQUALITY caseIgnoreListMatch
SYNTAX directoryString
USAGE userApplications
)

6.3.4.16 The rpcNsBindings

A set of binding strings for a given interface and transfer syntax, in the form:

 ProtocolSequence’’:’’NetworkAddress’’[]’’

The BNF description of this item is:

(1 2 840 113556 1 4 113
NAME 'rpcNsBindings'
EQUALITY caseIgnoreMatch
SYNTAX dlrectoryString
USAGE userApplications
)

6.3.4.17 The rpcNsTransferSyntax

A set of strings composed of the string UUID for a transfer syntax supported
by an RPC server, and the transfer syntax major and minor version numbers in
the form:

 string-UUID'',''major'' ''minor

The BNF description of this item is:

(1 2 840 113556 1 4 314
NAME 'rpcNsTransferSyntax’
EQUALITY caseIgnoreLletMatch
SYNTAX directoryString
USAGE userApplications
)

6.3.5 Usage Model
Instantiating an rpcGroup, rpcProfile, or rpcServer object and any
necessary child objects (e.g., rpcServerElement or rpcProfileElement)can
create any RPC entry type. Searching is simplified because there is a
well-known set of object classes and attributes for each entry type.

A group entry contains the rpcNsGroup attribute listing the entries in the
group. Each group is a single object and can be retrieved in a single operation.
An rpcGroup object can have rpcNsObjectID present the list of object
IDs, if present, is explicitly stored and retrieved by applications and not used
by the NSI provider in locating rpcNsGroup objects.

Chapter 6 LDAP Capabilities 85
A profile entry consists of an rpcProfile container with one or more
rpcProfileEntry objects as children, one for each priority level defined. The
complete profile is retrieved in a single operation by performing a single-level
LDAP search for objects of class rpcProfileElement rooted at the
rpcProfile entry.

A server entry consists of an rpcServer container with one or more
rpcServerElement objects as children. The complete entry is retrieved in a
single operation by performing a single-level LDAP search for objects of
class rpcServerElement rooted at the rpcProfile entry. The NSI provider
creates a new rpcServerElement entry when the interface and transfer
syntax provided by the caller do not match an existing rpcServerElement in
the named server entry. If a matching rpcServerElement exists, the NSI
provider updates it with the string bindings provided by the caller.

This schema allows many discrete rpcServerElement objects to be stored in
a given entry. This avoids a number of problems in trying to store multiple
interfaces with their versions and transfer syntax in a single entry while
providing convenient access and searching with LDAP. Indexing the Interface
ID and Object UUIDs reduces the performance cost for retrieving multiple
objects.

6.3.5.1 Relative Names

On the surface, CDS can be said to support cell-relative names; LDAP does
not. DCE RPC allows names presented to the RPC NSI to be absolute or
relative. An absolute name contains the full DN of the entry in question. A
relative name is relative to the DCE cell where the name is stored. The full
DN is the DN of the cell with the relative name appended. When using an
LDAP directory to store RPC entries as defined by this schema, the
implementation of relative names is implementation dependent, but should be
consistent. A suggested approach is the creation of a container at the root of
the namespace; for example, directly below the first instantiated object, such
as Organization or organizational Unit, which forms the root for cell-relative
names.

6.4 How GDA Works
LDAP support at the GDA level is achieved by adding an LDAP path for
cross-cell information. Depending on the syntax of the cell name and if a
specific path is enabled via command line options, GDA is now able to look
up foreign cell information in either DNS, or LDAP, or X.500.

In cases when both LDAP and X.500 are enabled and the cell name is typed,
GDA first resolves the name using LDAP, only if the typed name cannot be
resolved, the X.500 path is invoked. Figure 6-2 shows the various elements at
work in the gdad environment.

86 Gradient DCE for Tru64 UNIX Product Guide
Figure 6-2: Operation at gdad Level

6.4.1 Cell Naming
Cell names remain either as untyped names in DNS format or typed names in
X.500 format. LDAP cell names are not supported.

If LDAP is enabled, GDA converts an X.500 typed cell name into LDAP
syntax when sending a request to an LDAP directory service. The conversion
routine can return unexpected results if special characters defined by either
X.500 or LDAP are used in the cell name.

6.4.2 Security
GDA supports the minimum level of authentication. Authentication
information may be supplied on the command line when gdad is started.
However, these command line arguments can be viewed by most users and
therefore a security problem can exist.

6.4.3 Registration Utility
The utility ldap_addcell is provided to register cell information in the LDAP
directory service. The utility obtains and dynamically adds DCE cell
information to the LDAP directory service. Authentication information must
be provided on the command line.

gdad

Foreign Cell Name

DNS LDAP X.500

DNS Server X.500 Server

Untyped Names Typed Names
Path If LDAP fails....

X.500
Server

that
under-
stands
LDAP

LDAP
Server

C H A PT E R 7

Managing Intercell Naming
7.1 Overview of Intercell Naming
To find names outside of the local cell, CDS clerks must have a way to locate
directory servers in other cells. The Global Directory Agent (GDA) enables
intercell communications by serving as a connection to other cells through the
global naming environment. This chapter describes how the GDA works and
how to manage it. The chapter also describes how to define the local cell in
either of the global naming environments (DNS, X.500, or LDAP), where a
step is necessary to make the local cell accessible to other cells.

NOTE: If the cell name is an X.500 formal name, then either GDS or an LDAP
server may be used as the global name server.

7.2 How the Global Directory Agent Works
The GDA is an intermediary between CDS clerks in the local cell and CDS
servers in other cells. A CDS clerk treats the GDA like any other name server,
passing it name lookup requests. However, the GDA provides the clerk with
only one specific service; it looks up a cell name in the X.500, LDAP, or DNS
namespace and returns the results to the clerk. The clerk then uses those
results to contact a CDS server in the foreign cell.

A GDA must exist inside any cell that wants to communicate with other cells.
It can be on the same system as a CDS server, or it can exist independently on
another system. You can configure more than one GDA in a cell for increased
availability and reliability. Like a CDS server, a GDA is a principal and must
authenticate itself to clerks.

CDS finds a GDA by reading address information that is stored in the
CDS_GDAPointers attribute associated with the cell root directory.
Whenever a GDA process starts, it creates a new entry or updates an existing
entry in the CDS_GDAPointers attribute. The entry contains the address of
the host on which the GDA is currently running. If multiple GDAs exist in a
cell, they each create and maintain their own address information in the
CDS_GDAPointers attribute.

When a CDS server receives a request for a name that is not in the local cell,
the server examines the CDS_GDAPointers attribute of the cell root
directory to find the location of one or more GDAs. The next figure shows
how a CDS clerk and CDS server interact to find a GDA.

88 Gradient DCE for Tru64 UNIX Product Guide
Figure 7-1: How the CDS Clerk Finds a GDA

The following steps summarize the GDA search that is illustrated in the
preceding figure:

1 On Node A, a client application passes a global name, beginning with the
/... prefix, to the CDS clerk.

2 The clerk passes the lookup request to a CDS server that it knows about on
Node B.

3 The server’s clearinghouse contains a replica of the cell root directory, so
the server reads the CDS_GDAPointers attribute and returns the address
of Node C, where a GDA is running.

4 The clerk passes the lookup request to the GDA.

The next figure shows how CDS and a GDA interact to find a name in a
foreign cell that is defined in DNS. Suppose the name is /.../widget.com/
printsrv1, which represents a print server in the foreign cell.

1

2

3

4

Client

CDS clerk CDS server

GDA

GDA is at
Node C

?

?

Node B

Node C

Node A

LEGEND

= Request path

= Response path

Chapter 7 Managing Intercell Naming 89
Figure 7-2: How the GDA Helps CDS Finds a Name

The following steps summarize the name search that is illustrated in the
preceding figure:

1 The client application passes the name /.../widget.com/printsrv1 to the
CDS clerk.

2 The clerk passes a lookup request to a CDS server that it knows about on
Node B.

3 The server’s clearinghouse contains a replica of the cell root directory, so
the server looks up the CDS_GDAPointers attribute and returns the
address of Node C, where a GDA is running.

4 The clerk passes the lookup request to the GDA.

5 The GDA recognizes that the name is a DNS-style name, so it assumes
that the second component is a cell name that is defined in DNS. It passes
that portion of the name (widget.com) to DNS. For simplicity, the figure
shows only one DNS server; more than one DNS server can actually be
involved in resolving a global cell name.

110
2

3

4

7

9

6

Client

CDS clerk CDS server

GDA

GDA is at
Node C

widget.com
cell root is
at Node E

Success!

?

?

Node B

Node C

Node A

LEGEND

= Request path

= Response path

5
DNS server

Node D

8
CDS server

?

Node E

90 Gradient DCE for Tru64 UNIX Product Guide
NOTE: Although this example concerns the lookup of a DNS-style name, the
sequence and execution of operations is nearly identical for an X.500 name or
a hierarchical cell name. If the GDA recognizes that a name is an X.500-style
name, it passes the name to either an LDAP client (via LDAP APIs) or a GDS
client (via XDS/XOM APIs) rather than to a DNS server. The LDAP client or
GDS client then communicates with the appropriate server to obtain the cell
bindings (the same information as would be obtained from a DNS server). If
the GDA recognizes that a name is a hierarchical cell name, it passes it to the
CDS server of the topmost cell in the hierarchy, which is registered in one of
the global namespaces. The CDS server in this cell walks down the cell
hierarchy to locate the name.

6 DNS looks up and returns to the GDA information that is associated with
the widget.com cell entry. The information includes the addresses of
servers that maintain replicas of the root directory of the /.../widget.com
cell namespace.

7 The GDA passes the information about the foreign cell to the clerk.

8 The clerk contacts the CDS server on Node E in the foreign cell, passing it
a lookup request.

9 The Node E server’s clearinghouse contains a replica of the root directory,
so the server looks up the entry for printsrv1 in the root and passes the
requested information to the clerk on Node A. For simplicity, this example
shows the clerk contacting only one server in the foreign cell. While
resolving a full name, the clerk may actually receive referrals to several
servers in the foreign cell.

10 The clerk passes the information to the client application that requested it.

Note that both of the previous examples represent initial lookups. The CDS
clerk caches the locations of GDAs once it discovers them. The clerk also
caches the addresses of servers in foreign cells that it learns about, enabling it
to contact the foreign servers directly on subsequent requests for names in the
same cell.

Note also that a GDA knows its own cell name and can therefore avoid
contacting a global directory service to look up names in its own cell.
Furthermore, the GDA can recognize whether a cell name conforms to the
X.500 or DNS naming syntax, and it uses that knowledge to route a lookup
request to the appropriate global directory service. If the cell name conforms
to the X.500 naming syntax, the GDA will first send the request to the LDAP
client and then to the GDS client if it is not resolved by the LDAP client/
server.

7.3 Managing the Global Directory Agent
Use the DCE configuration program to configure the GDA; the GDA requires
little management once it is configured. (See the OSF DCE Administration
Guide—Introduction for details on configuring the GDA.)

Chapter 7 Managing Intercell Naming 91
The GDA is typically started and stopped automatically by scripts that
execute as part of normal system startup and shutdown procedures.
Sometimes, however, you may want to use commands to stop and restart a
GDA. Once you have configured GDA with the DCE configuration program,
you can use these steps to start and stop GDA.

The GDA runs as a process called gdad. To start the gdad process, follow
these steps:

1 Make sure that a CDS server is already running somewhere within the cell.

2 Log into the system as superuser (root).

3 Enter the following command to see if the dced process is already running:

ps

If the dced process appears on the list of active processes, proceed to step
5. If the dced process does not appear on the list of active processes, enter
the following command to start the process:

dced

4 Enter the following command to start the cdsadv process:

cdsadv

5 Enter the following command to start the gdad process:

gdad

NOTE: See the OSF DCE Administration Guide—Introduction for the
parameters required if gdad is to use LDAP to obtain cell bindings.

To stop the GDA, enter the following command, where pid is the process
identifier of the gdad process:

kill pid

7.4 Enabling Other Cells to Find Your Cell
The GDA is the mechanism that allows CDS clerks in your local cell to find
other cells. To make your cell accessible to others, you must create an entry
for it in one of the currently supported global naming environments. Before
you do this, obtain a unique cell name from the appropriate naming authority.
(See the OSF DCE Administration Guide—Introduction for details.)

After you configure a cell, name it, and initialize the cell namespace, you can
use the dcecp directory show command to obtain the data you need to create
or modify the cell entry in an X.500, LDAP, or DNS server. You can use the
ldap_ addcell command to add the appropriate information for the cell to an
LDAP server. The data in a cell entry is what the GDA passes to CDS after
looking up a cell name. CDS, in turn, uses the information to contact servers
in the cell. The following subsections describe how to define and maintain a
cell entry in an X.500 server (GDS), an LDAP server, or DNS server. These
sections assume a basic familiarity with X.500 and DNS; for details, see the
appropriate documentation for each global name service.

92 Gradient DCE for Tru64 UNIX Product Guide
You can also define and maintain a cell entry in the CDS namespace of
another cell. This type of definition exists in a hierarchical cell configuration.

7.4.1 Defining a Cell in the Domain Name System
Names in DNS are associated with one or more data structures called resource
records. The resource records are stored in a data file whose name and
location are implementation specific. To create a cell entry, you must edit the
data file and create two resource records for each CDS server that maintains a
replica of the cell namespace root.

The first resource record, whose type can be AFSDB or MX, contains the host
name of the system where the CDS server resides. You can use MX as an
alternative to using AFSDB. The second record, of type TXT, contains the
following information about the replica of the root directory that the server
maintains:

■ The UUID of the cell namespace, in hexadecimal notation
■ The type of the replica (master or read-only)
■ The global CDS name of the clearinghouse where the replica resides
■ The UUID of the clearinghouse, in hexadecimal notation
■ The DNS name of the host where the clearinghouse resides

The following example shows a set of AFSDB resource records for a cell that
is named cs.tech.edu, in which two replicas of the root directory exist. Note
that only the first resource record contains the cell name; the second, third,
and fourth records are assumed to be associated with the same cell because
they do not contain a cell name. The TTL heading stands for time-to-live,
which is a value, in seconds, after which the data is no longer considered valid
in a DNS cache. (The value shown specifies a default value of 1 week.) The
IN class indicates that the protocol is Internet, and the subtype of 2 indicates
that a name server exists on the host named in the record.

;First Replica:
;Name TTL Class Type Subtype Host
cs.tech.edu 604800 IN AFSDB 2 fox.cs.tech.edu
;Name TTL Class Type Rdata
 604800 IN TXT (1 ;version
 fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
 Master ;Replica1 type
 /.../cs.tech.edu/cs1_ch ;ch name
 fd3328c5-2a4b-11ca-af85-09002b1c89bb ;ch uuid
 fox.cs.tech.edu) ;host
;Second Replica:
 604800 IN AFSDB 2 rox.cs.tech.edu
 604800 IN TXT (1 ;version
 fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
 Read-only ;Replica2 type
 /.../cs.tech.edu/cs2_ch ;ch name
 fd3429c4-2a4b-11ca-af87-09002b1c89bb ;ch uuid
 rox.cs.tech.edu)
;host

You can use MX as an alternative to using AFSDB. The following example
shows a set of MX resource records for the same cell, cs.tech.edu, in which
two replicas of the root directory exist.

Chapter 7 Managing Intercell Naming 93
;First Replica:
;Name TTL Class Type Preference Exchange
cs.tech.edu. 604800 IN MX 1 fox.cs.tech.edu.
;Name TTL Class Type Rdata
 604800 IN TXT (1 ;version
 fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
 Master ;Replica1 type
 /.../cs.tech.edu/cs1_ch ;ch name
 fd3328c5-2a4b-11ca-af85-09002b1c89bb ;ch uuid
 fox.cs.tech.edu) ;host
;Second Replica:
 604800 IN MX 2
rox.cs.tech.edu.
 604800 IN TXT (1 ;version
 fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
 Read-only ;Replica2 type
 /.../cs.tech.edu/cs2_ch ;ch name
 fd3429c4-2a4b-11ca-af87-09002b1c89bb ;ch uuid
 rox.cs.tech.edu)
;host

After you configure a cell, you can use the dcecp directory show command
to display the information that is required to construct resource records like
those shown in the previous example. The following is an example directory
show command that displays output for a cell named /.../cs.tech.edu.

dcecp> directory show /.../cs.tech.edu

To create a new resource record in the DNS namespace, use the information
from the directory show command and place the properly formatted data
into the DNS data file.

7.4.2 Defining a Cell in the Global Directory Service
In GDS, cell information is contained in two attributes: CDS-Cell and
CDS-Replica. You can cause an existing GDS name to become a cell entry by
adding these two attributes to the name. If the name you want to use for the
cell does not yet exist, you must create it and then add the attributes. The GDS
administration program uses numbered screens called masks to accept user
input. Use the object administration masks to create a cell entry. (See the OSF
DCE GDS Administration Guide and Reference for details.)

After you configure a cell, you can use the dcecp directory show command
to obtain the data that you need to supply when you are creating the
CDS-Cell and CDS-Replica attributes. The following is an example directory
show command and the resulting GDS-formatted output for a cell that is
named /.../C=US/O=ABC/OU=Sales:

dcecp> directory show /.../C=US/O=ABC/OU=Sales
{RPC_ClassVersion {01 00}}
{CDS_CTS 1996-04-18-20:11:02.385764100/08-00-09-85-01-22}
{CDS_UTS 1996-08-01-18:01:37.408282100/08-00-09-85-01-22}
{CDS_ObjectUUID 68f0755c-9956-11cf-9da3-080009850122}
{CDSReplicas
 {{CH_UUID 59eb61fc-9956-11cf-9da3-080009850122}
 {CH_Name /.../c=us/o=abc/ou=sales/dcegecko_ch}
 {Replica_Type Master}
 {Tower {ncadg_ip_udp 15.22.50.148}}

94 Gradient DCE for Tru64 UNIX Product Guide
 {Tower {ncacn_ip_tcp 15.22.50.148}}}}
{CDS_AllUpTo 1996-08-01-14:39:36.404042100/08-00-09-85-01-22}
{CDS_Convergence medium}
{CDS_ParentPointer
 {{Parent_UUID 5a824f54-9956-11cf-9da3-080009850122}
 {Timeout
 {expiration 1996-08-02-14:01:36.251}
 {extension +1-00:00:00.000I0.000}}
 {myname /.../c=us/o=abc/subsys}}}
{CDS_DirectoryVersion 3.0}
{CDSReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1996-08-01-14:39:36.404042100/08-00-09-85-01-22}
{CDS_LastUpdate 1996-08-01-18:01:37.408282100/08-00-09-85-01-22}
{CDS_Epoch 68fdf042-9956-11cf-9da3-080009850122}
{CDS_ReplicaVersion 3.0}
dcecp>

To create a new resource record in GDS, use the information from the
directory show command to fill in the fields of Mask 21 (CDS-Cell) and
Mask 22 (CDS-Replica) in the GDS administration program.

7.4.3 Defining a Cell in an LDAP Server
The ldap_addcell utility obtains and dynamically adds DCE cell information
to an LDAP server. The ldap_addcell command must be run with root
authority. The ldap_addcell command can:

■ Create a new directory object with cell bindings.
■ Modify an existing directory object to add the cell bindings.
■ Change the values of the cell bindings in a directory object that already

exists.
■ Delete the cell bindings from a directory object that already exists.

The cell bindings that are added or retrieved from a directory object have the
same format used for an X.500 server (GDS) and are stored in 2 attributes:

■ CDSCELL
■ CDSREPLICAS

Authentication information such as userid and password are part of the
ldap_addcell utility invocation, because it writes to the directory service. The
DCE cell information stored in the directory service is the same whether it
was written using the X.500 registration utility or the ldap_addcell
registration utility.

The ldap_addcell command has the following syntax:

ldap_addcell -h ldap_server -a authentication_DN -p password [-o
object_class,object_class...]|[-d]

Chapter 7 Managing Intercell Naming 95
The command must be run with root authority and prints a message to stderr.

The following ldap_addcell examples assume the following:

■ mymachine.mycity.mycompany.com is the LDAP server machine name.
■ gdatest is a user that has write access to the LDAP server.
■ gdatest is also the password of the user gdatest.
■ An organizationalUnit is allowed to contain the auxiliary object,

dceCellInfo.
■ The LDAP server does schema checking.

This example shows the normal creation of the cell bindings in the LDAP
server.

ldap_addcell -h mymachine.mycity.mycompany.com -a
"cn=gdatest,ou=houston,o=compaq,c=us" -p "gdatest" -o
organizationalUnit,dceCellInfo

This example shows the deletion of the CDSCELL and CDSREPLICAS
attributes.

ldap_addcell -h mymachine.mycity.mycompany.com -a
"cn=gdatest,ou=houston,o=compaq,c=us" -p "gdatest" -d

This example shows the changing of the CDSCELL and CDSREPLICAS
attributes in an object that already exists.

ldap_addcell -h mymachine.mycity.mycompany.com -a
"cn=gdatest,ou=houston,o=compaq,c=us" -p "gdatest

Most parameters of the ldap_addcell command have a corresponding
environment variable which is used when the corresponding parameter is not
present on the ldap_addcell command invocation. Table 7-1 lists
environment variables.
.

where:

-h ldap_server The name of the LDAP server targeted to hold the cell binding.

-a authentication_DN The distinguished name (DN) specified in LDAP name syntax
that will be authenticated and used to add cell binding.

-p password The password that is used to authenticate the distinguished name
(DN).

-o object_class Value(s) of the attribute object_class for the entry (the
registration) being created or modified. Note that, if you are
listing more than one object_class value, you must separate
them with commas.

-d Deletes the DCE cell information attributes from the entry in the
directory. It does not remove the entire directory entry.

Table 7-1: ldap_addcell Parameters and Environment Variables

ldap_addcell
Parameter Environment Variable

-h LDAP_SERVER

-a LDAP_AUTH_DN

96 Gradient DCE for Tru64 UNIX Product Guide
NOTE: The -d parameter does not have a corresponding environment variable.

If the cell entry is already registered, the CDSCELL and CDSREPLICAS
attributes are replaced with new values for this cell unless the -d parameter is
specified.

-p LDAP_AUTH_DN_PW

-o LDAP_OBJECT_CLASS

Table 7-1: ldap_addcell Parameters and Environment Variables

ldap_addcell
Parameter Environment Variable

C H A PT E R 8

DCE Distributed File Service
8.1 Variation from OSF DFS
Gradient DCE for Tru64 UNIX includes DCE DFS from OSF DCE Release
1.2.2. This release does not contain any enhancements for DFS beyond those
that are part of OSF DFS. However, there are the following areas of
difference:

■ The Episode file system is not supported.

■ DFS in Gradient DCE for Tru64 UNIX does not include enhanced DFS
features such as fileset cloning.

■ DFS in Gradient DCE for Tru64 UNIX allows the use of Tru64 UNIX
ACLs for authorization purposes.

■ DFS in Gradient DCE for Tru64 UNIX relies on Tru64 UNIX built-in file
system backup rather than using the backup facility provided with OSF
DFS.

For information on how to configure DFS, see the Gradient DFS for Tru64
UNIX Configuration Guide.

The last section in this chapter identifies solutions to some common problems
you might encounter using DFS.

8.2 Using Tru64 UNIX ACLs
Tru64 UNIX supports the use of generic ACLs on its two supported
filesystems (UFS and AdvFs). The ACLs follow the POSIX model, providing
a sequence of ACL entries, each consisting of a tag (type), an identifier for
entries whose type requires it, and a set of permission bits.

Table 8-1: Tru64 UNIX ACLs

Tag Identifier Permission Bits

user uid rxw

group gid rxw

user_obj rxw

group_obj rxw

other_obj rxw

98 Gradient DCE for Tru64 UNIX Product Guide
ACL entries tagged as user or group identify persons or groups that might
attempt to perform some action on the directory or file. The Identifier is a user
id (uid) for user tags or a group identifier (gid) for group tags. ACL entries
tagged as user_obj, group_obj, and other_obj do not use identifiers because
these are implicit in the metadata of the directory or file. (See Note below.)
The permissions are the standard UNIX read (r), write (w), and execute (x)
permissions.

NOTE: Because DFS in Gradient DCE for Tru64 UNIX maps uids and gids to
specific users and groups, password files must be synchronized with the DCE
Security registry. Enabling Security Integration Architecture (SIA) offers one
way to synchronize uid and gid information with the DCE cell registry.

Default ACLs for containers and objects are created following the same
method as in the standard DCE DFS implementation.

8.2.1 Tru64 UNIX ACL Limitations
Tru64 UNIX ACLs lack the following functionality that is available with
generic DCE ACLs:

■ A set of “foreign” tags supporting users, groups, and objects from foreign
cells.

■ A set of “delegation” tags supporting delegation from users, groups, and
objects in the local cell and in foreign cells.

■ An unauthenticated mask controlling access for unauthenticated users.

■ A cell name included in ACL identifiers which is used for foreign cell user
authentication.

■ A wider set of permission bits:

■ (c) control
■ (i) insert
■ (d) delete

An additional limitation of Tru64 UNIX ACLs is that the ACL identifiers are
uids or gids instead of full DCE UUIDs.

Gradient DCE for Tru64 UNIX handles these ACL limitations by providing
appropriate responses to administrative or user actions that involve Tru64
UNIX ACLs. People or programs that use or administer DFS proceed as
normal DCE clients. A transparent translation layer in DCE DFS intercepts
and deals with ACL operations.

8.2.2 DCE Responses to Tru64 UNIX ACL Operations
Due to the limitations of Tru64 UNIX ACLs, some operations involving
ACLs behave differently or return an error. Specific responses to Tru64 UNIX
ACL operations depend on whether the operation is unsupported, totally
supported, or partially supported.

Chapter 8 DCE Distributed File Service 99
Unsupported operations such as adding an entry for foreign_user, or
group_delegate return an error.

Totally supported operations such as a user in the local cell requesting write
access to a file behave in the standard manner.

Some operations are partially supported. Tru64 UNIX provides appropriate
responses to certain operations even though the features for their support is
lacking from the Tru64 UNIX ACLs. For example, a user attempts to delete a
file from DFS. Normally, DFS requires the d (delete) permission but Tru64
UNIX performs the delete operation if the user has write permission on the
file.

8.2.3 Mapping between DCE ACLs and Tru64 UNIX ACLs
The mapping is done by a translation layer between DFS and the underlying
physical file system at the server. In other words, none of this work has any
bearing on the client portion of DFS.

■ There is no space for a home cell uuid, so the server assigns the UUID of
the cell that it belongs to as the home cell UUID of any ACL that it deals
with.

■ No “foreign” ACL entries are possible. The client can submit them, but the
cell UUID is dropped before the mapping to a uid or gid is done (the
mapping will fail in this case, since the foreign user or group UUID will
not be found in the registry of this cell).

■ The mapping between principal or group UUIDs on one hand and uid/gids
on the other is done by querying the registry of the cell to which the file
server belongs. It is assumed that the password files are synchronized with
the registry or a scheme like SIA is used.

■ The permission bits need to be mapped according to Table 8-2.

■ DFS simulates a mask_obj tag to satisfy operations that require its
presence. However, the simulated mask_obj does not mask any
permissions (its permissions are rwxcid).

■ The initial_container and initial_object ACLs behave normally.

Table 8-2: Mapping Permission Bits

Tru64 UNIX ACL
Bits

DCE ACL Bits

file directory

r r r

w cw cwid

x x x

100 Gradient DCE for Tru64 UNIX Product Guide
8.2.4 Disabling ACL Operations
You can disable the ACL support in the DFS server by setting a kernel global
variable using the dbx debugger. After a new kernel that includes DFS support
has been built, specify the following:

cd /usr/sys/conf
dbx -k vmunix
patch dfs_acls_enabled = 0
quit

where conf is the name of the configuration you chose when executing
doconfig. After disabling ACL, any remote ACL operations on DFS files
return ENOTTY errors.

8.3 NFS-DFS Secure Gateway Server Administration
The NFS-DFS Secure Gateway server does not support the dfs_login and
dfs_logout programs. For authenticated access to DFS, users of
DCE-unaware NFS clients must authenticate to DCE from the Gateway
Server machine using a dfsgw add operation. Refer to the OSF DCE DFS
Administration Guide and Reference for information about authenticating
from a Gateway Server machine.

8.4 DFS Backup
DFS in Gradient DCE for Tru64 UNIX relies on Tru64 UNIX built-in file
system backup rather than using the backup facility included with OSF DFS.
Refer to your Tru64 UNIX documentation for instructions on using the Tru64
UNIX file system backup facility.

8.5 Solutions to Common Problems with DCE DFS
Here are solutions to a few common problems that you may encounter with
DCE DFS.

8.5.1 Running Commands Requiring the setuid Feature
Commands that use the setuid feature (for example, the ps command) do not
execute properly if used from the DFS namespace. Before running the
commands, you must enable the setuid functionality on a per fileset basis by
issuing the cm setsetuid command. Issue this command on each machine that
needs to use these setuid commands after DFS has started, that is, after the
system is in multiuser mode. See cm setsetuid(8dfs) in the OSF DCE DFS
Administration Guide and Reference for more information.

8.5.2 Running cron Jobs with DCE Credentials
It is often necessary to run jobs asynchronously with DCE credentials. For
example, you might run a job after hours that requires access to DFS. One
way to have a job running under cron(1) or at(1) acquire DCE credentials is

Chapter 8 DCE Distributed File Service 101
by using the -k option of the dce_login command. This option allows
dce_login to acquire credentials by reading a key from a keytab file, rather
than by getting a password interactively. Using the -k option along with the -e
option, which allows an executable command to be specified on the command
line, accomplishes the desired effect.

The solution consists of two parts:

■ First, decide on a principal with whose credentials the cron job should run.
(Create a DCE user for this, if one does not exist already.) In the following
example, the principal is designated with the placeholder princ. Then, as
cell_admin, create a keytab file with a command similar to the following:

dcecp -c keytab create princ.keytab \
 -storage /path/name/of/keytab \
 -data {princ plain 1 password}

Where the password is the same password that was specified when the
princ account was created in DCE. You may need the -noprivacy option if
you do not have the privacy kit installed on the machine. The keytab file is
created with root as the owner and 600 permissions. The ownership of the
file has to be changed to the UNIX identity of the executor of the cron job.

■ Next, you can add a line similar to the following to a crontab file to have
cron run a script with the credentials of principal princ:

5 20 * * 1-5 dce_login princ -k /path/name/of/keytab \ -e /path/name/of/
script

to run the indicated script with the credentials of princ at 8:05 p.m.,
Monday through Friday.

You can verify that the first step above worked by issuing the following
command:

dce_login princ -k /path/name/of/keytab -e klist

and making sure that the principal listed is indeed princ.

C H A PT E R 9

Compiling and Linking
Applications
9.1 Overview of the Command Format
This chapter describes the command format for compiling and linking DCE
applications on Tru64 UNIX systems.

Note that you can use either the cc compiler or the c89 compiler.

Every module of a DCE application program begins with the included header
file pthread.h, as shown in the following example:

#include <pthread.h>

If pthread.h is not first in the include list for each module, the compiler can
generate warning or error messages about the prototypes for these routines. In
particular, it is best to precede those files containing call declarations for
which there are jacket routines (such as stdio.h).

When linking a DCE application, you must use the -threads option.

Tru64 UNIX Version 4.0x supports the updated pthread standard, POSIX
1003.1c (D10), in addition to a backward-compatibility mode for the previous
draft POSIX 1003.4a (D4).

DCE is built using the POSIX 1003.4a interfaces and the DCE documentation
on pthreads corresponds to the 1003.4a standard. Until all DCE vendors
support the new standard, we recommend that you continue to build your
applications using POSIX 1003.4a interfaces.

To use interfaces defined in POSIX 1003.4a, compile all modules using
-DPTRHEAD_USE_D4 and link the application using the -threads option in
the loader.

The following command format is an example of how to compile and link:

% cc -o myprog myprog.c -DPTHREAD_USE_D4 -threads

For more information on pthreads for Tru64 UNIX refer to the Guide to
DECthreads and to the reference pages on the ld command.

Note that the cc and c89 compilers do not define __STDC__ by default. If
you want to include ANSI C function prototypes in your application, you
must specify the -std1 option on the C compiler command line.

For complete information on compiling and linking applications, refer to the
OSF DCE Application Development Guide.

C H A PT E R 1 0

RPC, IDL, ACF, and IDL Compiler
Enhancements
10.1 Overview of Enhancements
This chapter describes enhancements to RPCs, IDL, and the ACF language:

■ Localrpc
■ DTSD timing
■ Environment variables
■ Automatic binding can use host’s profile
■ Enumeration enhancements
■ The client_memory ACF attribute provides more memory control

10.2 Local RPC Protocol Sequence
Gradient DCE for Tru64 UNIX now supports a new protocol sequence
(protseq) in addition to TCP, UDP, DECnet, and OSI (ncacn_ip_tcp,
ncadg_ip_udp, ncacn_dnet_nsp, and ncacn_osi_dna protocol sequence
strings, respectively). The new protocol sequence is implemented with UNIX
domain sockets and can be used only by clients and servers that are on the
same node. The protocol sequence name is localrpc.

By using UNIX domain sockets, the IP layer can be bypassed, giving
performance gains that vary with the nature of the RPC traffic.

This is not a “transparent” implementation that switches the user
automatically to UNIX domain sockets when appropriate; rather, the user
must explicitly use the localrpc protocol sequence in either a well-known
endpoint in the IDL file, or as called out by one of the family of
rpc_server_use_protseq*() functions (where * can be any characters)
wherever a protocol sequence string can be used. String bindings can also be
used to pass localrpc binding information from server to client.

10.2.1 Using localrpc with well-known endpoints
Within the IDL file, the user might have previously had an endpoint section as
follows:

endpoint("ncadg_ip_udp:[2001]", "ncacn_ip_tcp:[2001]",
 "ncacn_dnet_nsp:[my_app_server]", "ncacn_osi_dna:[2001]")

Now this section can be expanded to:

106 Gradient DCE for Tru64 UNIX Product Guide
endpoint("localrpc:[/tmp/my_app_server]",
 "ncadg_ip_udp:[2001]", "ncacn_ip_tcp:[2001]",
 "ncacn_dnet_nsp:[my_app_server]", "ncacn_osi_dna:[2001]")

If the corresponding server code calls rpc_server_use_all_protseqs_if(), a
UNIX domain socket is created at /tmp/my_app_server in addition to using
the rest of the protseqs specified in the endpoint section. A client residing on
the same node as the server can then connect to the server using this socket to
gain some performance advantage.

10.2.2 Affected RPC API calls
The following RPC API calls have been affected in some way by localrpc, or
in some cases significantly not affected.

rpc_server_use_protseq()

This function can now be handed “localrpc” for the protseq parameter and
a socket in the form of /tmp/LOCAL_RPC_42670001 will be dynamically
formed, where “4267” is the hex form of the server pid, and the “0001” is
a counter to ensure a unique name. The hex version of the pid is used in
cleaning up unused sockets by dced.

rpc_server_use_protseq_ep()

This function can now be handed “localrpc” for the protseq parameter and
a pathname for the endpoint. The socket is created at the given endpoint.

rpc_server_use_protseq_if()

This function can now be handed “localrpc” for the protseq parameter and
the endpoint from the interface specification will be used.

rpc_server_use_all_protseqs()

This function does not use localrpc in the list of valid protseqs. This is to
prevent breaking existing programs that randomly pick a binding and
attempt endpoint operations using it. Endpoint database operations do not
accept localrpc endpoints.

rpc_server_use_all_protseqs_if()

This function will now create a localrpc binding if it has been specified
(along with any other protseqs) in the interface specification (IDL file).

rpc_ep_register()

This function will not put any localrpc binding handles into the endpoint
database. If the entire binding vector consists only of localrpc binding
handles, then the status rpc_s_no_bindings is returned. Otherwise, localrpc
bindings are skipped over and other bindings are inserted.

rpc_ep_register_no_replace()

See rpc_ep_register() for identical restrictions.

rpc_string_binding_compose()

Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 107
This routine will now accept localrpc in addition to the other protocol
sequences already supported. When composing a string binding that has
localrpc as its protocol sequence, it is only necessary to provide a NULL
for the hostname as the parameter placeholder. The hostname, hostname
IP, or “localhost” would also be acceptable.

rpc_binding_from_string_binding()

For localrpc string bindings, the hostname can be omitted. See the string
binding style in the next call, rpc_binding_to_string_binding().

rpc_binding_to_string_binding()

For localrpc bindings, the hostname is not used in the string binding
returned from this routine. Instead of localrpc:hostname:[/tmp/sockname],
it simply uses: localrpc:[/tmp/sockname]

rpc_network_inq_protseqs()

This routine does not return localrpc in the list of supported protseqs to
maintain compatibility with existing programs. Some existing programs
call this routine, pick a binding, and use only that one binding in
rpc_server_use_protseq() and rpc_ep_register() calls. The
rpc_ep_register() call with only a localrpc binding would fail.

rpc_network_is_protseq_valid()

This routine will now return true for “localrpc,” as well as the previously
supported protseqs.

10.2.3 Suppressing localrpc (or any other protseq)
Particular protseqs can be suppressed from RPC's consideration by listing
only the desired protseqs in the RPC_SUPPORTED_PROTSEQS
environment variable, for example:

setenv RPC_SUPPORTED_PROTSEQS ncacn_ip_tcp:ncadg_ip_udp

This example effectively suppresses DECnet, OSI, and Local-RPC protocol
sequences. (Note: DECnet/OSI protocols will not be used if DECnet/OSI has
not been configured.)

10.2.4 Permissions of localrpc Socket
The UNIX permission used on the socket created will normally follow from
the user's current umask value and the permissions of the directory where the
socket is created. This can be tuned by using a “permission network option” in
the endpoint. For example, if the interface specification (IDL file) contained:

 endpoint("localrpc:[/tmp/my_app_server,perm=666]",
 "ncadg_ip_udp:[2001]", "ncacn_ip_tcp:[2001]",
 "ncacn_dnet_nsp:[my_app_server]", "ncacn_osi_dna:[2001]")

The socket permission will be set to read and write for all users regardless of
the current umask value. The network option can also be used when directly
calling rpc_server_use_protseq_ep().

108 Gradient DCE for Tru64 UNIX Product Guide
10.2.5 Added dced Support
Any localrpc sockets created (dynamically) in the form of

/tmp/LOCAL_RPC_%4x%4d (e.g. /tmp/LOCAL_RPC_42670001)

by using the rpc_server_use_protseq() function will be garbage-collected by
dced some time after the server process has gone away. The reaper thread that
accomplishes this will only be activated 3 times a day to keep the additional
overhead very low.

10.2.6 Compatibility Issues
Localrpc endpoints will not be inserted into the Endpoint Database so that
remote clients will not waste time attempting to connect to them. (See the
rpc_ep_register() and rpc_ep_register_no_replace() functions in the above
API section.)

Localrpc entries in the endpoint section of the interface specification are
ignored by platforms that don’t support this protocol sequence.

10.3 DTSD Timing and Timeout Changes
Within RPC, the API is extended with the effect of distributing timing signals
from a different source and reducing the default TCP timeout period from 2
hours to 10 minutes. Previously, dtsd listened for the DECnet time service
(DECdts) synchronization messages on data link interface (DLI). Now, dtsd
defaults to RPC only.

To overturn the new default value (RPC only) and return to the former way of
accepting timing messages:

% dtsd -m

The dtsd command invokes the DTS daemon (server or clerk process). This
command is usually executed as part of the overall DCE startup script,
dcesetup.

You can enter the command manually under the following conditions:

■ If a DTS daemon fails to start automatically upon reboot
■ If you want to restart a daemon that you shut down to perform a backup or

do diagnostic work

In normal rebooting, the rc.dce script automatically provides arguments
appropriate to the choice of configuration options.

If dtsd is started with no arguments (other than -d for debugging and -w for
serviceability determinations), then the server must be started with dcecp.
The following example configures a local server:

dcecp> dts configure -notglobal

dcecp> dts activate

DTS runs as the host machine principal, which is usually root.

Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 109
Use dtsd interactively only when troubleshooting; use the /sbin/rc3.d/
S66dce script to start the DTS daemon. On some systems the superuser is
associated with the machine principal.

10.3.1 Affected RPC API Call
The following RPC API calls has been affected by setting the default TCP
timeout from (kernel tunable) two hours to (DCE) ten minutes:

rpc_mgmt_set_com_timeout()
rpc_mgmt_set_server_com_timeout()

Previously, these functions recognized only two timeout values for TCP
connections. The two values were 0 or 10: rpc_c_binding_min_timeout(0) or
rpc_c-binding_infinite_timeout(10). Those same calls recognized all integer
values from 0 to 10 for UDP connections, however.

Currently, all values from 0 to 10 affect the timeout properties of each call
without regard for the protocol selected. A value of 10 corresponds to two
hours with each lower integer corresponding to a smaller period.

10.4 Using Environment Variables to Restrict Network Interfaces and
Addresses

This section describes two environment variables that are useful controls for
cluster environments and for systems with more than one network interface:

■ RPC_UNSUPPORTED_NETIFS removes device(s) from RPC
consideration.

■ RPC_SUPPORTED_NETADDRS specifies network resources for RPC
consideration.

% setenv RPC_UNSUPPORTED_NETIFS te1

Remove the device named “te1” from RPC consideration.

% setenv RPC_UNSUPPORTED_NETIFS te1:te2

Remove the two devices named “te1”and “te2” from RPC consideration.

NOTE: To list more than one device, use a colon-separated list.

% setenv RPC_SUPPORTED_NETADDRS 16.20.16.144

Of all network addresses that are available, use only 16.20.16.144.

% setenv RPC_SUPPORTED_NETADDRS 16.20.16.144:16.20.40.139

Use two of the available addresses, “16.20.16.144”and “16.20.40.139”.

NOTE: To list more than one network address, use a colon-separated list.

110 Gradient DCE for Tru64 UNIX Product Guide
10.5 IDL and ACF Enhancements
This section describes the following enhancements to IDL and the ACF
language:

■ Automatic binding can use the host’s profile
■ Enumeration enhancements
■ The client_memory ACF attribute gives more memory control

10.5.1 Automatic Binding Enhancement
When a client uses the automatic binding method, DCE must use the name
service to obtain binding information. However, the client host must have a
starting entry from which to begin the namespace search. If the
RPC_DEFAULT_ENTRY environment variable is defined on the client
host, DCE uses the entry in that variable to obtain binding information. If
RPC_DEFAULT_ENTRY is not defined, DCE looks for binding
information from the host’s name service profile.

10.5.2 Enumeration in IDL
An IDL enumeration provides names for integers. It is specified as follows:

enum {identifier[= integer], ...}

Each identifier in an enumeration is assigned an integer, either explicitly in
the interface or automatically by the IDL compiler. If all the identifiers are
unassigned, the IDL compiler begins assigning 0 (zero) to the first identifier, 1
to the next identifier, and so on. If an unassigned identifier follows an
assigned one, the compiler restarts number assignment with the next
consecutive integer. An enumeration can have up to 32,767 identifiers.

Assignments can be made in any order, and multiple identifiers can have the
same value. For example:

typedef enum {
 SHOVEL = 9, AX, MATTOCK = 3, PITCHFORK, SPADE = 9
 } yard_tools;
/* values assigned: SHOVEL:9, AX:10, MATTOCK:3, PITCHFORK:4, SPADE:9 */

10.5.3 The client_memory ACF Attribute
While marshaling parameters, the client stub uses built-in routines to manage
memory. You can use the client_memory attribute to specify different
memory allocation and free routines. The client_memory attribute has the
following syntax in the ACF header:

[client_memory(malloc_routine, free_routine)] interface idl_interface_name

The routines you specify must have the same respective procedure
declarations as the system’s malloc() and free() routines.

Applications need to manage memory consistently, so if your application
needs to do other memory allocation, be sure to use the same routines you
specified with the client_memory attribute.

Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 111
You can use the client_memory attribute in conjunction with RPC stub
support API routines such as rpc_sm_set_client_alloc_free() and
rpc_sm_swap_client_alloc_free().

10.6 IDL Compiler Enhancements
This section describes the following enhancements to the IDL compiler
supported by Gradient DCE for Tru64 UNIX:

■ The -standard application build options
■ Treatment of stub auxiliary files
■ Application template feature
■ C++ application support

10.6.1 The -standard Build Option
The -standard_type IDL compiler command option allows you to specify
portable or extended features of the OSF DCE.

The standard_type argument specifies which IDL features to enable. If you do
not specify this argument, the compiler generates warning messages for all
features that are not available in the previous version of OSF DCE.

You can specify one of the following values for the standard_type argument:

The command line in the following example compiles the IDL interface
test.idl and enables extended features of the OSF DCE:

% idl test.idl -standard extended

10.6.2 Stub Auxiliary Files
By default, the OSF DCE IDL compiler at V1.0.3 or later does not generate
the -caux and -saux files that V1.0.2 does. However, if you want to use build
procedures that work with the V1.0.2 IDL compiler, you can direct the V1.0.3
(or later) IDL compiler to generate empty auxiliary files. To do this, define the
environment variable IDL_GEN_AUX_FILES as follows:

% setenv IDL_GEN_AUX_FILES "1"

portable Allows only the language features available in OSF DCE Version 1.0.2.

dce_v10 dce_v103
dec_v10 All are equivalent to the portable argument.

dec_v13 Allows all language features supported by the -standard dce_v10 argument,
plus a set of Compaq extensions to its products based on OSF DCE V1.0.3.

dce_v11 Equivalent to dec_v13.

extended Allows all language features supported in the current version of the compiler.
This is the default.

dce_v20 Equivalent to the extended argument.

112 Gradient DCE for Tru64 UNIX Product Guide
10.6.3 Generating Application Templates Using the IDL Compiler
The IDL compiler can use your interface definition file to generate a C
language template that you can modify to create executable client and server
applications. The template feature simplifies the implementation of
distributed applications by generating a module of templates for many of the
routines that must be provided by the application programmer.

A template is a generated RPC routine that includes the function header and
an empty function body. You fill in the function body with
application-specific information and integrate the module into your
application. By using templates, you can concentrate on the functional aspects
of your application program instead of the mechanical process of writing
function definitions that match the corresponding IDL definitions.

The template feature is designed to support applications written in the C
programming language, and it supports all functions defined in IDL. The
template feature does not generate completely executable client and server
applications.

To use the IDL compiler to create a template of the manager routines in the
server side of your distributed application, specify the template_manager
option when you compile the application interface module(filename.idl) with
IDL. You can generate a template module containing the client-side routines
for your distributed application by specifying the template_client option to
the IDL compiler.

The template_manager compiler option generates a module that contains
templates for the routines required in the manager portion of a server
application. The template_client compiler option generates a module that
contains templates for some of the routines used to create the client side of an
application. The following IDL compiler command options control generation
of template modules.

The next table lists every IDL construct that can be defined in a template
module. The table indicates whether each construct is specific to a client
template, a manager template, or both. If your client application does not use
any of the IDL constructs (in the next table) that support client modules, then
you will not benefit from using the template feature.

-template_client filename Directs the IDL compiler to generate a C source file
containing a template implementation of each routine
that must appear in the client application to use the
specified IDL interface. If you do not specify an
extension for filename, the compiler assigns the file
extension .c.

-template_manager filename Directs the IDL compiler to generate a C source file
containing a template implementation of each routine
and operation that must appear in the manager module of
the server side of an application to use the specified IDL
interface. If you do not specify an extension for
filename, the compiler assigns the file extension .c.

Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 113
Note that remote procedure implementations are defined as all functions
defined in IDL for the C programming language.

The template feature is for use during application development, when you
might generate template modules repeatedly as you add new functions to an
interface. However, after you create and modify the first template module,
you should specify a temporary filename for subsequent template modules.
Otherwise, you will overwrite the existing modified template module. After
creating a new template module in a temporary file, use a text editor to move
the new template module into the existing application file which includes the
modified templates.

10.6.4 Example of IDL Template Feature
The following sections illustrate how to use the IDL template feature with the
test2 example program included with your DCE software kit. (See
Chapter 13 for more information on programs in this software kit.) The
following files are discussed:

■ Example interface definition file (test2.idl)
■ Example manager template (test2_mgr.c)

10.6.4.1 Example Interface Definition File

This section shows the test2.idl interface definition source code.

/*
**COPYRIGHT (C) 1993 BY
** DIGITAL EQUIPMENT CORPORATION, MAYNARD
** MASSACHUSETTS. ALL RIGHTS RESERVED.
**

** THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE
** USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF
** SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE.
** THIS SOFTWARE OR ANY OTHER COPIES THEREOF MAY NOT BE PROVIDED
** OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE
** TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.
**

** THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE
** WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT
** BY DIGITAL EQUIPMENT CORPORATION.
**

Table 10-1: IDL Constructs Supported by Template Feature

IDL Construct Template Type

Remote procedure implementations manager

Context handle rundown routines manager

[transmit_as] conversion routines client and manager

[represent_as] conversion routines client and manager

Customized binding routines client

114 Gradient DCE for Tru64 UNIX Product Guide
** DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
** SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.
**

**

** NAME
**

** test2.idl
**

** FACILITY:
**

** RPC Test Program #2
**

** ABSTRACT:
**

** Definitions of types/constants and procedures that make up the
** remote interface to the RPC Test Program #2.
**

*/

[
uuid(eef82780-53bb-11c9-94e0-08002b13d56d),
version(0)
]

interface test2
{

[idempotent] void test2_add
(
 [in] long a,
 [in] long b,
 [out] long *c
);

}

10.6.4.2 Example Manager Template

The following IDL command creates a manager template for the server side
of the test2 application interface. The IDL file for the server side of the
application is shown in Section 10.6.4.1 on page 113.

% idl test2.idl -template_manager test2_mgr.c

As a result of this command, the compiler generates the test2_mgr.c source
code template for the test2.idl interface definition, shown next. The template
begins with comment lines that indicate the version of the IDL compiler that
generated the template and the name of the IDL interface for which the
template was generated. These comment lines are followed by an include
statement for the interface header file and the template routines.

Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 115
The generated template modules provide the function definition under
conditional compilation in both the ANSI-C form and in the older form of the
C language. The template module contains both forms of IDL functions so
you can use the generated templates on systems on which the C compiler does
not yet support the ANSI-C standard.

The following is the test2_mgr.c source code template generated by IDL.

/* Generated by IDL compiler version DEC DCE T1.0.3-A6 */
/*
** Support routines and Remote Procedure Implementations for interface test2
*/
#include "test2.h"

/*
** Implementation of Remote Procedures for test2
*/

void test2_add
#ifdef IDL_PROTOTYPES
(
 /* [in] */ idl_long_int a,
 /* [in] */ idl_long_int b,
 /*
[out] */ idl_long_int *c
)
#else
(a, b, c)
#endif

#ifndef IDL_PROTOTYPES
 idl_long_int a;
 idl_long_int b;
 idl_long_int *c;
#endif
{
}

10.6.4.3 Creating the Executable Manager Program

From the manager template module, you can create the complete, executable
server by including the application-specific implementation of the manager
routine, as follows:

{
*c = a + b;
}

10.6.5 C++ Application Support
The idl compiler has several options that support the use of C++ language
syntax features. The options -lang and -no_cxxmgr are described in the
Gradient DCE for Tru64 UNIX Reference Guide.

C H A PT E R 11

Application Debugging with the
RPC Event Logger
11.1 Overview of Debugging Support
The RPC IDL compiler in Gradient DCE for Tru64 UNIX includes enhanced
application debugging support beyond the support provided with OSF DCE.
The IDL compiler includes the RPC Event Logger — a software utility that
records information about operations relating to the execution of an
application. Operational information about the program state at a specific
point during processing, called an event, is recorded in a file, called an event
log. You have the option of directing event logging information to the
terminal screen, rather than to a file. In this guide, the terms event log and log
are used interchangeably to refer to the stream of logging output captured in
the event log file or displayed on the screen.

Event logging provides a detailed, low-level view of the execution of your
RPC application. If development of your RPC application is proceeding well,
this level of detail may not be necessary. However, when you are in the
debugging phase of application development, the continuous execution
information provided by the Event Logger and the ability to change the type
and timing of logging can be valuable.

11.2 Introduction to the RPC Event Logging Facility
When event logging is enabled, the Event Logger creates one log for each
client and server process. To enable the RPC Event Logger, you specify an
IDL compiler option that traces events (described in “Enabling Event
Logging”).

Enabling event logging when compiling allows you the option of generating
logs at runtime without rebuilding the application. Once logging is enabled,
you can use environment variables and the RPC Log Manager (rpclm) to
control logging operations. The Log Manager provides a command interface
for changing logging operations during application execution.

The RPC Event Logger records events about application calls, context
handles, errors, miscellaneous events, and logging operations. These are
called event types. Typical RPC events include the following:

■ call_start — A client application made a call to a server.

■ call_failure — A client stub terminated abnormally either through an
exception or failing status.

118 Gradient DCE for Tru64 UNIX Product Guide
■ exception — An exception was detected in the server stub, and the
exception caused the call to terminate.

■ context_rundown — A context handle on a server was freed by the context
rundown procedure.

For application calls, the Event Logger generates events that signal call
activation, the call start and end, attempts to rebind to a server, and
termination of a server thread.

For context handles, the Event Logger generates events that signal context
handle creation and deletion by the client and server, and context handle
modification, removal, and rundown.

For errors, the Event Logger generates events that signal call and receive
failure from the client, exceptions, server failure, and call transmission failure
from the server.

The miscellaneous events provide information about the application manager
routine, and input and output argument processing events.

The logging operation itself generates events that display the logging output
device, and that signal modification of logging parameters, and event log start
and stop.

As a result of using the -trace option in the IDL compile command, idl, RPC
events are generated by code in the client and server stub modules created by
the compiler. Note that some events are generated at selected points in the
RPC runtime library. For this reason, certain events, such as those relating to
the logging operation, are always generated into the application code in
addition to the event types you specify.

The events generated in each of these areas are shown in Table 11-1. The first
column lists events that can be generated, and the second column indicates
whether the client or server, or both, can generate the event. See Section 11.7
on page 133 for a complete description of each event.

Table 11-1: Event Types

Event Name Origin

Call Events

activate server

call_end client

call_start client

rebind client

terminate server

Context Handle Events

client_ctx_created client

client_ctx_deleted client

client_ctx_destroyed client

context_created server

Chapter 11 Application Debugging with the RPC Event Logger 119
In the event log, each event is described on a single line divided into five
fields. The five fields are defined in the table below.

context_deleted server

context_modified server

context_rundown server

Error Events

call_failure client

exception server

receive_fault client

status_fail server

transmit_fault server

Miscellaneous Events

await_reply client

manager_call server

manager_return server

receive client

Logging Events

internal_error client, server

listening client, server

log_events client, server

log_file client, server

log_start client, server

log_stop client, server

Table 11-2: Event Log Fields

Field Field Description

Event Time The system clock at the time of the event.
Events are listed chronologically in the log.

Thread Identity The hostname, process ID, and thread ID.

Operation Name The interface and operation name (if
available).

Event Name Name of the event.

Event Data Data related to the event. This field contains
either specific information about logging
operations or a string binding that uniquely
identifies the client process, server process,
or Log Manager process.

Table 11-1: Event Types (Continued)

120 Gradient DCE for Tru64 UNIX Product Guide
The following is an example of an event log generated for an RPC client. The
log contains five columns. To improve readability, columns four and five are
shown below the first three columns. In addition, the field names have been
added to identify the events; the names do not appear in an actual event log.
(In subsequent event log examples, the field names are occasionally used
instead of actual data to improve readability where necessary.)

EVENT TIME THREAD IDENTITY OPERATION NAME

1994-02-07:11:48:18.31.160-5:0010.121 ifdef:8710/1 binopwk.binopwk_add

1994-02-07:11:48:18.32.170-5:0010.121 ifdef:8710/1 binopwk.binopwk_add

1994-02-07:11:48:18.65.180-5:0010.121 ifdef:8710/1 binopwk.binopwk_add

EVENT NAME EVENT DATA

log_start all
call_start ncacn_ip_tcp:16.31.48.109[1821]
call_end

This small event log indicates that the following events occurred:

1 The log_start event indicates that logging started on February 7, 1994, at
11:48 a.m. on the host named ifdef, in process number 8710, and in thread
number 1. Event logging was enabled when the binopwk interface was
compiled with the IDL -trace option. The RPC call to the binopwk_add
operation in the binopwk interface caused logging to begin and is the first
event logged. The Event Data field indicates that all events are being
logged.

2 The call_start event indicates an attempt to execute a call to a server. The
string binding in the Event Data field shows that the call was made over
the TCP/IP transport to host 16.31.48.109 with endpoint 1821. This string
binding identifies the server being contacted.

3 The call_end event indicates that the RPC call is completed, and control
has returned to the caller of binopwk_add.

This log indicates that the RPC call to the binopwk_add interface was
successful because no error events occurred.

11.3 Generating RPC Event Logs
In general, to create an event log you must follow these four basic steps:

1 Specify the -trace option in your idl command line to enable event
logging.

2 Compile and link the application.

3 Assign the event log to a filename or to the screen.

4 Execute the application.

Chapter 11 Application Debugging with the RPC Event Logger 121
The next sections describe how to use the -trace option.

11.3.1 Enabling Event Logging
To enable event logging, specify the -trace option when you use the idl
command to compile an interface. The syntax of the idl command with the
-trace option is as follows:

% idl filename -trace value

Event types are specified as a value of -trace. Valid values and the event types
they denote are listed in the table below.

For more information on the -trace option, see Section 11.3.2 on page 121.

11.3.2 Using the -trace Option
Once you have used the Event Logger, you will find that it generates a large
volume of information to be analyzed. Discard any unneeded log files because
the Event Logger will continue to record information in the files, enlarging
them until the disk is full.

To help reduce the generation of unwanted information, you can use the
-trace options to enable event logging on only a subset of events. That is,
rather than specifying the all option, specify only calls or only
context_handles. The subset you specify will depend on the part of your
application you are debugging. Although the -trace option provides logging
control on a per-compilation basis, the interface must be rebuilt to enable or
disable logging of different event types. The -trace options offer the ability to
select different event types for the various IDL interfaces that might make up
a single application.

You can use the -trace option to request logging of a single type of event,
such as errors, with a command similar to the following:

% idl binopwk.idl -trace errors

You can also use the -trace option to request logging of multiple event types,
such as errors and calls as shown below:

Table 11-3: Event Values and Types

Value Event Type

all Log all events

none Disable all previously specified trace
options

calls Log events relating to all RPC calls

context Log events relating to context handles

errors Log errors

misc Log all miscellaneous events

log_manager Enable command interface

122 Gradient DCE for Tru64 UNIX Product Guide
% idl binopwk.idl -trace errors -trace calls

This command enables the Event Logger, specifying error and call event
logging.

To enable event logging to trace the execution of RPC calls within a process,
perform the following steps:

1 Enable event logging by specifying the -trace option in the idl command
you use to compile each interface definition. This example specifies the
-trace all option:

% idl binopwk.idl -trace all

2 Build and link the client and server portions of the application.

3 Use the environment variable RPC_LOG_FILE to direct the log output for
both the server and client processes. To store Event Logger output in a file,
assign the environment variables to a filename. To direct Event Logger
output to the standard terminal output for the process (stdout), assign the
environment variable to double quotation marks (""). This guide refers to
standard terminal output as the screen.

In the window from which the server portion of the application will be
executed, direct logging for the server to a file with the following syntax:

% setenv RPC_LOG_FILE "server.log"

Or, to direct logging for the server to the screen, use the following syntax:

% setenv RPC_LOG_FILE ""

4 In the window from which the client portion of the application will be
executed, direct logging for the client to a file using the following syntax:

% setenv RPC_LOG_FILE "client.log"

Or, to direct logging for the client to the screen, use the following syntax:

% setenv RPC_LOG_FILE ""

Now you can invoke the client and server processes. The event log will be
recorded in the specified file or displayed on your screen when you execute
the application.

11.3.3 Combining Event Logs
Although event logs are generated locally for each process, you can combine
event log files to provide a broader view of application execution.

Note that this section does not give examples of each step in the application
development process.

The syntax of a sort command is as follows:

% sort -m server-filename.log client-filename.log >
client_and_server-filename.log

The -m option is specified, which indicates that the files are already sorted
and prevents reordering of events that occurred at the same time.

Chapter 11 Application Debugging with the RPC Event Logger 123
If two events have the same timestamp, you receive a warning message after
the sort is completed.

The following example illustrates how to combine logs from two different
systems.

1 The server process command sequence is as follows:

% idl fpe_server.idl -trace calls -trace errors
% setenv RPC_LOG_FILE "server.log"
% server

2 The client process command sequence is as follows:

% idl fpe_server.idl -trace calls -trace errors
% setenv RPC_LOG_FILE "client.log"
% server

These command sequences result in two log files: server.log and
client.log, shown below. (Note that, in the following example log files, the
Event Data field is not shown.)

This is file server.log:

1994-03-03:20:37:03.170-5:0010.121 murp:17924/15 fpe.setup log_start
1994-03-03:20:37:03.170-5:0010.121 murp:17924/15 RPC Log Mgr listening
1994-03-03:20:37:03.180-5:0010.121 murp:17924/15 fpe.setup activate
1994-03-03:20:37:03.180-5:0010.121 murp:17924/15 fpe.setup terminate
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 fpe.float
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15
transmit_fault
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 fpe.float terminate

This is file client.log:

1994-03-03:20:37:02.850-5:0010.121 ifdef:28168/1 fpe.stup log_start
1994-03-03:20:37:02.880-5:0010.121 ifdef:28168/1 fpe.stup call_start
1994-03-03:20:37:03.190-5:0010.121 ifdef:28168/1 fpe.stup call_end
1994-03-03:20:37:03.190-5:0010.121 ifdef:28168/1 fpe.flt call_start
1994-03-03:20:37:03.210-5:0010.121 ifdef:28168/1 receive_fault
1994-03-03:20:37:03.210-5:0010.121 ifdef:28168/1 call_failure

3 Next, the two log files are combined and sorted with the sort command.

% sort -m client.log server.log > client_and_server.log

The resulting file client_and_server.log is as follows:

1994-03-03:20:37:02.850-5:0010.121 ifdef:28168/1 fpe.setup log_start
1994-03-03:20:37:02.880-5:0010.121 ifdef:28168/1 fpe.setup call_start
1994-03-03:20:37:03.170-5:0010.121 murp:17924/15 fpe.setup log_start
1994-03-03:20:37:03.170-5:0010.121 murp:17924/15 RPC Log Mgr listening

1994-03-03:20:37:03.180-5:0010.121 murp:17924/15 fpe.setup terminate
1994-03-03:20:37:03.190-5:0010.121 ifdef:28168/1 fpe.setup call_end

1994-03-03:20:37:03.190-5:0010.121 ifdef:28168/1 fpe.float call_start
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 fpe.float activate
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 fpe.float exception

124 Gradient DCE for Tru64 UNIX Product Guide
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 transmit_fault
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 fpe.float terminate
1994-03-03:20:37:03.210-5:0010.121 ifdef:28168/1 receive_fault
1994-03-03:20:37:03.210-5:0010.121 ifdef:28168/1 call_failure

For the combined output to be accurate, the system clocks on all hosts on
which event logs are generated must be closely synchronized. The Distributed
Time Service (DTS) component of Gradient DCE for Tru64 UNIX provides
such a service. Once the clocks are synchronized, the ordering of events in a
combined log file is valid only if the difference between timestamps made on
different machines is greater than the inaccuracy field in those timestamps.
(See the DTS documentation in the OSF DCE Administration Guide — Core
Components for more information about timestamps.)

In the preceding client_and_server.log file example, consider the event with
the timestamp 1994-03-03:20:37:03.180-5:0010.121 and the event that
follows it (these two event lines are separated from the rest of the log by a
blank line on either side). Note that the timestamps indicate that the terminate
event precedes the call_end event. However, you cannot determine this
sequence of events by comparing timestamps because the inaccuracy value at
the end of the timestamp is greater than the difference between the
timestamps. That is, the difference in time between these events is only 10
milliseconds (the difference between 180 and 190 milliseconds). However,
the inaccuracy in the timestamps is 121 milliseconds (10.121). Therefore, the
log is not a definitive indicator of which event occurred first. Because of the
simplicity of the example and the single thread of control, you can assume
that the terminate event preceded the call_end event.

11.3.4 Disabling Event Logging
To disable event logging, simply compile your interface without specifying
the -trace option. For example:

% idl binopwk.idl

11.4 Using Environment Variables and the Log Manager to Control
Logging Information

In addition to the -trace options, the Event Logger offers two other methods
for controlling information in the event log. Each facility is advantageous in
different circumstances, depending on the type of processes with which you
are working and the type of events you need to log. The two methods are as
follows:

■ Controlling Logged Events with Environment Variables: Select a subset of
event types specified previously with the -trace option by creating the
environment variable RPC_EVENTS. You assign the environment
variable to the required event types before executing the process. This
method allows you to use event logging without rebuilding the interface;
however, you must first stop the process or assign the environment
variable before starting it. This method is also useful in cases where you

Chapter 11 Application Debugging with the RPC Event Logger 125
specified all-inclusive event logging (such as with the -trace all option)
but you determine while the application is executing that you need only a
subset of events.

■ Controlling Logged Events with the RPC Log Manager: Select a subset of
event types specified previously with the -trace option by using the RPC
Log Manager command interface. This method allows you to modify
event logging parameters for an executing image — there is no need to
rebuild the interface or to stop and restart the process. In addition, you can
use the Log Manager to modify event types specified with the environment
variable RPC_EVENTS.

The following sections provide detailed descriptions of how to use each of
these methods to control the type of events logged.

11.4.1 Controlling Logged Events with Environment Variables
One way to control the type of events logged is by assigning the environment
variable RPC_EVENTS. This method is ideal for an application that contains
a single RPC interface because environment variables provide control at the
process level, rather than at the interface-by-interface level. However, to
enable the environment variable you must first stop the client or server
process.

To use environment variables to control event logging, first use the IDL
-trace option in your idl compile command and then assign the log file with
RPC_LOG_FILE. You can then use the environment variable
RPC_EVENTS to reduce the number of events currently being logged. That
is, if you used the -trace errors option to request error event logging, you can
subsequently use only the environment variable to request logging of errors
or none. You cannot use the environment variable to increase the number of
event types to be logged. To do this, you must recompile the interface with the
required -trace options.

The value of RPC_EVENTS is a list of event types separated by commas.
The list identifies the event types to be monitored. Valid values are the same
as those for -trace (except log_manager). These values are all, none, calls,
context, errors, and misc.

An example command line follows:

% setenv RPC_EVENTS "calls,errors"

If the environment variable RPC_EVENTS was not assigned, then by default
all of the events specified with the -trace option are written into the event log.

11.4.2 Controlling Logged Events with the RPC Log Manager
During application development, certain problems occur only after a server
has executed some number of calls. Other problems may require more
information than anticipated to debug. These problems can be addressed by
enabling the RPC Log Manager in your application image. The Log Manager
offers a command line interface (rpclm) for manipulating logging operations

126 Gradient DCE for Tru64 UNIX Product Guide
during application execution. When you use the rpclm command line
interface, you need not rebuild your interface or stop and restart your server or
client process to manipulate logging operations.

The rpclm commands are shown in Table 11-4.

Follow these steps to enable the RPC Log Manager to control event logging:

1 Use the -trace log_manager option in your idl compile command.

2 Create the RPC_LOG_FILE environment variable and assign it to a
filename or to screen output.

3 Execute the client or server process, or both.

4 When the first call is made to an interface compiled with the -trace option,
a listening event will be generated into the event log. Invoke the rpclm
command interface (as specified in step 4 below) by specifying the string
binding from the listening event.

NOTE: Only string bindings from a listening event can be used to invoke
rpclm.

The rpclm command interface allows you to control event logging
parameters from your keyboard. You can use the command interface to reduce
the events currently being logged as well as to manipulate logging operations.
You can enable or disable logging of different event types (within the set
selected with the -trace option), store event logging in a file or display it on
the screen, inquire about the current event types being logged, and display the
name of the current log file.

The following procedure illustrates how to use the Log Manager:

1 When you compile your interface with the idl compile option, include the
-trace log_manager option. For example:

% idl binopwk.idl -trace all -trace log_manager

Table 11-4: Command Interface to rpclm

Command Description

inquire Inquire about the currently logged events and
determine the name of the active log file.

log Specify additional events to log. Valid values are
all, none, calls, context, errors, and misc.

unlog Disable logging of the specified event types. Valid
values are all, none, calls, context, errors, and
misc.

file Change the output device or file to which events
are logged.

quit Terminate the rpclm session.

help Display a description of rpclm commands.

Chapter 11 Application Debugging with the RPC Event Logger 127
2 Assign the RPC_LOG_FILE environment variable to a filename. For
example:

% setenv RPC_LOG_FILE "client.log"

3 Execute the client or server process, or both.

4 Upon the first remote procedure call to an interface compiled with the
-trace log_manager option, a listening event will be generated into the
log. Examine the Event Data field of the listening event in the log to
determine the Log Manager string binding. (The RPC Event Logger is
itself a client/server application: the Log Manager is a server process, and
rpclm is its client. The rpclm client uses the string binding of the
listening event to communicate with the Log Manager server.) Invoke
rpclm and specify the Log Manager string binding. For example, consider
the following event:

murp:17868/15 RPC Log Mgr listening ncacn_ip_tcp:16.31.48.144[3820]

The listening event indicates that the RPC Log Manager is waiting for
commands from rpclm. (Note that, in the example, the Time field is not
shown.) To invoke rpclm, enter the listening event string binding for this
server process from the Event Data field as follows:

% rpclm "ncacn_ip_tcp:16.31.48.144[3820]"

NOTE: You must enclose the string binding in double quotation marks ("").

5 As you execute rpclm commands, the Log Manager displays current
logging parameters that indicate the changes made to event logging for this
process. For example:

rpclm> >unlog all
Event types:
Events logged to terminal
rpclm> log calls
Event types: calls

Events logged to terminal

The log for this server process will have corresponding events logged as
follows:

<time> murp:17868/15 RPC Log Mgr log_events none
<time> murp:17868/15 RPC Log Mgr log_events calls

The following example illustrates a command dialog between the user and
rpclm. The dialog begins when the user specifies a string binding from a
listening event to rpclm.

% rpclm "ncacn_ip_tcp:cltdce[1821]"
rpclm> help
rpclm Commands:
inquire - Display logged events and log filename
log - Specify additional events to log
unlog - Specify events that should no longer be logged
file - Change file into which events are logged
quit - Exit log manager

128 Gradient DCE for Tru64 UNIX Product Guide
rpclm> inquire
Event Types: calls
Events logged to terminal
rpclm> log errors
Event Types: calls errors
Events logged to terminal
rpclm> file server.log
Event Types: calls errors
Events logged to file ’server.log’
rpclm> quit

In this dialog, the user enters the help command to display the rpclm
commands and command descriptions.

The user then enters the inquire command to display the types of events being
logged and the log filename. In this example, errors are being logged to the
screen.

The user enters the log calls command to specify that the Log Manager should
start logging all events relating to calls, in addition to error events.

The user then enters the file command and specifies a filename. This
command requests that rpclm change its output device from the terminal
screen to a file named server.log.

The user then enters the quit command to terminate the rpclm session.

11.5 Using the -trace Option, Environment Variables, and the Log Manager
Together

This section describes a few different ways to use the -trace options,
environment variables, and the Log Manager together. When you are learning
to use the Event Logger, one possible approach is to specify all-inclusive
event logging with the -trace all IDL compilation option, and then examine
the event log to get an understanding of typical output. You can then use the
environment variable RPC_EVENTS to log only those events needed, such
as calls or errors.

In the case of a running process that you do not want to terminate, use a
different method. First enable the Event Logger, specifying logging of all
events, and enable the Log Manager also, as follows:

% idl filename -trace all -trace log_manager

Set the event log to display on the screen, as follows:

% setenv RPC_LOG_FILE ""

Then, assign the RPC_EVENTS environment variable so it will not log any
event types, as follows:

% setenv RPC_EVENTS "none"

With these parameters set, the only event that will be displayed is the
listening event once the first call is made to a server interface compiled with
the -trace log_manager option. You can then obtain the string binding for the
process and use it later, if needed. Once you start the process, if an error
occurs, use the string binding to invoke the rpclm command interface and log
the needed events. Any rpclm commands issued at this point will modify the

Chapter 11 Application Debugging with the RPC Event Logger 129
RPC_EVENTS environment variable assignment. For example, if you assign
the environment variable RPC_EVENTS to calls and then issue a command
to rpclm to log errors, errors as well as calls will be logged.

Once you are familiar with Event Logger output, consider regularly using the
command interface to enable or disable subsets of event types as needed.

This section provides an example of common tasks you may need to perform
during event logging. In this particular example, a distributed server process
provides a mathematical calculation service. The client process passes data to
be calculated to the server process. This type of processing often generates
exception events such as those in the example event log. That is, some
operations are interrupted by floating point overflow and integer division by
zero exceptions, as well as others. This example uses rpclm to control logging
of a server process; however, rpclm can also be used to control event logging
for a client process.

The following processes are shown in three windows: a server process
window, a client process window, and an rpclm window.

1 Server Window: The user first enables the RPC Event Logger by
specifying the -trace all and -trace log_manager options in the idl
command line:

% idl server.calc -trace all -trace log_manager

2 Server Window: The user starts the server process. The server receives a
client call and initializes the RPC Log Manager. The environment
variables were assigned to enable event logging with no event types
selected, so only Log Manager events are output, as shown. Note that the
endpoint displayed for the listening event is the endpoint of the Log
Manager. (The time field is not shown.)

% setenv RPC_LOG_FILE ""
% setenv RPC_EVENTS "none"
% server ncacn_ip_tcp

murp:17868/15 fpe.setup log_start none
murp:17868/15 RPC Log Mgr listening ncacn_ip_tcp:16.31.48.144[3820]

3 Client Window: The user invokes the client process. The specified string
binding is used to find the server. The client process displays the output
PASS 1 upon completion.

% Client ncacn_ip_tcp 16.31.48.86 [3123]
PASS 1

4 rpclm Window: The user invokes rpclm and specifies the string binding
displayed in the listening event output by the server process, shown in
step 2. The string binding must be enclosed in double quotation marks ("").
The user issues the inquire command, and the event logging parameters
for the server process are displayed. The Log Manager reply indicates that
no event types are enabled and that the event log is being displayed on the
screen from which the server process was started. The user issues the log
errors command to enable logging of error events for the server process.

% rpclm "ncacn_ip_tcp:16.31.48.144[3820]"

130 Gradient DCE for Tru64 UNIX Product Guide
rpclm> inquire
Event types:
Events logged to terminal
rpclm> log errors
Event types: errors
Events logged to terminal

5 Client Window: The user invokes the client process a second time. The
error events that occur during server execution are logged to the server
window. The client process displays the output PASS 2 upon completion.

% Client ncacn_ip_tcp 16.31.48.86 [3123]
PASS 2

6 Server Window: The server process receives the command from rpclm to
start logging errors. Any errors that occur in the server process are logged.
(The time field is not shown.)

murp:17868/15 RPC Log Mgr log_events errors
murp:17868/15 fpe.flt_overflw exception Floating point
 overflow (dce/thd)
murp:17868/15 transmit_fault rpc_s_fault_fp_overflow
murp:17868/15 fpe.flt_underflw exception Floating point
 underflow (dce/thd)
murp:17868/15 transmit_fault rpc_s_fault_fp_underflow
murp:17868/15 fpe.flt_divbyzer exception Floating point/decimal
 divide by zero (dce/thd)
murp:17868/15 transmit_fault rpc_s_fault_fp_div_by_zero
murp:17868/15 fpe.dble_overflw exception Floating point
 overflow (dce/thd)
murp:17868/15 transmit_fault rpc_s_fault_fp_overflow
murp:17868/15 fpe.dble_underflw exception Floating point
 underflow (dce/thd)
murp:17868/15 transmit_fault rpc_s_fault_fp_underflow
murp:17868/15 fpe.dble_divbyzer exception Floating point/decimal
 divide by zero (dce/thd)
murp:17868/15 transmit_fault rpc_s_fault_fp_div_by_zero

7 rpclm Window: The user issues the unlog all command to disable logging
of all previously specified event types.

rpclm> unlog all
Event types:
Events logged to terminal

8 Server Window: The event log now contains an entry that indicates the
Event Logger will stop logging previously specified events.

<time> murp:17868/15 RPC Log Mgr log_events none

9 rpclm Window: The user issues a log calls command to enable logging of
call events.

rpclm> log calls
Event types: calls
Events logged to terminal

10 Server Window: The newest event log entry indicates that the Event
Logger will start logging call events.

<time> murp:17868/15 RPC Log Mgr log_events calls

Chapter 11 Application Debugging with the RPC Event Logger 131
11 rpclm Window: Because logging output will increase now that call events
are being logged, the user issues an rpclm command to redirect logging
output to a file named server_calc.log. When the application terminates
and logging is complete, the user can use a text editor to view and search
for entries in the log. This log file will contain only those call events from
the server process.

rpclm> file server_calc.log
Event types: calls
Events logged to file ’server_calc.log’

12 Server Window: The newest event log entry indicates that the logger will
start redirecting logging information to file server_calc.log.

<time> murp:17868/15 RPC Log Mgr log_file server_calc.log

13 ClientWindow: The user invokes the client process a third time. The call
events that occur during server execution are logged to file
server_calc.log. The client process displays the output PASS 3 upon
completion.

% Clientncacn_ip_tcp 16.31.48.86 [3123]
PASS 3

14 Server Log: This is log file server_calc.log (the time field is not shown):

% more server_calc.log

murp:17868/15 RPC Log Mgr log_start server_calc.log
murp:17868/15 fpe.setup activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.setup terminate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.flt_overflw activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.flt_overflw terminate
murp:17868/15 fpe.flt_underflw activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.flt_underflw terminate
murp:17868/15 fpe.flt_divbyzer activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.flt_divbyzer terminate
murp:17868/15 fpe.dble_overflw activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.dble_overflw terminate
murp:17868/15 fpe.dble_underflw activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.dble_underflw terminate
murp:17868/15 fpe.dble_divbyzer activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.dble_divbyzer terminate

15 rpclm Window: The user issues a file command to redirect event logging
output from server_calc.log to the terminal screen. To do this, press the
Return key without specifying a filename when the Log Manager prompts
for one.

rpclm> file
New File Name: <Return>
Event types: calls
Events logged to terminal
rpclm>

16 Server Window: The final event in the server_calc.log file is a log_file
event, which indicates that event logging output is being redirected, in this
case to the terminal screen. Therefore, no filename is displayed to the right
of the event name.

132 Gradient DCE for Tru64 UNIX Product Guide
<time> murp:17868/15 RPC Log Mgr log_file

11.6 Using Event Logs to Debug Your Application
The RPC Event Logger is designed to help you debug your distributed
application and is an enhancement over the basic diagnostics in the RPC
product. The diagnostics alone provide minimal information. For example,
the sample program called test2, which is provided with the Gradient DCE for
Tru64 UNIX, generates the rpc_x_no_more_bindings exception when the client
fails to contact the server. Without the aid of RPC event logging, this is the
only diagnostic information available.

The following example shows the basic RPC diagnostic information that an
application displays when an error occurs.

% test2

*** Unable to obtain server binding information
Make sure environment variable RPC_DEFAULT_ENTRY = .:/test2_server
Exception: no more bindings (dce / rpc)
IOT trap (core dumped)

If you enable RPC event logging by defining the environment variable
RPC_LOG_FILE, then the details of client execution can be captured in a file.
From the event log, you can determine which servers the client tried to contact
and the reason each attempt failed.

In the following event log example, the Event Data field on the rebind events
indicates that the interface is not registered in the endpoint map and that a
communications failure occurred. This information indicates that the server
either is not running or it failed to register properly with the endpoint mapper.

The final event, call_failure, indicates that the call was terminated with the
no more bindings status. This event indicates that the client tried all available
servers but failed to communicate with any of them. (Note that in the first
column the word time represents the actual value for time.)

% test2

time ko:11436/1 test2.test2_add log_start all
time ko:11436/1 test2.test2_add call_start ncacn_ip_tcp:16.20.16.27[]
time ko:11436/1 test2.test2_add rebind not registered in endpoint
 map(dce/rpc)
time ko:11436/1 test2.test2_add call_start ncacn_dnet_nsp:4.262[]
time ko:11436/1 test2.test2_add rebind not registered in endpoint
 map(dce/rpc)
time ko:11436/1 test2.test2_add call_start ncadg_ip_udp:16.20.16.27[]
time ko:11436/1 test2.test2_add rebind comm failure (dce/rpc)
time ko:11436/1 call_failure no more bindings (dce/rpc)
*** Unable to obtain server binding information
Make sure environment variable RPC_DEFAULT_ENTRY = .:/test2_server
Exception: no more bindings (dce / rpc)
IOT trap (core dumped)

Chapter 11 Application Debugging with the RPC Event Logger 133
11.7 Event Names and Descriptions
This section lists and describes RPC events. See the table in Section 11.2 on
page 117 for a list of events by type (calls, context handles, errors,
miscellaneous, and logging) and their origin (client or server).

activate A thread was assigned to process an RPC call on a server, and the
server stub has started processing input arguments. The Event Data
field of the event log contains the string binding of the client
application making the call.

await_reply The transmission of input arguments in a call from a client
application to a server is completed. The event is generated by the
client stub. The client application is waiting for output arguments
from the server.

call_end A call from a client application is complete and the client stub is
returning to the caller.

call_failure A client stub terminated abnormally because either an exception
occurred or a failing status was returned. The Event Data field of
the event log contains the error text associated with the exception
or RPC status code.

call_start A client application attempted to make a call to a server. The event
is generated by the stub within the client application. The Event
Data field of the event log displays the string binding of the server
being contacted.

client_ctx_created A client application has allocated a context handle on a particular
server. The Event Data field of the event log contains the following
information about this event:

■ The address representing the context handle in the client
address space (an opaque pointer)

■ The UUID which can be used to identify the corresponding
context handle on the server

■ The string binding of the server on which the actual context
resided

client_ctx_deleted The client application representation of a context handle is being
deleted to reflect the deletion of the context handle on the server.
The Event Data field of the event log contains the following
information about this event:

■ The address representing the context handle in the client
address space (an opaque pointer)

■ The UUID which can be used to identify the corresponding
context handle on the server

■ The string binding of the server on which the actual context
resided

client_ctx_destroyed A client application has destroyed the client representation of a
context handle through the rpc_ss_destroy_client_context()
routine. The Event Data field of the event log contains the
following information about this event:

■ The address representing the context handle in the client
address space (an opaque pointer)

■ The UUID which can be used to identify the corresponding
context handle on the server

■ The string binding of the server on which the actual context
resided

134 Gradient DCE for Tru64 UNIX Product Guide
context_created A new context handle was created on a server and returned from
the application manager routine. The Event Data field of the event
log contains both the application value of the context handle and
the UUID assigned to represent this context handle.

context_deleted A context handle on a server has been deleted by the application
manager routine. The Event Data field of the event log contains
both the application value of the context handle and the UUID
assigned to represent this context handle.

context_modified A context handle on a server was returned from the application
manager routine with a value that is different from its previous
value. The Event Data field of the event log contains both the
application value of the context handle and the UUID assigned to
represent this context handle.

context_rundown A context handle on a server was freed by the context rundown
procedure. The Event Data field of the event log contains both the
application value of the context handle and the UUID assigned to
represent this context handle.

exception An exception was detected in the server stub, and the exception
caused the call to terminate. The Event Data field of the event log
contains a text description of the exception.

internal_error A failure occurred in the support routines that manage the Event
Logger. Check the Event Data field of the event log for a
description of the cause of the event. If the error does not seem to
indicate a transient network problem or an environmental failure,
report the failure in a Software Performance Report (SPR).

listening The RPC Log Manager has started to listen for rpclm commands.
The listening event is generated by the portion of the RPC Log
Manager built into your application by the RPC runtime when you
specify the -trace log_manager option on your IDL compilation.
The RPC Log Manager services the requests generated by the
rpclm command. You use one of the string bindings from a
listening event to invoke the rpclm command interface.

log_events Event logging was modified through the Log Manager command
interface rpclm. The Event Data field of the event log contains the
new set of events being logged.

log_file Event logging was modified through the Log Manager command
interface rpclm. The Event Data field of the event log contains the
new filename for the event log. If no filename is displayed, events
are being logged to the screen.

log_start A new event log was created or event logging was resumed after
being suspended by a user command to the Log Manager
command interface rpclm. The Event Data field in the event log
contains a list of event types being logged.

log_stop Event logging was stopped through the Log Manager command
interface rpclm.

manager_call The server stub is about to call the application manager routine.

manager_return Control has just returned from the application manager routine to
the server stub.

rebind A call from a client application to a server failed. The Event Data
field in the event log shows the reason for the failure to contact the
server. The event is generated by the stub within the client
application. The call failed on an auto_handle operation and the
client is attempting to rebind to the next server.

Chapter 11 Application Debugging with the RPC Event Logger 135
11.8 Summary
The RPC Event Logger is a developer’s aid for debugging DCE RPC
applications. The RPC Event Logger allows you to modify IDL-generated
stub routines in order to generate event logs of runtime execution of RPC calls
on the screen or in a file. In addition, the RPC Log Manager command
interface (rpclm) provides command line access to event logging parameters,
allowing you to enable and disable debugging support of clients and servers
as they execute.

The DCE RPC application development environment is designed to create
applications that are portable to other DCE platforms and that can interoperate
with other DCE applications. Use of Gradient DCE for Tru64 UNIX RPC
Event Logger does not affect code portability or interoperability. Because the
Event Logger does not modify the application, you can take advantage of
event logging without affecting application portability to other hardware or
software platforms.

In addition, use of Gradient DCE for Tru64 UNIX RPC Event Logger does
not limit interoperability with other DCE implementations. Because event
logs are generated only in the local application, communication protocols are
not modified. You can, for example, use the event logging facility with any
server process running under Gradient DCE for Tru64 UNIX or with any
client process communicating with an RPC server on any hardware or
software platform.

receive Following the transmission of input arguments from a client
application call to a server, the client received a reply and has
started processing output arguments.

receive_fault The client received a fault indicating a failure on the server. The
Event Data field of the event log contains the RPC status that
identifies the failure. All failures have fault codes which you can
find in the file ncastat.idl. If the fault code in the ncastat.idl file is
too general (such as unspecified fault), examine the server
event log for precise failure information.

status_fail A failure status was encountered in the server stub. The Event Data
field of the event log describes the failure.

terminate The server thread has completed processing the call and has
terminated.

transmit_fault The server runtime is sending fault information to the client
application. The Event Data field of the event log indicates the
name of the fault being sent. The fault information in this field is
listed in the ncastat.idl file. The fault information in this field may
be less descriptive than the information logged about the actual
error. (See the exception or status_fail events in the event
log to obtain precise failure information.)

C H A PT E R 1 2

Developing Distributed
Applications with FORTRAN
12.1 Overview of Applications with FORTRAN
This chapter explains how to use DIGITAL FORTRAN® in the development
of distributed applications that make remote procedure calls.

This chapter provides the following information:

■ Interoperability and portability issues as they relate to applications written
in DIGITAL FORTRAN

■ A comprehensive example that introduces and illustrates several concepts

■ General reference information about DIGITAL FORTRAN and remote
procedure calls, including a discussion about restrictions

12.2 Interoperability and Portability
In general, an application you create in the Gradient DCE for Tru64 UNIX
RPC environment will interoperate with other DCE RPC applications and will
port to other DCE platforms if it complies with the appropriate programming
language standards. More specifically:

■ Any client that you have correctly created in a Gradient DCE for Tru64
UNIX RPC environment to use a DCE interface expressed in an IDL file
will interoperate with any DCE RPC server that supports the interface.

■ Any server that you have correctly created in a Gradient DCE for Tru64
UNIX RPC environment to use a DCE interface expressed in an IDL file
will interoperate with any DCE RPC client that makes calls on the
interface.

Typically, applications created in the DCE RPC environment are written in
the C programming language. However, if you use the DIGITAL FORTRAN
support in Gradient DCE for Tru64 UNIX, the application will be subject to
the following portability constraint:

■ Gradient DCE for Tru64 UNIX RPC applications that contain code written
in DIGITAL FORTRAN in a Tru64 UNIX environment and that use a
DCE interface expressed in an IDL file will interoperate with any
corresponding DCE server or DCE client. However, you can port these
applications only to other Gradient DCE for Tru64 UNIX environments.

138 Gradient DCE for Tru64 UNIX Product Guide
12.3 Remote Procedure Calls Using FORTRAN — Example
The Gradient DCE for Tru64 UNIX IDL compiler provides similar support
for applications written in DIGITAL FORTRAN as that provided for
applications written in C. That is, you can write an RPC client in DIGITAL
FORTRAN or you can write one or more manager routines in the server side
of the application in DIGITAL FORTRAN. If you are unfamiliar with the
tasks involved in developing an RPC application, see the chapter about
application building in the OSF DCE Application Development Guide.

The DIGITAL FORTRAN support consists of stubs that use DIGITAL
FORTRAN linkage conventions and a file that contains DIGITAL FORTRAN
definitions of the constants and types declared in an interface definition.
(These conventions and definitions are explained in Remote Procedure Calls
Using FORTRAN — Example.)

The following sections present a comprehensive example that demonstrates
how you can create the various parts of a simple, distributed payroll
application using DIGITAL FORTRAN.

The important features of this example are as follows:

■ The example client application reads time-card information, passes it to a
server that calculates wages, and prints the results.

■ Both the client and the portion of the server that calculates gross pay (the
manager routine) are written in DIGITAL FORTRAN.

■ The initialization portion of the server application is written in C.

12.3.1 Where to Obtain the Example Application Files
All of the example application files referenced in this chapter are located in
the following directory in your kit:

/usr/examples/dce/rpc/payroll

The next table lists application files that normally would be created by the
programmer for an application. To demonstrate application building, these
application files are provided for you in the software kit. The second table in
Compiling the Interface with the IDL Compiler lists the files generated by the
IDL compiler for the example application.

Before you execute any of the example compilations, builds, or run
commands in this chapter, copy all of the files listed in the first table to an
empty directory. Entegrity recommends that you read the file named
README in the same subdirectory. Then build and run the examples.

Chapter 12 Developing Distributed Applications with FORTRAN 139
The programs, procedures, and data files in the payroll example should be the
same in this chapter and in the specified subdirectory that came with your
Gradient DCE for Tru64 UNIX software kit. For example, file payroll.idl as
it appears in The Interface File and Data File (payroll.idl and payroll.dat)
should be identical to the following file:

/usr/examples/dce/rpc/payroll/payroll.idl

For all of the example files, if there is a difference between the file as shown
in this chapter and the file in the subdirectory, assume that the file in the
subdirectory is the correct one.

12.3.2 The Interface File and Data File (payroll.idl and payroll.dat)
The following interface, named payroll.idl, is part of the example application.
The name of the remote procedure in the interface is calculate_pay(). The
interface does not indicate that this procedure is written in DIGITAL
FORTRAN.

/*
** Copyright (c) 1993 by
** Digital Equipment Corporation, Maynard, Mass.
**
*/

[
uuid(d1b14181-6543-11ca-ba11-08002b17908e),
version(1.0)
]
interface payroll
{
 const long string_data_len = 7;

Table 12-1: Example Files Created by the Programmer

Filename File Description

payroll.idl The interface definition file that
contains the application programming
interface (API) to the remote procedure
call calculate_pay().

print_pay.for The FORTRAN source file for the client
side of the application.

server.c The FORTRAN source file that contains
the initialization code for the server side
of the application.

manager.for The FORTRAN source file for the
server side of the application.

Makefile.unix The description file that builds the
example application.

payroll.dat The data input file for the example
application.

140 Gradient DCE for Tru64 UNIX Product Guide
 typedef struct {
 [string] char grade[string_data_len + 1];
 /*Storage for string must include space for null terminator*/
 short regular_hours;
 short overtime_hours;
 } timecard;

 void calculate_pay(
 [in] timecard cards[1..7],
 [out] long *pay
);
}

The next part of the example is the data file payroll.dat, which the client side
of the application reads. The facts about each employee appear in 8 records.
The first record contains the employee’s name (40 characters) and grade (7
characters). Records 2 to 8 contain the number of regular hours and overtime
hours worked on Monday to Sunday.

NOTE: The timecard structure defined in payroll.idl does not specify the
employee’s name in the data going to the remote procedure.

Jerry Harrison FOREMAN
 8 1
 8 1
 8 2
 8 2
 8 1
 0 4
 0 0
Tony Hardiman WORKER
 8 0
 8 0
 8 0
 8 2
 8 0
 0 4
 0 0
Mary Flynn WORKER
 8 1
 8 1
 8 2
 8 0
 8 1
 0 4
 0 0

12.3.3 Compiling the Interface with the IDL Compiler
To compile an RPC interface, you must use the idl command to invoke the
IDL compiler. To compile an RPC interface for a DIGITAL FORTRAN
application, you must select the following IDL options:

■ Option -lang fortran. This option specifies FORTRAN as the source code
language.

Chapter 12 Developing Distributed Applications with FORTRAN 141
■ Option -standard extended. This option enables features beyond those
available in OSF DCE Version 1.0.3.

The following example command illustrates how to invoke the IDL compiler
to compile the sample DIGITAL FORTRAN application interface:

% idl payroll.idl -lang fortran -standard extended

As a result of this command, the IDL compiler generates the files listed in the
next table.

File payroll.for, as generated by the IDL compiler, is next.

C Generated by IDL compiler version DEC DCE Vn.n.n-n
C
C The following statements must appear in application code
C INCLUDE ’NBASE.FOR’

 INTEGER*4 STRING_DATA_LEN
 PARAMETER (STRING_DATA_LEN=7)

 STRUCTURE /TIMECARD/
 CHARACTER*8 GRADE
 INTEGER*2 REGULAR_HOURS
 INTEGER*2 OVERTIME_HOURS
 END STRUCTURE

C SUBROUTINE CALCULATE_PAY(CARDS, PAY)
C RECORD /TIMECARD/ CARDS(7)
C INTEGER*4 PAY

As you read this chapter, it is important to remember that the interface defined
in file payroll.idl appears as DIGITAL FORTRAN statements in file
payroll.for. As a specific instance, consider the overtime hours field. Its

Table 12-2: Example Files Created by IDL

Filename File Description

payroll_cstub.o The stub file generated by the IDL
compiler for the client side of the
application.

payroll_sstub.o The stub file generated by the IDL
compiler for the server side of the
application.

payroll.for An include file that emulates the C
language header file (.h) and that
documents the valid syntax for
subroutine calls that are used in the
FORTRAN source files. This file will
be called out in Makefile.unix and
linked with the other application files
because it refers to constants and types
defined in the interface definition.

payroll.for_h A file generated by the IDL compiler
that is used to build the stub files.

142 Gradient DCE for Tru64 UNIX Product Guide
definition appears in payroll.idl as the statement short overtime_hours, and in
payroll.for as the statement INTEGER*2 OVERTIME_HOURS. The overtime hours
data in file payroll.dat is read into a data item of this type.

12.3.4 The Client Application Code for the Interface (print_pay.for)
Suppose that the directory in which the interface was compiled also contains
file print_pay.for. This is the source file for the client side of the distributed
application. Its contents follow.

CThis is the client side of a payroll application that
C uses remote procedure calls.
C
 PROGRAM PRINT_PAY
 INCLUDE ’PAYROLL.FOR’ ! Created by the IDL compiler from
 ! file PAYROLL.IDL.
CCOPYRIGHT (C) 1993 BY DIGITAL EQUIPMENT CORP., MAYNARD MASS.
C The structure of a time card is described in the included file.
 RECORD /TIMECARD/ CARDS(7)
 CHARACTER*40 NAME
 CHARACTER*8 GRADE
 INTEGER*4 PAY
 INTEGER*4 I
C
CRead eight records for the current employee.
 10 READ (4, 9000, END=100) NAME, GRADE ! First record
 9000 FORMAT (A40, A8)
 DO 20 I = 1, 7 ! Second through eighth records
 READ (4,9010) CARDS(I).REGULAR_HOURS, CARDS(I).OVERTIME_HOURS
 9010 FORMAT (I2, I2)
 CARDS(I).GRADE = GRADE
 20 CONTINUE
C
CCall remote procedure CALCULATE_PAY to calculate the gross pay.
 CALL CALCULATE_PAY (CARDS, PAY)
CDisplay the current employee’s name and gross pay.
 WRITE (6, 9020) NAME, PAY
 9020 FORMAT (1X, A40, 1X, I4)
 GO TO 10
C
 100 STOP
C
 END

To compile and link the client program print_pay.for, which at runtime
makes remote procedure calls to a server that supports the payroll interface,
use the following commands.

% fortran -c print_pay.for

% ld -o print_pay print_pay.o payroll_cstub.o

-lfor -lutil -lUfor -lm -lots -ldce -lpthreads -lmach -lc_r -lm

Chapter 12 Developing Distributed Applications with FORTRAN 143
Instead of using these two commands directly to build the client part of the
application, you can use make to build the entire application using the
supplied Makefile, called Makefile.unix. See Section 12.3.8 on page 146 and
Section 12.3.9 on page 148 for information about building and running this
example.

This program reads its data from DIGITAL FORTRAN logical unit 4. A
command in Makefile.unix defines the logical unit.

12.3.5 The Server Initialization File (server.c)
Because all programming interfaces to the RPC runtime are specified in C,
you must write the code that sets up the server in C. In this example, the
server setup code (also called the initialization code) is in file server.c, shown
next.

/* This is program SERVER.C that sets up the server for
 the application code whose origin is FORTRAN
 subroutine CALCULATE PAY. */

/*
** Copyright (c) 1993 by
** Digital Equipment Corporation, Maynard, Mass.
**
*/

#include <stdio.h>
#include <file.h>
#include <dce/dce_error.h>
#include "payroll.for_h" /* The IDL compiler created this file from
 file PAYROLL.IDL. */

static char error_buf[dce_c_error_string_len+1];
static char *error_text(st)
 error_status_t st;
{
 error_status_t rst;
 dce_error_inq_text(st, error_buf, &rst);
 return error_buf;
}

main()
{
 error_status_t st;
 rpc_binding_vector_p_t bvec;

 /* Register all supported protocol sequences with the runtime. */
 rpc_server_use_all_protseqs(
 rpc_c_protseq_max_calls_default,
 &st
);
 if (st != error_status_ok)
 {
 fprintf(stderr, "Can’t use protocol sequence - %s\n",error_text(st));

144 Gradient DCE for Tru64 UNIX Product Guide
 exit(1);
 }

 /* Register the server interface with the runtime. */
 rpc_server_register_if(
 payroll_v1_0_s_ifspec, /* From the IDL compiler; */
 /* "v1_0" comes from the statement */
 /* "version(1.0)" in file PAYROLL.IDL.*/
 NULL,
 NULL,
 &st
);
 if (st != error_status_ok)
 {
 printf("Can’t register interface - %s\n", error_text(st));
 exit(1);
 }

 /* Get the address of a vector of server binding handles. The
 call to routine rpc_server_use_all_protseqs() directed the
 runtime to create the binding handles. */
 rpc_server_inq_bindings(&bvec, &st);
 if (st != error_status_ok)
 {
 printf("Can’t inquire bindings - %s\n", error_text(st));
 exit(1);
 }

 /*Place server address information into the local endpoint map.*/
 rpc_ep_register(
 payroll_v1_0_s_ifspec,
 bvec,
 NULL,
 (idl_char*)"FORTRAN Payroll Test Server",
 &st
);
 if (st != error_status_ok)
 {
 printf("Can’t register ep - %s\n", error_text(st));
 }

 /* Place server address information into the name service database. */
 rpc_ns_binding_export(
 rpc_c_ns_syntax_default,
 (idl_char*)".:/FORTRAN_payroll_mynode",
 payroll_v1_0_s_ifspec,
 bvec,
 NULL,
 &st
);
 if (st != error_status_ok)
 {

Chapter 12 Developing Distributed Applications with FORTRAN 145
 printf("Can’t export to name service - %s\n", error_text(st));
 }

 /* Tell the runtime to listen for remote procedure calls.
 Also, FORTRAN cannot support multiple threads of execution. */
 rpc_server_listen((int)1, &st);
 if (st != error_status_ok)
 fprintf(stderr, "Error listening: %s\n", error_text(st));

}

12.3.6 The Server Application Code for the Interface (manager.for)
The server application code, written in DIGITAL FORTRAN, is declared in
file payroll.idl as calculate_pay(). File manager.for contains subroutine
calculate_pay as follows:

 SUBROUTINE CALCULATE_PAY(CARDS, PAY)
 INCLUDE ’PAYROLL.FOR’ ! Created by the IDL compiler from
 ! file PAYROLL.IDL.
C

CCOPYRIGHT (C) 1993 BY DIGITAL EQUIPMENT CORP., MAYNARD MASS.
C The structure of a time card is described in included
C file PAYROLL.FOR.

 RECORD /TIMECARD/ CARDS(7)
 INTEGER*4 PAY
 INTEGER*4 I

 PAY = 0
 DO 10 I = 1, 7
C The basic hourly wage is $6.00.
 PAY = PAY + 6 * CARDS(I).REGULAR_HOURS
C The following comparison does not include last character
C of GRADE, because it arrives as a null terminator.
 IF (CARDS(I).GRADE(1:STRING_DATA_LEN) .EQ. ’FOREMAN’) THEN
C The overtime hourly wage for a foreman is $12.00.
 PAY = PAY + 12 * CARDS(I).OVERTIME_HOURS
 ELSE
C The overtime hourly wage for a worker is $9.00.
 PAY = PAY + 9 * CARDS(I).OVERTIME_HOURS
 END IF
 10 CONTINUE

 RETURN
 END

To create the file server, which at runtime responds to remote procedure calls
from a client that supports the payroll interface, use the following commands.

% cc -c server.c
% fortran -c manager.for
% ld -o server server.o manager.o payroll_sstub.o
-lfor -lutil -lUfor -lm -lots -ldce -lpthreads -lmach -lc_r -lm

146 Gradient DCE for Tru64 UNIX Product Guide
Instead of using these commands directly to build the server part of the
application, you can use make to build the entire application (see
Section 12.3.8 on page 146).

12.3.7 Client and Server Bindings
In order to make remote procedure calls, client applications must be bound to
server applications. This is illustrated in the client program print_pay.for
shown in Section 12.3.4 on page 142. The source code in the client program
uses the default [auto_handle] binding, which is enabled by the following
source code:

CCall remote procedure CALCULATE_PAY to
C calculate the gross pay.

 CALL CALCULATE_PAY (CARDS, PAY)

When you run make (described in Building the Example (Makefile.unix)) or
manually compile the application, a message is displayed about assuming
[auto_handle].

For more information about client and server bindings, see the chapter on
basic DCE RPC runtime operations in the OSF DCE Application
Development Guide.

12.3.8 Building the Example (Makefile.unix)
You can build the payroll example with make by using file Makefile.unix.
Since the supplied Makefile has a .unix filename extension, you must use the
-f option to the make command, as follows:

% make -f Makefile.unix

The contents of Makefile.unix follow.

#
COPYRIGHT (C) 1993 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.
#
THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY
OTHER COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE
TO ANY OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE
IS HEREBY TRANSFERRED.
#
THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.
#
DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.
#

Chapter 12 Developing Distributed Applications with FORTRAN 147
DCELIBS = $(LIBLOC) -ldce -lpthreads -lmach -lc_r -lm
FFLAGS = -c
FLIBS = -lfor -lutil -lUfor -lm -lots
FORTRAN = f77
I18NLIB =
IDL = idl
IDLFLAGS = -trace all -lang fortran -standard extended
LINKFLAGS =

Default target - build client and server
all : print_pay server
@- cp /dev/null build.timestamp

Target to build "local" (non-RPC) application in single image
local : local_print_pay
@- cp /dev/null buildl.timestamp

Target to run local application
run_local :
FORT4=payroll.dat; export FORT4; local_print_pay

Target to clean up non-source files
clean :
@- rm server server.o manager.o payroll_sstub.o
@- rm print_pay print_pay.o payroll_cstub.o
@- rm payroll.for payroll.for_h
@- rm build.timestamp
@- rm buildl.timestamp local_print_pay
@- rm server.log

server : server.o manager.o payroll_sstub.o
$(CC) $(LINKFLAGS) -o $@ server.o manager.o payroll_sstub.o \
$(FLIBS) $(DCELIBS)

print_pay : print_pay.o payroll_cstub.o
$(FORTRAN) $(LINKFLAGS) -o $@ print_pay.o payroll_cstub.o \
$(FLIBS) $(DCELIBS)

print_pay.o : print_pay.for payroll.for
$(FORTRAN) $(FFLAGS) -o $@ print_pay.for

payroll.for : payroll.idl
$(IDL) $(IDLFLAGS) payroll.idl

payroll_cstub.o : payroll.idl
$(IDL) $(IDLFLAGS) payroll.idl

server.o : server.c payroll.for_h
$(CC) $(CFLAGS) -o $@ server.c

148 Gradient DCE for Tru64 UNIX Product Guide
payroll.for_h : payroll.idl
$(IDL) $(IDLFLAGS) payroll.idl

manager.o : manager.for payroll.for
$(FORTRAN) $(FFLAGS) -o $@ manager.for

payroll_sstub.obj : payroll.idl
$(IDL) $(IDLFLAGS) payroll.idl

local_print_pay : print_pay.o manager.o
$(FORTRAN) $(LINKFLAGS) -o $@ print_pay.o manager.o $(FLIBS) $(I18NLIB)

12.3.9 Running the Example
To run the sample application, perform the following steps:

1 Start the server process and run it as a background job:

% setenv RPC_DEFAULT_ENTRY
".:/FORTRAN_payroll_mynode"
% server &

2 Run the client:

% setenv FORT4 payroll.dat
% print_pay

The program displays the following output:

Jerry Harrison 372
Tony Hardiman 294
Mary Flynn 321
FORTRAN STOP
Deleting server process...
End of sample application

3 Bring the server process to the foreground and terminate it:

% fg
% CTRL/C

The output from building this application includes files client and server.
You can use these executable programs in separate client and server
processes.

12.4 Remote Procedure Calls Using FORTRAN — Reference
Remote Procedure Calls Using FORTRAN — Example contains a
comprehensive example that introduces creating distributed applications with
DIGITAL FORTRAN program units. This section goes beyond the example
to provide reference information and explain general concepts about creating
these distributed applications.

Chapter 12 Developing Distributed Applications with FORTRAN 149
12.4.1 The FORTRAN Compiler Option
If you are generating stubs and include files for application code written in
DIGITAL FORTRAN, you must specify it as the language of choice when
you compile the application’s IDL file. To specify the DIGITAL FORTRAN
language, specify -lang fortran; the default value is -lang c.

In the remainder of this chapter, the phrase “FORTRAN option” refers to the
IDL command that specifies DIGITAL FORTRAN. Examples of the IDL
command and specification are presented in Compiling the Interface with the
IDL Compiler.

Any client or server stub files that the FORTRAN option generates use the
DIGITAL FORTRAN linkage conventions. This means that all parameters are
passed by reference (see Section 12.4.5.1 on page 153 for more information).
In addition, all identifiers are converted to uppercase.

The FORTRAN option generates the file filename.for, which includes
DIGITAL FORTRAN declarations of the constants and types declared in the
IDL file. The .for file also includes, for each operation declared in the IDL
file, a set of comments that describes the signature of the operation in
DIGITAL FORTRAN terms.

In addition, the FORTRAN option generates the file filename.for_h. This file
is used for generating the client and server stubs. It is also needed for
generating DIGITAL FORTRAN stubs for any interface that imports this
interface.

Consider the header option whose syntax is -header. If you specify both the
FORTRAN option and the header option to the IDL compiler, the following
rules govern the compiler's placement of the files filename.for and
filename.for_h.

■ If you specify a directory name in the header option, the compiler places
the files in that directory. Otherwise, it places the files in the current
default directory.

■ If you specify a filename without an extension in the header option, the
compiler uses that filename with the extensions .for and .for_h.

■ If you specify a filename with an extension in the header option, the
compiler uses that file extension instead of .for_h; however, the compiler
does not change the extension of the .for file.

12.4.2 Restrictions on the Use of FORTRAN
This section discusses restrictions on distributed applications written in
DIGITAL FORTRAN that make remote procedure calls. These restrictions
are on interfaces and stubs, and on runtime operations.

■ If an interface contains any arrays that have more than seven dimensions,
the IDL compiler cannot produce output that is compatible with DIGITAL
FORTRAN.

■ If an interface contains two identifiers that differ only in the case of their
characters, the IDL compiler might not be able to build stubs.

150 Gradient DCE for Tru64 UNIX Product Guide
■ The stubs generated for DIGITAL FORTRAN cannot call operations that
use pipes.

■ If the transmit_as or represent_as attributes have been applied to a
character array type used to define the parameters of an operation, then
DIGITAL FORTRAN cannot call that operation.

■ If the transmit_as or represent_as attributes have been applied to an
array type that, in turn, is the base type of an array type used to define the
parameters of an operation, then DIGITAL FORTRAN cannot call that
operation.

■ If the v1_array attribute has been applied to any parameter of an
operation, then DIGITAL FORTRAN cannot call that operation.

■ DIGITAL FORTRAN does not allow the concurrent execution of two or
more threads. In particular, if a server implements remote operations in
DIGITAL FORTRAN, it must restrict the number of threads of server
execution to 1. The following statement in file server.c (shown in
Section 12.3.5 on page 143) specifies this restriction:

rpc_server_listen((int)1, &st);

12.4.3 IDL Constant Declarations
A constant declaration either gives a name to an integer or string constant or
gives a second name to a constant that has already been given a name.
Examples of these declarations follow:

const long array_size = 100;
const char jsb = "Johann \"Sebastian’ Bach";
const long a_size = array_size;
const boolean untruth = FALSE;

For all IDL constant declarations, equivalent PARAMETER statements are
generated in the corresponding file filename.for. For example:

INTEGER*4 ARRAY_SIZE
PARAMETER (ARRAY_SIZE=100)

CHARACTER*(*) JSB
PARAMETER (JSB=’Johann "Sebastian’’ Bach’)

INTEGER*4 A_SIZE
PARAMETER (A_SIZE=ARRAY_SIZE)

LOGICAL*1 UNTRUTH
PARAMETER (UNTRUTH=.FALSE.)

All integer constants are declared as INTEGER*4.

All void * constants are ignored.

A nonprinting character that appears within a character or string constant is
replaced by a question mark (?).

Chapter 12 Developing Distributed Applications with FORTRAN 151
12.4.4 Type Mapping
An IDL type that is a synonym for another type is presented to DIGITAL
FORTRAN as the type for which the synonym is defined. For example,
suppose that the IDL file contains the following statement:

typedef foo bar;

Then, all instances of IDL type bar are presented to DIGITAL FORTRAN as
of type foo.

The next table describes the mappings from IDL types to DIGITAL
FORTRAN types.

Table 12-3: Mappings for IDL Types

IDL Data Type FORTRAN Data Type Comments

arrays See notes 8 and 9

boolean LOGICAL*1

byte BYTE

char CHARACTER

context handle INTEGER*4

double REAL*8 See note 3

enum INTEGER*4

error_status_t INTEGER*4 See note 4

float REAL*4

handle_t HANDLE_T See Section 12.4.7 on page 154

hyper IDL_HYPER_INT See Section 12.4.7 on page 154

ISO_MULTI_LINGUAL ISO_MULTI_LINGUAL See Section 12.4.7 on page 154

ISO_UCS ISO_UCS See Section 12.4.7 on page 154

long INTEGER*4

pipe No mapping

pointer INTEGER*4 See note 10

short INTEGER*2

small INTEGER*2 See note 1

struct STRUCTURE See notes 5 and 6

union UNION See note 7

unsigned hyper IDL_UHYPER_INT See Section 12.4.7 on page 154

unsigned long INTEGER*4 See note 2

unsigned short INTEGER*4 See note 1

unsigned small INTEGER*2 See note 1

152 Gradient DCE for Tru64 UNIX Product Guide
Notes

1 For these IDL data types, the DIGITAL FORTRAN data type is chosen
because it can represent all possible values of the IDL type. Note that, in
each case, there are values of the DIGITAL FORTRAN type, which cannot
be represented in the IDL type. You must not attempt to pass such values
in parameters. The RPC runtime code does not perform range checking.

2 Because some values that can be represented in an IDL data type cannot be
represented correctly in the DIGITAL FORTRAN data type, the IDL
compiler issues a warning.

3 You must compile DIGITAL FORTRAN code that uses this data type and
specify the cc-cmd ’command_line’ compiler option.

4 Status code mapping will occur where necessary.

5 For any structure type in the IDL file that is not defined through a typedef
statement, the IDL compiler generates the name of the DIGITAL
FORTRAN structure. To determine what name was generated, look at
filename.for.

6 The semantics of conformant structures cannot be represented in
DIGITAL FORTRAN. In the definition of such a structure in filename.for,
a placeholder for the conformant array field is specified as a
one-dimensional array with one element. If the first lower bound of the
conformant array is fixed, this value is used as the lower and upper bounds
of the placeholder. If the first lower bound of the array is not fixed and if
the first upper bound of the conformant array is fixed, the upper bound is
used as the lower and upper bounds of the placeholder. Otherwise, the
lower and upper bounds of the placeholder are zero.

7 Note that IDL encapsulated union types and nonencapsulated union types
are represented as DIGITAL FORTRAN structures containing unions.

8 IDL array types are converted to arrays of a nonarray base type.

9 Arrays that do not have a specified lower bound have a lower bound of
zero. Consider the following two statements in an IDL file:

double d[10][20];
short e[2..4][3..6];

The statements map into the following DIGITAL FORTRAN constructs.

REAL*8 D(0:9,0:19)
INTEGER*2 E(2:4,3:6)

10 The size of the pointer depends on the platform. It is INTEGER*8 for
Tru64 UNIX systems.

12.4.5 Operations
Operations can pass parameters and return function results. This section
explains these two topics.

Chapter 12 Developing Distributed Applications with FORTRAN 153
12.4.5.1 Parameter Passing by Reference

The following rules explain the mapping between IDL parameters and
DIGITAL FORTRAN parameters.

■ If the IDL parameter contains an asterisk (*) and does not have a [ptr] or
[unique] attribute, this signifies a parameter of the indicated type passed
by reference. The DIGITAL FORTRAN parameter is of the same type.

■ If the IDL parameter contains an asterisk and does have a [ptr] or
[unique] attribute, the DIGITAL FORTRAN parameter is a pointer.

■ If the IDL parameter is an array and has the [ptr] or [unique] attribute, the
DIGITAL FORTRAN parameter is a pointer.

■ If none of the preceding cases is true, then the DIGITAL FORTRAN
parameter is of the same type as the IDL parameter.

12.4.5.2 Function Results

The only possible function result types in DIGITAL FORTRAN are scalars
and CHARACTER*n. The mappings from IDL to DIGITAL FORTRAN
never produce CHARACTER*n, where n is greater than 1.

IDL hyper integers are not scalars in terms of function results, but IDL
pointers are treated as scalars because they are mapped to INTEGER*8.

For an operation that has a result type that is not allowed by DIGITAL
FORTRAN, the stubs treat the operation result as an extra [out] parameter
added to the end of the parameter list.

If the type of an operation is not void, you must state the type of the function
result in DIGITAL FORTRAN.

12.4.6 Include Files
Usually, a DIGITAL FORTRAN routine that is part of an RPC client or
manager for the interface defined in filename.idl must include the following
files:

■ filename.for
■ nbase.for
■ The .for files for any imported interfaces

Program units print_pay.for and manager.for (containing subroutine
subprogram CALCULATE_PAY) in the example of a distributed payroll
application do not include nbase.for because the units contain none of the
IDL data types. Otherwise, the program units would include nbase.for.
Furthermore, these units could safely include nbase.for even though it is
unnecessary in the example.

154 Gradient DCE for Tru64 UNIX Product Guide
12.4.7 The nbase.for File
The file /usr/include/dce/nbase.for declares standard data types used in
mapping IDL to DIGITAL FORTRAN. The declarations are shown in
Table 12-4.

NOTE: For IDL data type handle_t, the size of pointers is platform specific: on
OpenVMS systems, pointers are INTEGER*4 and on Tru64 UNIX systems,
pointers are INTEGER*8.

12.4.8 IDL Attributes
This section describes IDL attributes that apply to RPC applications
containing DIGITAL FORTRAN modules.

12.4.8.1 Binding Handle Callout

The Binding Handle Callout feature lets you specify a routine that is
automatically called from an IDL-generated client stub routine, in order to
modify the binding handle.

You can typically use this feature to augment the binding handle with security
context, for example, so that authenticated RPC calls are used between client
and server.

Table 12-4: Standard Declarations

IDL Data Type FORTRAN Declaration

hyper STRUCTURE /IDL_HYPER_INT/
INTEGER*4 LOW
INTEGER*4 HIGH
END STRUCTURE

unsigned hyper STRUCTURE /IDL_UHYPER_INT/
INTEGER*4 LOW
INTEGER*4 HIGH
END STRUCTURE

handle_t STRUCTURE /HANDLE_T/
INTEGER*4 OPAQUE_HANDLE
END STRUCTURE

ISO_MULTI_LINGUAL STRUCTURE /
ISO_MULTI_LINGUAL/
BYTE ROW
BYTE COLUMN
END STRUCTURE

ISO_UCS STRUCTURE /ISO_UCS/
BYTE GROUP
BYTE PLANE
BYTE ROW
BYTE_COLUMN
END STRUCTURE

Chapter 12 Developing Distributed Applications with FORTRAN 155
This feature is particularly targeted at clients which use automatic binding via
the auto_handle ACF attribute. For automatic binding, it is the client stub
rather than the client application code which obtains a server binding handle.
The binding callout feature lets you modify binding handles obtained by the
client stub. Without this feature, you cannot modify the binding handles
before the client stub attempts to initiate a remote procedure call to the
selected server.

12.4.8.2 ACF file

To select the binding handle callout feature, create an ACF file for the
interface (if necessary) and place the binding_callout attribute on the
interface. An example follows:

[auto_handle, binding_callout(my_bh_callout)] interface bindcall
{
}

The binding_callout attribute has the following general form:

 [binding_callout(identifier)]

You can specify the binding_callout only once per interface; it applies to all
operations in that interface.

12.4.8.3 Generated header file

The IDL-generated header file for the interface contains a function prototype
for the binding callout routine. In the previous example, bindcall.h contains a
declaration similar to the following declaration:

 void my_bh_callout(
 rpc_binding_handle_t *p_binding,
 rpc_if_handle_t interface_handle,
 error_status_t *p_st
);

12.4.8.4 Generated client stub

Each client stub routine in the IDL-generated client stub module calls the
binding callout routine just before initiating the remote procedure call to the
server. In the previous example, each client stub routine contains a call to
my_bh_callout and passes the three arguments that are described in the
following section.

12.4.8.5 Binding callout routine

The arguments to the binding callout routine are:

■ Input/Output

rpc_binding_handle_t *p_binding

A pointer to a server binding handle for the remote procedure call.
Generally, the binding callout routine will augment this binding handle
with additional context, such as for security.

■ Input

156 Gradient DCE for Tru64 UNIX Product Guide
rpc_if_handle_t interface_handle

The interface handle used to resolve a partial binding or for the binding
callout routine to distinguish interfaces.

■ Output

error_status_t *p_st

An error status code returned by the binding callout routine.

12.4.8.6 Error handling

A binding callout routine returns error_status_ok when it successfully
modifies the binding handle or decides that no action is necessary. This causes
the client stub to initiate the remote procedure call.

When the binding callout routine returns an error status, the client stub will
not initiate a remote procedure call. If auto_handle is being used, the client
stub will attempt to locate another server of the interface and once again call
the binding callout routine. Otherwise, it will execute its normal error
handling logic.

A binding callout routine for a client using auto_handle can return
rpc_s_no_more_bindings to prevent the client stub from trying to locate
another server. The client stub will then execute its normal error handling
logic.

By default, a client stub handles an error condition by raising an exception. If
a binding callout routine returns an rpc_s_ status code, the client stub raises
the matching rpc_x_ exception. If a binding callout routine returns any other
error status, it is usually raised as an “unknown status” exception.

For an operation containing a comm_status parameter, the client stub handles
an error condition by returning the error status value in the [comm_status]
parameter. A binding callout routine can return any error status value to the
client application code if the IDL operations are specified with comm_status
parameters.

A binding callout routine can raise a user-defined exception rather than return
a status code if it prefers to report application-specific error conditions back to
the client application code via exceptions.

12.4.8.7 Predefined binding callout routine

There is one predefined binding callout routine in the DCE library which may
be suitable for some applications. To select this routine, specify a
binding_callout(rpc_ss_bind_authn_client) ACF attribute.

rpc_ss_bind_authn_client matches the function prototype in the previous
section, Generated Header File. It authenticates the client identity to the
server, thereby allowing for one-way authentication. In other words, the client
does not care which server principal receives the remote procedure call
request, but the server verifies that the client is who the client claims to be.

rpc_ss_bind_authn_client does the following:

Chapter 12 Developing Distributed Applications with FORTRAN 157
■ Calls rpc_ep_resolve_binding() to resolve the binding handle if it is not
fully bound (For example, for auto_handle).

■ Calls rpc_mgmt_inq_server_princ_name() to obtain the server identity
(principal name).

■ Calls rpc_binding_set_auth_info() with all default values except the
server principal name obtained in the previous call.

■ If any of these calls returns an error status, places the error status in the
*p_st argument and rpc_ss_bind_authn_client returns.

12.4.8.8 The transmit_as Attribute

The presented type must be expressible in DIGITAL FORTRAN. Because
addresses are involved, the routines used for data conversion cannot be
written in DIGITAL FORTRAN.

12.4.8.9 The string Attribute

A DIGITAL FORTRAN data item corresponding to an IDL string contains
the number of characters specified for the IDL string. Because IDL strings are
usually terminated with a null byte, the following transmission rules apply:

■ If a DIGITAL FORTRAN routine contains data for transmission, and a
null byte appears before the last character of the DIGITAL FORTRAN
data item, then the characters up to and including the null byte are
transmitted.

■ If a DIGITAL FORTRAN routine contains data for transmission, and a
null byte does not appear before the last character of the DIGITAL
FORTRAN data item, then all the characters of the data item except the
last are transmitted, followed by a null character.

■ If data is transmitted to a DIGITAL FORTRAN routine, then the DIGITAL
FORTRAN data item receives a null terminated string. If the DIGITAL
FORTRAN data item contains more characters than the string, then the
additional characters are not affected.

An IDL operation can have a conformant string parameter. Such a parameter
is presented to DIGITAL FORTRAN as type CHARACTER*(*). If the base
type of the string consists of w bytes and the string consists of n characters,
then the parameter size is n*w. The maximum parameter size supported is
65535.

A conformant string field of a structure will have type CHARACTER*w,
where w is the number of bytes in the base type of the string.

In all other cases where a string is not the target of a pointer, the IDL file
specifies the string. Such a string is presented to DIGITAL FORTRAN as
CHARACTER*s, where s is the product of the string length and the number
of bytes in the base type of the string. Furthermore, s must be between 1 and
65535 inclusive.

158 Gradient DCE for Tru64 UNIX Product Guide
12.4.8.10 The context_handle Attribute

A context handle rundown routine cannot be written in DIGITAL FORTRAN
because the routine must handle address information.

12.4.8.11 The Array Attributes on [ref] Pointer Parameters

A [ref] pointer parameter that has array attributes attached to it is presented to
DIGITAL FORTRAN as the equivalent array.

12.4.9 ACF Attributes
The following items can occur in an Attribute Configuration File (ACF). They
require special consideration when you are using DIGITAL FORTRAN.

12.4.9.1 The implicit_handle ACF Attribute

You must supply a COMMON block whose name is the name given in the
implicit handle clause. This COMMON block must contain the binding
handle as its only data item.

For example, suppose an ACF contains the following interface attribute:

[implicit_handle(handle_t i_h)]

Then, any DIGITAL FORTRAN routine that calls an operation which uses the
implicit binding must include statements with the following form:

RECORD /HANDLE_T/ BINDING_HANDLE
COMMON /I_H/ BINDING_HANDLE

12.4.9.2 The represent_as ACF Attribute

The local type must be expressible in DIGITAL FORTRAN.

Because addresses are involved, you cannot write the data conversion routines
in DIGITAL FORTRAN.

A type name in a represent_as attribute that does not occur in the interface
definition and is not an IDL base type is assumed to be a STRUCTURE type.

Suppose that the represent_as type is not an IDL base type or a type defined
in your IDL source. Then, you must supply a .h file whose unextended name
is given in an include statement in the ACF. (An unextended name is a
filename without the file extension that follows the final dot (.) in the name.
For example, the unextended filename for file example.h is example.) This
file must include a definition of the local type in C syntax. You will need a
filename.for file containing a DIGITAL FORTRAN definition of the local
type. Entegrity recommends that you assign this file the same unextended
name.

C H A PT E R 1 3

Example Programs
13.1 Overview of Remote Procedure Call Programs
Several example programs are supplied with the Application Developer’s Kit
subset. These programs are located in directories under /usr/examples/dce.
This chapter provides information about the example programs provided with
Gradient DCE for Tru64 UNIX. Each example program also has an online
README file located in the same directory as the program. The next table
shows the different features of each example program.

Copy the example files to another area before you attempt to build them. You
also may want to open two separate windows for the client and server
processes.

The following sections describe the example programs.

Table 13-1: Features of Example Programs

Example Program Description

RPC Test Program #1 Server does not register endpoints; binding information not
exported to namespace.

RPC Test Program #2 Server registers endpoints; binding information exported to
namespace; uses security.

RPC Test Program #3 Server registers endpoints; binding information not
exported to namespace.

Book Program Server registers endpoints; binding information is exported
to namespace; uses mutex locks and security.

Time Operations Program Uses all DCE services, including serviceability, security
and threads.

Phonebook Program Uses RPC and the name service.

Echo Program Demonstrates how a distributed application can secure
itself using the GSSAPI security interface.

Time Provider Programs Illustrate how to structure and use programs for external
time providers.

Serviceability Program Demonstrates the use of the serviceability API.

Generic Application Demonstrates ACL management, serviceability code,
security setup, and signal handling.

Object Oriented Programs Demonstrate the use of C++ idl extensions.

160 Gradient DCE for Tru64 UNIX Product Guide
13.2 RPC Test Program #1
RPC Test Program #1 is a simple client/server program that makes minimal
use of the DCE services. The server does not register transport endpoints with
the DCE daemon, and no binding information is exported to the directory
service. The server binding information has to be transferred to the client
manually by the user.

To build this example program, enter the following commands:

% cp /usr/examples/dce/rpc/test1/* .
% make -f makefile.test1

After the build is completed, start the server with the following command
syntax:

% test1d [protseq]

The server reports binding information for each of the various protocol
sequences that are available and both displays the information on the terminal
screen and writes it to a file called binding.dat. This binding information
consists of three elements: a protocol sequence, a network address, and a
transport endpoint. For example, the server might report the following
binding information:

ncacn_ip_tcp 66.0.0.7 4344

If you want the server to use a specific protocol sequence, you can include
that as an argument in the server startup command. For example:

% test1d ncacn_ip_tcp

This command causes the server to use that protocol sequence only. The
protocol sequences currently supported include ncacn_ip_tcp (connection
protocol) and ncadg_ip_udp (datagram protocol).

Once the server is running, you can run the client on the same host or on any
other host in the network. To run the client, you must provide the server
binding information reported by the server. For example, you can run the
client with the following command syntax:

% test1 protseq networkaddr endpoint [number of passes] [calls per pass]

For example:

% test1 ncacn_ip_tcp 66.0.0.7 4344
% test1 ncacn_ip_tcp hostname 4344

The client makes a number of remote procedure calls, each of which causes a
simple arithmetic function to execute. After making a sequence of calls, the
client reports the average elapsed time for the calls to complete. By default,
the client makes 10 passes with 100 calls per pass. You can specify the
number of passes and the number of calls per pass by adding two additional
arguments to the client startup command. For example, the following
command instructs the client to make 5 passes, with 1000 calls per pass:

% test1 ncacn_ip_tcp 66.0.0.7 4344 5 1000

Because of the granularity of the clock on most systems, the average time per
call will not be very accurate unless you set the number of calls per pass to a
relatively high number (at least 1000).

Chapter 13 Example Programs 161
The client can be run as many times as desired, as long as the server is still
running. If you want to clean up the directory for this test so that you can build
it again, enter the following command:

% make -f makefile.test1 clean

13.3 RPC Test Program #2
RPC Test Program #2 is a simple client/server program that makes more use
of the DCE services than RPC Test Program #1. In this program, the server
registers transport endpoints with the DCE daemon and exports binding
information to the directory service. The client uses the auto-handle
mechanism to import server binding information.

To build this example program, enter the following commands:

% cp /usr/examples/dce/rpc/test2/* .

% make -f makefile.test2

Because this program exports and imports an entry to the global namespace
(.:), you must perform a dce_login operation as cell_admin or some other
privileged principal before you start the server process. Start the server with
the following command:

% test2d

Once the server is running, you can run the client on the same host or on any
other host in the network that is configured to run in the same cell as the
server host. Before running the client, you must define an environment
variable on the client system that can be used to locate the server binding
information in the namespace during the auto-handle process:

% setenv RPC_DEFAULT_ENTRY /.:/test2_server

After you define the environment variable, run the client with the following
command syntax:

% test2 [passes][calls per pass]

The client imports server binding information from the namespace. It makes a
number of remote procedure calls, each of which causes a simple arithmetic
function to execute. After making a sequence of calls, the client reports the
average elapsed time for the calls to complete. By default, the client makes 10
passes with 100 calls per pass. You can specify the number of passes and the
number of calls per pass by adding two arguments to the client startup
command. For example, the following command instructs the client to make 5
passes, with 1000 calls per pass:

% test2 5 1000

Because of the granularity of the clock on most systems, the average time per
call will not be very accurate unless you set the number of calls per pass
relatively high (at least 1000).

The client can be run as many times as desired, as long as the server is still
running. If you want to clean up the directory for this test so that you can build
it again, enter the following command:

% make -f makefile.test2 clean

162 Gradient DCE for Tru64 UNIX Product Guide
13.4 RPC Test Program #3
RPC Test Program #3 is a simple client/server program that makes minimal
use of the DCE services. The server registers transport endpoints with the
DCE daemon, but no binding information is exported to the directory service.

To build this example program, enter the following commands:

% cp /usr/examples/dce/rpc/test3/* .

% make _f makefile.test3

After the build is completed, ensure that dced is running, and then start the
server with the following command:

% test3d [protseq]

The server reports binding information for each of the various protocol
sequences that are available and both displays the information on the terminal
screen and writes it to a file called binding.dat. This binding information
consists of two elements: a protocol sequence and a network address. For
example, the server might report the following binding information:

ncacn_ip_tcp 66.0.0.7

If you want the server to use some specific protocol sequence, you can include
that as an argument in the server startup command. For example:

% test3d ncacn_ip_tcp

This command causes the server to use that protocol sequence only. The
protocol sequences currently supported include ncacn_ip_tcp (connection
protocol) and ncadg_ip_udp (datagram protocol).

Once the server is running, you can run the client on the same host, or on any
other host in the network. To run the client, you must provide the server
binding information reported by the server. For example, you can run the
client with the following command syntax:

% test3 protseq hostaddr [passes] [calls per pass]

For example:

% test3 ncacn_ip_tcp 66.0.0.7

or

% test3 ncacn_ip_tcp hostname

The client makes a number of remote procedure calls, each of which causes a
simple arithmetic function to execute. After making a sequence of calls, the
client reports the average elapsed time for the calls to complete. By default,
the client makes 10 passes with 100 calls per pass. You can specify the
number of passes and the number of calls per pass by adding two additional
arguments to the client startup command. For example, the following
command instructs the client to make 5 passes, with 1000 calls per pass:

% test3 ncacn_ip_tcp 66.0.0.7 5 1000

Because of the granularity of the clock on most systems, the average time per
call will not be very accurate unless you set the number of calls per pass to a
relatively high number (at least 1000).

Chapter 13 Example Programs 163
The client can be run as many times as desired, as long as the server is still
running. If you want to clean up the directory for this test so that you can build
it again, enter the following command:

% make _f makefile.test3 clean

13.5 Book Distributed Calendar Program
The Book distributed calendar program (book) is a fairly sophisticated client/
server application that uses of a number of DCE services. The program
registers transport endpoints with the DCE daemon and exports server
binding information to the directory service. It also demonstrates some
minimal use of mutex locks to protect resources on the server from access by
multiple call threads.

To build this example program, enter the following commands:

% cp /usr/examples/dce/rpc/book/* .

% make -f makefile.book

After the build is completed, log in as root, perform a dce_login operation,
and start the server with the following command:

% bookd [-d][-v][bookname]

The server calls a useful set of initialization routines from the DCE library.
The first call, rpc_server_init(), forks a process to run the server and
initializes the RPC runtime with the appropriate parameters. The program
does this before any other calls are made by the server to the RPC runtime and
before any other threads calls are made (because thread context is not
guaranteed to be preserved across a fork). After performing other
initialization functions (this program initializes a global mutex), the program
makes a second call to rpc_server_detach(). This call releases the terminal
associated with the parent process, after which the parent process is free to
exit. The server then starts listening for client requests.

The server takes three optional command arguments that affect the
initialization sequence, as shown in Table 13-2.

Once the server is running, you can run the client on the same host, or on any
other host in the network that is configured to run in the same cell as the
server host. Start the client with the following command:

% book [bookname]

Table 13-2: Options for Starting the Book Distributed Calendar Program

Argument Description

-d (Debug mode) Do not fork a child process (run the server in the
parent). Default: No Debug mode.

-v (Verbose mode) Display informational messages during
initialization. Default: No Verbose mode.

bookname Calendar name to be used. Default: login_name.book.

164 Gradient DCE for Tru64 UNIX Product Guide
The client imports server binding information from the directory service, and
causes the server to update the calendar file for the account in which the client
is running. The client has a help facility that lists the commands that you can
execute to modify the calendar database on the server.

You can execute the client as many times as desired, as long as the server is
still running. To clean up the directory for this application so you can build it
again, enter this command:

% make -f makefile.book clean

13.6 The Time Operations Sample Application
The timop_svc program exercises the basic DCE technologies: threads, RPC,
security, directory, time and serviceability. Its detailed description is in the
README file the /usr/examples/dce/svc/timop_svc directory.

13.6.1 Overview
The two parts of timop are a client and a server, implemented by the
timop_svc_client and timop_svc_server processes. The server manages a
single operation, getting the span of time used in calculating the factorial of a
random number specified by the client. The client spawns several threads that
make parallel RPC service calls to designated servers. The client prints the
name, invocation order, and time span that each server reports, and the
number for which the server calculated the factorial. It also prints out a total
time span that encompasses all the job events at the servers and the sum of the
random numbers.

The transport provider is UDP. Authentication and integrity-secure RPC
ensure data communication. Named-based authorization (not ACLs) is
employed. Clients and servers use different physical clocks that are in
agreement with one another because they are synchronized by the time
service. All times and time calculations are in UTC, not local civil time;
permitting clients and servers to operate in different time zones.

Because timop uses the security service, the timop clients and servers must
run as security principals, but with only minimum use of security. The
timop_client runs as a principal named /.../mycell/tclient and timop_server
as a principal named /.../mycell/tserver. These names can be changed to suit
your environment by modifying timop_svc_aux.h file.

Additional information on serviceability can be found in the OSF DCE
Application Development Guide - Core Components volume. See also the
log.8dce reference page (about the dcecp log object, through which the DCE
components’ serviceability routes and settings are managed) in the OSF DCE
Command Reference.

13.6.2 Building timop_svc
Before building timop_svc, make sure that the DCE Application
Development Environment (which includes the IDL compiler) is installed.
Next, read the comments of the Makefile, and remove comment flags and
options as appropriate to your platform.

Chapter 13 Example Programs 165
To build timop_svc, enter the following command.

% make -f Makefile.timop_svc

13.6.3 Setting Up to Run timop_svc
Before you can run timop_svc, you must first set up your DCE cell with the
security registry and namespace information necessary for the program and
for its client and server principal entities. You must also set up an
authentication key table file on each machine on which you intend to run the
server. To do so, follow these steps:

1 Add the client and server principals to the Security registry.

2 Create a keyfile to be used by the server.

3 Create a CDS namespace entry, to which the server exports its binding
information, and from which the clients import it.

4 Set up the correct permissions on the namespace entry so that the server
can write to it correctly.

Included with the example’s files are a pair of dcecp scripts that automatically
perform (or undo) all of the above steps, except the second step (creating the
keytab file). Each script also logs in to the cell as cell_admin as its first
operation. The login operation uses the default cell password (-dce-).

The following examples show how to run the setup script:

% ./timop_svc_setup.dcecp /.:/ts_entry

principal create {tsserver tsclient}
group add none -member tsserver
group add none -member tsclient
organization add none -member tsserver
organization add none -member tsclient
account create tsserver -group none -organization none \
-password qwerty -mypwd -dce-
account create tsclient -group none -organization none \
-password xyzzy -mypwd -dce-
Adding CDS entries.

Once the setup script has been run, you should log in as the Cell
Administrator using dce_login and run rgy_edit to set up the server’s keyfile:

% dce_login cell_admin -dce-
% rgy_edit
Current site is: registry server at /.../your_cell/subsys/dce/sec/master
rgy_edit=> ktadd -p tsserver -pw qwerty -f /tmp/tskeyfile
rgy_edit=> quit
bye.

You have now finished the timop_svc setup.

For more information about rgy_edit, see the OSF DCE Administration
Guide - Core Components and the OSF DCE Command Reference.

The name of the server’s keyfile, /tmp/tskeyfile, is specified by the value of
the KEYFILE constant in the timop_svc_server.h file; the name you give to
the ktadd subcommand must be identical to the value of this constant.

166 Gradient DCE for Tru64 UNIX Product Guide
To undo the setup, run the unsetup script, as follows:

% ./timop_svc_unsetup.dcecp /.:/ts_entry
principal delete {tsserver}
principal delete {tsclient}
account delete tsserver
Registry object not found
account delete tsclient
Registry object not found
Deleting CDS entries.

13.6.4 timop_svc Message Catalog
The DCE Serviceability API uses XPG4 message catalogs to store and
retrieve message text. The catalogs are generated by the DCE sams utility.
The catalogs should be installed in their correct platform-specific location.
For example:

/usr/lib/nls/msg/LANG

However, if the serviceability routines cannot find a catalog there, they
default to their respective current working directory. If they cannot find the
catalogs there either, they retrieve messages from the in-memory table, if one
has been defined by the application. See the Serviceability chapter in the OSF
DCE Application Development Guide for details. Thus you should be able to
run timop_svc successfully without doing any extra message catalog
installation.

13.6.5 Running the timop_svc Server
To run timop_svc, you must first start the server and invoke one or more
clients to perform the timop_svc operation. An example of how to do this
follows.

On the machine on which you want to run the server, enter this command:

% ./timop_svc_server -e1 /.:/ts_entry

NOTE: You should start the server in the background, in a window different
from the one in which you intend to run the client, or on a separate terminal.

The /.:/ts_entry is the server’s name in the namespace. It is the name of the
CDS entry to which it exports its bindings, and therefore is the name by which
it is known to clients. The entry was set up when you ran the dcecp setup
script earlier; it can have any name you choose.

The -e1 specifies the object UUID that the server should export and register
its bindings with. Two object UUIDs are available, specified to the server as
-e1 or -e2. Having two UUIDs allows you to have two servers running at the
same time (and even on the same machine). Clients can bind to the server they
choose simply by specifying the correct object number in the client command
line (as will be seen below). Even when two timop_svc servers export to
different name entries, if the servers are active at the same time, their exported

Chapter 13 Example Programs 167
partial bindings will be identical if they are running on the same machine;
requiring that the bindings be exported and imported with an object UUID
specified prevents different server instances from getting mixed up.

The server displays a series of messages, most of them output through the
Serviceability API. For more information about these messages and how to
control them, see the sample output in the README file. At the end of all this
preliminary activity, the server displays a “ready” message.

13.6.6 Running the timop_svc Client
After you have invoked the server, wait until you get a message similar to this
one:

1994-05-26-19:36:32.915+00:00I----- ./timop_svc_server NOTICE tsv server
0x7aff3f20
Server /.:/ts_entry (object 1) ready...

(This is the serviceability form of the “Server ready” message displayed by
the timop server.)

You can now invoke the client (either in the same window, if you ran the
server in the background, or in a different window). To get rid of your
tsserver identity when invoking the client from the same window, enter:

% exit

Next, log in as the tsclient principal and then start the timop_svc_client
program. Enter:

% dce_login tsclient xyzzy
% timop_svc_client -o1 /.:/ts_entry

The -o1 specifies that the client is to import the bindings registered with
object UUID 1, which is the object the server exported to. If the server had
specified -e2, then the client would have had to specify -o2. If two servers
were active and each had exported to a different object, clients could specify
either object (or both) to import.

If all has gone well, the timop_svc client now begins printing out results
continuously until you stop it. (See Section 13.6.8 on page 168 for details on
how to do this.)

On multiple machines in the same cell, you can try something like the
following:

% timop_svc_server -e1 /.:/ts_entry # on machine A
% timop_svc_server -e2 /.:/xs_entry # on machine B
% timop_svc_client /.:/ts_entry /.:/xs_entry /.:/ys_entry # on machine D
% timop_svc_client /.:/ys_entry /.:/xs_entry /.:/ts_entry # on machine E

To do this, you must first set up xs_entry and ys_entry names in CDS by
specifying these additional names to the timop_svc_setup.dcecp script.

13.6.7 Sample Server Output
Following is an example of the kind of server output you can expect to see if
you invoke the timop_svc server with full debugging enabled, and with
serviceability NOTICE type messages routed to standard error.

168 Gradient DCE for Tru64 UNIX Product Guide
In general, the first groups of messages are output as a result of
straightforward test calls to various routines; the later messages contain
authentic information being output via the serviceability interface. As
explained above, once this message appears, the server waits, and the client
(or clients) can then be started.

1994-05-26-19:36:32.915+00:00I----- ./timop_svc_server NOTICE tsv server
0x7aff3f20
Server /.:/ts_entry (object 1) ready...

Once a client is started, the server resumes its messaging activity; the amount
of activity is determined by the debug level you specify (the default is no
debug messaging) and the routing you have set. In the preceding example, the
“Server ... ready” message is about the 16th from the last; the subsequent
messages represent a sample of what happens once a client has become active.

See the timop_svc source code (which is fully commented) for details of
which serviceability routines are called.

Refer to Section 13.6.9 on page 168 and Section 13.6.10 on page 169 for
more information on how to specify various aspects of timop_svc’s behavior.

For more information on Serviceability functionality, see the serviceability
chapter in the OSF DCE Application Development Guide - Core Components
volume.

See the README file for examples of server and client output.

13.6.8 Stopping timop_svc
You must kill clients and servers by hand, either by using the interrupt key or
with a combination of the ps and kill commands. Doing so leaves server
binding information in the endpoint map and namespace, which is normal for
persistent servers. The information can be removed afterwards by running the
timop_svc_unsetup.dcecp script.

13.6.9 timop_svc Server Options
The timop_svc server is invoked as follows:

timop_svc_server [-wsvc_route [-wsvc_route ...]] \
[-d"dbg_route" [-d"dbg_route" ...]] \
[-D"dbg_level" [-D"dbg_level" ...]] \
[-f] -enr entry_name

where:

-wsvc_route (optional, one or more) Specifies a serviceability routing.

-d"dbg_route" (optional, one or more) Specifies a serviceability debug routing.

-D"dbg_level" (optional, one or more) Specifies a serviceability debug level.

-f (optional) Causes the serviceability filter to be installed.

-e1 or -e2 Specifies the object entry this server instance is
using for export.

entry_name Specifies the name of the entry to which this
server instance should export.

Chapter 13 Example Programs 169
For more information on Serviceability functionality, see the serviceability
chapter in the OSF DCE Application Development Guide - Core Components
volume.

13.6.10 timop_svc Client Options
The timop_svc client is invoked as follows:

timop_svc_client _onr [-onr ...] \
server_entry [server_entry ...] \
[-D"dbg_level" [-D"dbg_level" ...]] \
[-d"dbg_route" [-d"dbg_route" ...]] \
[-wsvc_route[-wsvc_route ...]] [-l] [-C] [-R] [-f]

or:

timop_svc_client -onr -b"string_binding" \
[-D"dbg_level" [-D"dbg_level" ...]] \
[-d"dbg_route" [-d"dbg_route" ...]] \
[-wsvc_route[-wsvc_route ...]] [-l] [-C] [-R] [-f]

where:

-o1 or -o2 Specifies the server object to bind to. You can specify up to 2 objects.
[NOTE: This limit, and the values of the object UUIDs, are defined
in timop_svc_aux.h. You can increase the number of objects allowed
by altering the contents of this file and rebuilding timop_svc.]

server_entry Specifies the name of the server entry to bind to; You can specify up
to 10 server_entrys. If you specify multiple servers and objects, the
list of servers and the list of objects must ordinally match. [NOTE:
This limit is specified in timop_svc_client.h.]

string_binding Specifies a complete binding to use to make direct contact with the
server. Multiple servers cannot be specified with this option, and
specifying a server_entry with it is an error.

9_D"dbg_level"
(optional, one or
more)

Specifies a serviceability debug level. For example:
-D"tsv:tsv_s_server.5,tsv_s_refmon.9"
or:

-D"tsv:*.9"

See Section 13.6.12 on page 170 for the significance of the various
available levels for timop_svc.

-d"dbg_route"
(optional, one or
more)

Specifies a serviceability debug routing. For example:
-d"tsv:tsv_s_server.5:TEXTFILE:pathname"

or:

-d"tsv:*.8:STDERR:"

-wsvc_route
(optional, one or
more)

Specifies a remote serviceability routing.

-l Specifies that the serviceability subcomponents be listed.

-C Specifies that all registered serviceability components be listed.

-R Specifies that the serviceability routings be listed.

-f Specifies that the remote serviceability filter routine be toggled.

170 Gradient DCE for Tru64 UNIX Product Guide
For more information on Serviceability functionality, see the OSF DCE
Application Development Guide - Core Components.

13.6.11 timop_svc Principal And Keytab Names

13.6.12 timop_svc Debug Message Levels
You can set to nine different debug levels (by means of the _D switch in the
server or client command line; see Section 13.6.10 on page 169). Table 13-3
shows the debug level significance in timop_svc:

For more information on Serviceability functionality, see the OSF DCE
Application Development Guide - Core Components.

13.7 Microsoft RPC Phonebook Program
This section describes how to build and run a phonebook application called
phnbk. Company employees use the phnbk client program to look up
employee contact information that resides with the phnbk server.

tsserver Server principal name [defined in timop_svc_aux.h]

tsclient Client principal name [defined in timop_svc_aux.h]

/tmp/tskeyfile keytab pathname [defined in timop_svc_aux.h and
timop_svc_server.h]

Table 13-3: timeop_svc Debug Message Levels

Level Meaning

1 Used for test messages in “server” subcomponent.

2 Used for test messages in “server” subcomponent.

3 Used for test messages in “server” subcomponent.

4 Used for test messages in “server” subcomponent.

5 In “server”, “manager”, and “refmon” subcomponents,enables messages that are
written at each DCE library call.

In “manager” and “refmon”, also enables messages whenever local subroutines
are entered or exited.

In “refmon”, also enables messages describing values about to be returned by
local subroutines.

6 Used for test messages in “server” subcomponent.

7 In “remote” subcomponent, enables messages that are written whenever a remote
serviceability routine is entered, as well as messages that are written at each DCE
library call.

8 Used for test messages in “server” subcomponent.

9 Used for test messages in “server” subcomponent.

Chapter 13 Example Programs 171
The phnbk application is included with Gradient DCE for Tru64 UNIX.
Because the phnbk source code is portable, you can build and run the phnbk
server on a Tru64 UNIX system that has Gradient DCE for Tru64 UNIX
installed, as well as on other DCE machines.

The sample phnbk client/server program demonstrates several aspects of
cross-environment applications:

■ Basic connectivity between a Microsoft RPC client and a DCE server.

■ Client use of automatic binding in which the client gets the server binding
information from the DCE Cell Directory Service. Alternatively, users
enter a server’s binding information as part of the command to start the
client. Use the manual method to bypass the DCE Cell Directory Service
or to select a specific server for use when several are available.

■ The use of a portability file (dosport.h) that resolves differences between
Microsoft RPC and DCE RPC.

■ The use of portable server and client code. The server code builds and
executes on Tru64 UNIX, Windows NT, and OpenVMS systems. The
client code builds and executes on personal computers running the
MS-DOS operating system, the Microsoft Windows NT operating system,
and on Tru64 UNIX and OpenVMS systems.

13.7.1 Source Files for the phnbk Example
To run the example programs, copy the example source files to the Microsoft
RPC and DCE platforms. The following list identifies the source files you
need to build an executable client and server program for Gradient DCE for
Tru64 UNIX.

■ README file - describes how to build and run the example program

■ phnbk.idl - Interface definition file

■ phnbk.acf - Attribute configuration file

■ client.c - Client program

■ server.c - Server initialization code

■ manager.c - Remote procedures

■ phnbk.txt - phnbk database

■ phnbk.unix - Makefile for UNIX client and server

■ dosport.h - Microsoft RPC client portability file

■ phnbk.dos - Makefile for MS-DOS client

■ phnbk.nt - Makefile for Windows NT client

■ phnbk.com - Command file to build client and server on OpenVMS
systems\

172 Gradient DCE for Tru64 UNIX Product Guide
13.7.2 Building the Tru64 UNIX phnbk Client and Server Programs
To build the phnbk client and server programs on a Tru64 UNIX system that
has Gradient DCE for Tru64 UNIX installed, use make to build the
executable client and server programs:

% make -f phnbk.unix ALPHA=_std1 alpha

This command creates a server program called phnbkd and a client program
called phnbk.

13.7.3 Starting and Stopping the phnbk Server
To start the server phnbkd, enter the following command:

% phnbkd&

The server displays the binding information for each protocol sequence it is
using. Three elements make up a server’s binding information: a protocol
sequence, a network address, and a transport endpoint. For example, a server
might report the following binding information:

% phnbkd&
[1] 23789
ncacn_ip_udp:16.20.16.134.[1229]
ncacn_ip_tcp:16.20.15.134.[1474]

When you are done using the server program, stop it using the kill command.

13.7.4 Starting and Stopping the phnbk Client Program
To start the phnbk client (phnbk), use one of the following binding methods:

■ Automatic binding. The client gets server binding information from the
DCE Directory Service. The server must be running in the same DCE cell
as the client. The following command starts the client using automatic
binding.

% phnbk
Resolving binding through name server
Server returned from name server is: ncacn_ip_tcp:16.20.16.134[]
Valid commands are:

(b)rowse - List next entry
(r)eset - Reset to beginning of file
(f)ind <string> - Find a substring
(f)ind - Find next occurrence of <string>
(q)uit - Exit program

■ Manual binding. If the directory service is not available or you want to use
a specific server, you can include the server’s binding information as part
of the command to start the client. You can use a complete or a partial
binding. A partial binding consists of a protocol sequence and a network
address, but does not include the server endpoint. If you do not include the
endpoint, the client obtains it from the server host’s endpoint map.

The following command starts the client and uses a complete binding.

Chapter 13 Example Programs 173
% phnbk ncan_ip_tcp:16.20.16.134\[1474\]
Valid commands are:

(b)rowse - List next entry
(r)eset - Reset to beginning of file
(f)ind <string> - Find a substring
(f)ind - Find next occurrence of <string>
(q)uit - Exit program

The following command starts the client and uses a partial binding.

% phnbk ncacn_ip_tcp:16.20.16.134
Valid commands are:

(b)rowse - List next entry
(r)eset - Reset to beginning of file
(f)ind <string> - Find a substring
(f)ind - Find next occurrence of <string>
(q)uit - Exit program

The phnbk client displays a menu of available commands that you enter to
interact with the server. To stop the client, use the (q)uit command from
the client menu.

13.8 The Echo Example Program
The Echo example program* (echo) demonstrates how a distributed
application can secure itself using the GSSAPI security interface.

The echo example consists of a server program (echo_server) and a client
program (echo_client). When echo_server is running, it waits for
echo_client to attempt to connect over TCP/IP. Once a connection is
established, user input from echo_client is transmitted across the network to
the server and echoed back to the client.

When a user enters the -s switch, echo_client uses GSSAPI to authenticate
itself to the server and to protect messages that flow from client to server.
Messages in the reverse direction are not protected.

The echo example demonstrates how a distributed application:

■ Creates GSSAPI server credentials with the gss_acquire_cred() call

■ Authenticates itself and creates a security context with the
gss_init_sec_context() and gss_accept_sec_context() calls

■ Protects individual messages cryptographically and verifies them using the
gss_seal() and gss_unseal() calls

To build the echo example, copy the files in /etc/examples/dce/gssapi into a
directory, edit Makefile.echo to match your environment (if necessary), and
issue the following command:

% make -f Makefile.echo

You need to establish the echo server and client as DCE principals having
principal names, accounts, and group and organization membership.

% dcecp
dcecp> principal create {echo_server echo_client}
dcecp> group add none -member echo_server

174 Gradient DCE for Tru64 UNIX Product Guide
dcecp> group add none -member echo_client
dcecp> organization add none -member echo_server
dcecp> organization add none -member echo_client
dcecp> account create echo_server -group none -organization none \
> -password qwerty -mypwd -dce-
dcecp> account create echo_client -group none -organization none \
> -password xyzzy -mypwd -dce-

You must also create a keytable for managing the server authentication keys.

% rgy_edit

Current site is: registry server at /.../snafu_cell/subsys/dce/sec/master

rgy_edit=> ktadd -p echo_server -pw qwerty -f /tmp/echo_keyfile
rgy_edit=> quit
bye.

%

You can run the example from a single system or move echo_client and
echo_server to two different systems. On the server, start echo_server using
the following command syntax:

% echo_server [-p port] [-s server_name] [-f keytable_file]

The command arguments for the server are described in the next table.

You can try using another port if the server fails to start and produces an error
like:

server: Can’t bind local address

You can perform authenticated or unauthenticated client operations. To
perform authenticated client operations, you must acquire DCE credentials
with integrated login on an SIA-enabled system or by running the dce_login
program. To perform unauthenticated operations, do not use the -s option to
the echo_client command.

On the client, start echo_client using the following command syntax:

% echo_client [-h host] [-p port] [-s server-name]

The command arguments for the server are described in the next table.

Table 13-4: Server Options for the echo_server Command

Option Description

-p port Specifies the name or number of the TCP port on which the server
listens for connection requests from clients. If you omit the -p switch,
port 6000 is used.

-s server-name Specifies a DCE principal name that the server uses to accept
incoming connection requests that use GSSAPI authentication. The
server needs access to a key corresponding to this principal name.

-f keytable-file Specifies the pathname for the key table containing the principal’s
key. If you omit the -f switch, the DCE default key table is used. (You
must run the server as root to use the default DCE key table).

Chapter 13 Example Programs 175
Once the connection is open, each line you type to echo_client is sent across
the network to the server and echoed back to the client. Press <Ctrl/D> to
stop the client.

13.9 Time Provider Example Programs
The directory /usr/examples/dce/dts contains many example programs for
various types of external time providers. These examples contain extensive
information about how to build and use them. For additional information
about the time provider interface, see the OSF DCE Application Development
Guide.

13.10 The Serviceability API Sample Program
The hello_svc program provides a simple demonstration of the DCE
Serviceability API. When executed, it writes a “Hello world” message to
standard error via the serviceability interface.

The program was developed during the writing of the OSF DCE Application
Development Guide chapter on serviceability, and is included with the DCE
software as a very simple demonstration of the interface.

13.10.1 Building the Program
To build the example, copy the files from /usr/examples/dce/svc into a
writeable directory and issue this command:

% make _f Makefile.hello_svc

Once you have built hello_svc, execute it by typing this command with no
arguments:

% hello_svc

You should see two messages similar to these:

Table 13-5: Client Options for the echo_server Command

Option Description

-h host Specifies the host name or IP address of the server machine. If you
omit the -h switch, the client attempts to contact a server on the local
system.

-p port Specifies the name or number of the TCP port on which the server is
listening. Specify the same port you specified to the server. If you
omit the -p switch, the client attempts to contact a server on port
6000.

-s server-name Specifies the DCE principal name of the server. Specify the same
principal name you used when you started the server. If you omit the
-s switch, GSSAPI is not used and the application operates as a
simple, unsecured echo program. Specifying -s causes the client to
authenticate itself to the server and to attach a cryptographically
protected checksum to each message the client sends. The server
validates the checksum before echoing the message.

176 Gradient DCE for Tru64 UNIX Product Guide
1994-06-10-13:07:33.628+00:00I----- ./hello_svc NOTICE hel main 0xa448c444
Hello world
1994-06-10-13:07:33.628+00:00I----- ./hello_svc NOTICE hel main 0xa448c444
Hello world

The message is printed twice because it is routed to standard error twice: once
via a call to dce_svc_routing() within the program, and again by the
“attributes” field in the message definition in the hel.sams file.

For more information on Serviceability functionality, the OSF DCE
Application Development Guide - Core Components. See also the log.8dce
reference page (about the dcecp log object, through which the DCE
components serviceability routes and settings are managed) in the OSF DCE
Command Reference.

13.11 The Generic Sample Application
The generic sample DCE client/server application includes extensive
examples of ACL management, serviceability code, security setup, and signal
handling. It also has the necessary initialization and cleanup code. The
manager code (sample_manager.c) consists of one generic remote call that
does no actual work, but which does make use of the ACL manager and the
serviceability code.

13.11.1 Building the Sample Application
To build the sample application program, copy the source files from /usr/
examples/dce/generic_app/*. Use the following command to build the
application:

make _f Makefile.generic_app

13.11.2 Installing the Sample Application
Before you can run the sample application, you must install sample_client
and sample_server on the machines you want to use. This installation
involves these steps:

1 Adding the client and server principals and server group to the Security
registry.

2 Creating a keyfile to be used by the server.

3 Creating a CDS namespace entry for the server to export its binding
information to (and for the clients to import binding information from).

4 Setting up the correct permissions on the namespace entry to allow the
server to use it (that is, to write to it) correctly.

Assuming that the server’s principal name is sample_server and that the
client’s principal name is sample_client, you should perform these steps as
follows:

1 Log in as the cell administrator:

$ dce_login cell_admin -dce-

Chapter 13 Example Programs 177
You must first login as the cell administrator to be able to execute the
registry operations in step 2.

NOTE: The password at your site is probably different from that given
above (as the last parameter). For further information about the use of
dce_login, see the OSF DCE Administration Guide.

2 Add the server and client principals to the registry, and set up the server’s
keyfile:

% dcecp
dcecp> group create sample_servers
dcecp> user create sample_server -g sample_servers -org none
> -pass server_password -mypwd -dce-
dcecp> user create sample_client -g none -org none
> -pass client_password -mypwd -dce-
dcecp> keytab create /.:/hosts/mccann/config/keytab/sample_keytab
> -storage /tmp/sample_keytab
> -data {sample_server plain 1 server_password}
> -noprivacy -local
dcecp>

NOTE: server_password and client_password are the passwords that you
assign to the server and client, respectively. You can substitute any other
values but be sure to remember these values: you need to use them to
perform a dce_login operation before executing the client and server
programs. For further information about dcecp, see the OSF DCE
Administration Guide - Core Components and the OSF DCE Command
Reference.

The name of the server’s keyfile, /tmp/sample_keytab, is specified by the
value of the KEYTAB constant in the sample_server.c file; the name you
give to the keytab subcommand must be identical to the value of this
constant.

3 Create the CDS entry to be used to hold the server’s binding information.
For example:

% dcecp -c create directory /.:/sample
% dcecp -c rpcentry create /.:/sample/sample_server_entry

You can substitute any legal CDS name for sample.

4 Set up the ACL on the entry to allow access to the server:

% dcecp
dcecp> acl modify /.:/sample/sample_server_entry -entry \
> add {user sample_server rwdtc}
dcecp> exit

178 Gradient DCE for Tru64 UNIX Product Guide
NOTE: sample_server is the principal name used in the previous steps and
must be identical to the value of the principal_name argument you specify
on the command line to sample_server.

You have now installed the sample application.

13.11.3 Running the Sample Application
This section describes how to run the server and client.

Before you run the server you must create in the local directory, a subdirectory
called db_sample_acl. This directory is where the sample application’s
backing store database files will be created. The pathname to these files is
determined by the value of the ACL_DB_PATH constant at the top of the
sample_server.c file; you can change this value if you want to.

Invoke the server as follows:

sample_server principal_name CDS_dir_name/

NOTE: There is a /(slash) after the directory name.

where:

For example (with setup done as described in first section):

./sample_server sample_server /.:/sample/

At present, the server’s serviceability messages are routed by default values
coded at the top of the sample_server.c file. The default behavior sets full
debugging and routes everything to stderr. If you compile the server as is,
you see lots of messages appearing on your screen when you run it (For an
example, see the end of the README file.) To change this behavior, you
must change the hard-coded defaults, because currently there is no way to
change routing via the command line.

principal_name The server’s principal name. An account must be in the registry for this
principal for the program to run successfully. Note that this name is not
specified in the program source; it is determined solely by the user, who
must make sure that the name he or she specifies here is the same as the
one set up in the registry.

CDS_dir_name The full name (terminated by a / (slash)) of the CDS directory in which
the server’s namespace entry is to be located; the bindings are exported
to this directory. Note that this argument is NOT the name of the server
entry which is determined by the value of the constant DEFNAME,
defined in sample_server.c: the server entry is created in the
CDS_dir_name directory.

Chapter 13 Example Programs 179
13.11.3.1 Running the Client

Before running the client you must first set the environment variable
RPC_DEFAULT_ENTRY to the value of the full name of the server’s CDS
name entry. For example (with setup done as described in first section):

setenv RPC_DEFAULT_ENTRY /.:/sample/sample_server_entry

You must be logged in via dce_login as the sample_client principal to
properly allow the client to do what it needs to do. This is because the only
principal who is given any meaningful permissions on the objects managed by
the application is the owner who is defined at the top of server_sample.c to
be sample_client.

The client is invoked as follows:

sample_client object_name | kill

You can try any of three command forms (because at present there are only
two objects set up by the server).

To bind via the junction to the mgmt object and view its contents, enter:

./sample_client sample_object

To bind to the sample object and view its contents, enter:

./sample_client server_mgmt

To kill the server via the remote management interface, enter:

./sample_client kill

13.11.4 What the Sample Application Does
You can run the client in either of two modes: you can specify that the server
be killed or you can specify a single object to bind to. The object name is
specified by a namespace pathname, but neither of the two possible objects is
a namespace entry. Instead, the sample application implements a “junction”
located at its server entry in the namespace, and clients bind to objects
through this junction.

When the client tries to bind to the overqualified CDS entry formed by
concatenating the specified object name to the server entry name it obtains a
partial binding to the server. The client then makes a call to the remote bind
operation with that binding, ostensibly to get the object UUID of the object
whose name was specified (to bind to) when the client was invoked. These
objects reside in a backing store database. The remote call makes its way by
the familiar procedure to the server; the application’s name_to_object()

object_name The name of the object you want the client to bind to. Note that this is not
the entry name of some exported entity; it is some object managed by the
server and held in a backing store. Specify the simple object name, the
client will try to bind through the RPC_DEFAULT_ENTRY value.

kill A keyword that specifies the server be killed via a call through the remote
management interface.

180 Gradient DCE for Tru64 UNIX Product Guide
routine (defined in sample_bind.c) then simply looks up the desired object
UUID by accessing the name-indexed backing store. When the remote call
completes, the client has a full binding and the desired object UUID.

13.11.5 Viewing the Server ACL
With the sample_server running, you can also access the server’s ACL
managers using dcecp. For example, to get a list of the contents of the
ACL, enter:

dcecp -c acl show /.:/sample/sample_server_entry/sample_object

This command produces the following output:

{user sample_client rwdctx}

The same commands can be used to bind to and list the contents of the
server_mgmt ACL.

The README file contains sample output from the Generic Application.

For further information the acl object in dcecp, see the OSF DCE Command
Reference.

13.11.6 Notes
A detailed explanation of the operation of the ACL management code is in the
OSF DCE Application Development Guide - Introduction and Style Guide.

The sample application does not use the OSF DCE dced facilities, by which a
DCE application can be registered (either via calls to the dced_server_
routines or via dcecp by a system administrator) with dced, and then, by
means of calls to the dce_server_ routines, to have dced do almost all of its
namespace and security initialization for it. For more information on the
dced_server_ and dce_server_ routines and their use, see the OSF DCE
Application Development Guide - Introduction and Style Guide and the OSF
DCE Application Development Guide - Core Components.

13.12 Object Oriented idl Programs
This section describes how to build and run four example programs that
demonstrate the use of C++ idl extensions. The four programs are

■ The account example program
■ The accountc example program
■ The card example program
■ The stack example program

13.12.1 Preparing to Run the Example Programs
The C++ example programs require C++ software to be installed and
configured on the client and server machines.

Chapter 13 Example Programs 181
Establish your environment for building and running the example programs as
follows:

1 Copy the four example programs into a directory tree with a root name of
./idlcxx.

% cp _R /usr/examples/dce/rpc/idlcxx/* .

The ./idlcxx directory has the following files and subdirectories

2 Log in to the DCE cell as cell_admin and run the idlcxx_setup shell
script. This creates a test directory in the Cell Directory Service and
establishes necessary ACL entries.

% dce_login
Enter Principal Name: cell_admin
Enter Password:
% idlcxx_setup
%

Once a server has been built and is executing, you can start and stop client
programs as many times as desired. You can remove the executable client and
server programs from a directory using the command:

% make clean

13.12.2 The account Example Program
The account example program tests inheritance, binding to an object using
another interface, binding to an object with an unsupported interface, and the
reflexive, symmetrixc, and transitive relation properties of the bind() API. A
Savings interface is derived from an Account interface. A now/Account
implementation class is derived from the Savings and Checking interfaces. A
oldAccount implementation class is derived from the Savings but not the
checking class which implies that an oldAccount does not support a Checking
interface.

This example program requires C++ software to be installed and configured
on the client and server machines.

Build this example program by entering the command:

% make

Start the server by entering the command:

% ./server &

README A file containing instructions relevant to all example programs

account A directory with the account example program sources

accountc A directory with the accountc example program sources

card A directory with the card example program sources

idlcxx_setup A shell script that creates a CDS directory and sets some ACLs

stack A directory with the stack example program sources

182 Gradient DCE for Tru64 UNIX Product Guide
Once the server is running, you can run the client on the same host, or on any
other host in the network that is configured to run in the same cell as the
server host. Before running the client, you must define an environment
variable on the client system that can be used to locate the server binding
information in the namespace during the auto-handle process:

% setenv RPC_DEFAULT_ENTRY /.:/subsys/DEC/examples/account_server

After you define the environment variable, run the client with the command:

% client

The client binds to an object, uses different interfaces, and binds to dynamic
interfaces. It also exercises bind relation properties.

13.12.3 The accountc Example Program
The accountc example program tests the same properties as the account
program (see Section 13.12.1 on page 180), but uses the C interfaces for all
the APIs.

This example program requires C++ software to be installed and configured
on the client and server machines.

Build this example program by entering the command:

% make

Start the server by entering the command:

% ./server &

Once the server is running, you can run the client on the same host, or on any
other host in the network that is configured to run in the same cell as the
server host. Before running the client, you must define an environment
variable on the client system that can be used to locate the server binding
information in the namespace during the auto-handle process:

% setenv RPC_DEFAULT_ENTRY /.:/subsys/DEC/examples/accountc_server

After you define the environment variable, run the client with the command:

% client

13.12.4 The card Example Program
The card example program tests the passing of C++ objects as parameters
using the [cxx_delegate] attribute and the polymorphism property of the base
class. A Player implementation class is a generic sports card class. Derived
from Player are a BaseballPlayer class and a BasketballPlayer class. The
application interfaces with the Player class to invoke virtual operations in the
derived class.

This example program requires C++ software to be installed and configured
on the client and server machines.

Build this example program by entering the command:

% make

Start the server by entering the command:

Chapter 13 Example Programs 183
% ./server &

Once the server is running, you can run the client on the same host, or on any
other host in the network that is configured to run in the same cell as the
server host. Before running the client, you must define an environment
variable on the client system that can be used to locate the server binding
information in the namespace during the auto-handle process:

% setenv RPC_DEFAULT_ENTRY /.:/subsys/DEC/examples/card_server

After you define the environment variable, run the client with the command:

% client

13.12.5 The stack Example Program
The stack example program tests the passing of C++ objects as parameters
using the [cxx_delegate] attribute and a user defined Stack class. This test
implements a reverse Polish notation algorithm where the binary arithmetic
operations are performed on the server.

This example program requires C++ software to be installed and configured
on the client and server machines.

Build this example program by entering the command:

% make

Start the server by entering the command:

% ./server &

Once the server is running, you can run the client on the same host, or on any
other host in the network that is configured to run in the same cell as the
server host. Before running the client, you must define an environment
variable on the client system that can be used to locate the server binding
information in the namespace during the auto-handle process:

% setenv RPC_DEFAULT_ENTRY /.:/subsys/DEC/examples/stack_server

After you define the environment variable, run the client with the command:

% client

Index
Symbols
“FORTRAN 153, 154, 158
“IDL 139, 140, 150, 151, 153, 154

A
ACF (Attribute Configuration File)

attributes (FORTRAN) 158
enhancements 110

ACLs
disabling in DFS 100
mapping between DCE and Tru64 UNIX 99
restrictions in Tru64 UNIX 98
supported by Tru64 UNIX 97
unsupported operations 99

Administration Manual Pages
subset 18

administrative tools 17
ANSI C function prototypes 103
Application Developer's Kit (ADK) subset 18
applications

compiling and linking 103
applications (distributed) with FORTRAN 137,

158
attributes (FORTRAN)

ACF 158
IDL 154

auditd 16
auto_handle binding 146

B
Browser 17, 68

icons 68
using the Filters menu 69

building FORTRAN distributed application 146

C
CDS 31

enhancements 65
preferencing 70

CDS Browser 17, 68
CDS Server subset 17
chpass command 24, 40
clearinghouse

preferencing 70
client 16
client application code for FORTRAN distributed

application 142
client_memory ACF attribute 110
compatibility

between CDS and DECdns 31
with other DCE systems 31

compilers
c89 compiler 103
cc compiler 103

compiling and linking
ANSI C function prototypes 103
applications 103
command formats for 103
including pthread.h 103
Tru64 UNIX 103

Contacting Gradient information 13
control programs 17

D
data file for FORTRAN distributed application 140
data type mapping 151
databases

resolving inconsistencies 37
DCE client 16
DCE credentials, acquiring 100
DCE DTS

interaction with DECnet/OSI DECdts 32
debugging 132
DECdns 31
DECnet

stopping and starting 32
DECnet/OSI 31

Phase IV compatibility mode 31
DECnet/OSI DECdts

benefits of using in a DCE environment 32
disadvantages of using in a DCE environment

32
interaction with DCE DTS 32

DFS 23
DIGITAL FORTRAN

developing applications with 137
portability constraint 137

186 NetCrusader/DCE Product Guide
Diskless support
removed 23

distributed applications with FORTRAN 137, 158
Distributed File Service (DFS)

ACLs 99
authenticated access 100
disabling ACLs 100
file system backup 100
restrictions 23
subset 18
troubleshooting 100
unsupported ACL operations 98
variations from OSF DFS 97

Documentation 14
DTS

show command 33

E
enabling event logging 121
Enhanced Browser 21
enhancements 65
event descriptions 133
event logging

combining logs 122
environment variables 124, 125, 128
event names 119, 133
event types 119, 121
generating log 120
log fields 120
Log Manager 124, 125, 128
rpclm command interface 117, 126
trace option 121

Example programs 159
Book Distributed Calendar Program 163
Microsoft RPC Phonebook Program 170
Object Oriented idl Programs 180
Preparing to Run the Example Programs 180
RPC Test Program #1 160
RPC Test Program #2 161
RPC Test Program #3 162
The Echo Example Program 173
The Generic Sample Application 176
The Serviceability API Sample Program 175
The Time Operations Sample Application 164
Time Provider Example Programs 175

examples
FORTRAN 138, 148
Payroll 138

F
features

using the DCE for Tru64 UNIX kit 21
Filters menu

using 69
FORTRAN

compiler option 149
mapping from IDL types 151
with distributed applications 137

G
GDA

and LDAP 86
Global Directory Agent (GDA) 17
Global Directory Service

X.500 17

H
host profile 110

I
IDL

enhancements to the IDL compiler 115
IDL command options 111

standard 111
IDL compiler

lang fortran flag 149
IDL options

event logging 121
templates 112

IDL stub compiler 18, 21, 111
interoperability of distributed applications with

FORTRAN 137

L
lang fortran flag for IDL compiler 149
LDAP (Lightweight Directory Access Protocol)

and GDA 86
and NSI 85
CDS name translation 76
configuration file 73
NSI configuration 73
objects and attributes 79
overview 71

Index 187
relative names 85
schema 78
syntax 72

linking DCE applications 103

M
manpages 18
mapping

IDL type to FORTRAN type 151
structure 154
type 151

multithreaded applications 150

N
naming options

Cell Directory Service (CDS) 16
nbase.for file 153, 154
NIDL_TO_IDL Converter Tool 18
NSI

and LDAP 85
calls 74
CDS-to-LDAP name translation 76
using 85

nsid 16

O
Obtaining Additional Documentation statement 14
Online Manual Pages subset 18

P
Payroll example program 138
PC

interoperating with 19
Phase IV compatibility mode 31
pipes restriction 150
portability of distributed applications with FOR-

TRAN 137
Preparing to Run the Example Programs 180
pthread.h 103
Pthreads 20

R
reference pages

accessing 18

manpages 18
using 18

Related documentation list 12
remote procedure calls

in distributed applications 137, 158
using FORTRAN - example 138, 148
using FORTRAN - reference 148, 158

represent_as attribute 150
restrictions

using DCE on Tru64 UNIX 23
RPC daemon 16
RPC Event Logger 16, 117
RPC_DEFAULT_ENTRY 110
rpcd 16
rpclm 16

command interface 117, 126
running FORTRAN distributed application 148
Runtime Services subset 16

S
sec_create_db 18
sec_salvage_db 18
secd 17
Security Integration Architecture (SIA) 35
security server 17
Security Server subset 17
server application code for FORTRAN distributed

application 145
server code for FORTRAN distributed application

143
setuid command

using with DFS 100
SIA

about 35
enabling and disabling 36

SIACFG
about 37

structure mapping 154
su command 38
subsets

Application Developer’s Kit 18
CDS Server 17
DFS Kernel Binary Subset 19
DFS Online Manual Pages 19
DFS Runtime Services Subset 18
DFS Utilities Subset 19
Runtime Services 16
Security Server 17

Support 13

188 NetCrusader/DCE Product Guide
T
Technical support 13
Template option 112
threads 20
trace option 121
transmit_as attribute 150
type mapping 151

U
UUID generator 17

V
v1_array attribute 150

X
X.500 17

restrictions 24

	Notices
	Preface
	Intended Audience
	Overview of this Guide
	Conventions
	Related Documentation
	Contacting Entegrity Solutions
	Obtaining Technical Support
	Obtaining Additional Technical Information
	Obtaining Additional Documentation

	Gradient DCE for Tru64 UNIX
	1.1 Overview of the Software
	1.2 Kit Contents
	1.2.1 Runtime Services (RTS) Subset
	1.2.2 Cell Directory Server Subset
	1.2.3 Security Server Subset
	1.2.4 Application Developer’s Kit Subset
	1.2.5 Online Manual Pages Subset
	1.2.6 Distributed File Service Runtime Services Subset
	1.2.7 DFS Kernel Binary Subset
	1.2.8 DFS Utilities Subset
	1.2.9 DFS Online Manual Pages
	1.2.10 NFS-DFS Secure Gateway Server

	1.3 Platforms and Networks Supported by Gradient DCE for Tru64 UNIX
	1.3.1 Interoperating with PCs
	1.3.2 Network Support

	1.4 Threads
	1.5 Enhancements to OSF DCE
	1.5.1 CDS Enhanced Browser
	1.5.2 IDL Compiler Enhancements
	1.5.3 The RPC Event Logger Utility
	1.5.4 Name Service Interface Daemon for Microsoft RPC
	1.5.5 Security Integration Architecture
	1.5.6 RPC Support of DECnet/OSI (Phase V)
	1.5.7 DTS Support of DECnet/OSI (Phase V)
	1.5.8 CDS Cache Clerk Enhanced Memory Management
	1.5.9 CDS Preferencing
	1.5.10 DTS Support for DLI (Data Link Interface) and RPC
	1.5.11 LDAP Directory Service
	1.5.12 New localrpc Protocol Sequence
	1.5.13 Kerberos 5-Compliant Utilities
	1.5.14 DCE in a Tru64 UNIX TruCluster Application Server Environment

	1.6 Diskless Support Removed from OSF DCE
	1.7 Restrictions Using Gradient DCE for Tru64 UNIX
	1.7.1 DCE DFS Restrictions and Limitations
	1.7.2 Utility Restriction
	1.7.3 DIGITAL X.500 Restrictions

	Interoperability and Compatibility
	2.1 Overview of Compatibility with Other DCE Systems
	2.2 Overview of Interoperability with Other DCE Systems
	2.3 DCE DFS Interoperability and Compatibility
	2.4 CDS and DECnet/OSI DECdns Compatibility
	2.5 Interoperability with DECnet Phase IV and DECnet/OSI
	2.6 Interaction Between DCE DTS and DECnet/OSI DECdts
	2.6.1 Changing the Default for DCE DTS to RPC

	Security Integration Architecture
	3.1 Overview of SIA
	3.2 Benefits of SIA
	3.3 Using SIA
	3.4 Using the SIA Configuration Program
	3.5 How DCE Security Affects the Security-Sensitive Commands and Routines
	3.5.1 Login-Related Commands

	3.5.1.1 login Command
	3.5.1.2 The su Command
	Table 3-1: User Combinations�
	3.5.2 Registry Information Change Commands
	3.5.3 Registry Information Inquiry Routines

	3.6 Using DCE SIA With the Tru64 UNIX Enhanced Security Option
	Table 3-2: Benefits of Using SIA with BSD Security or Enhanced Security�

	3.7 Performance Considerations for DCE SIA
	3.7.1 Performance of getpwent(�) and getgrent(�) Functions
	3.7.2 The Impact of DCE SIA on Login Performance
	3.7.3 UID Management
	3.7.4 Executables in /sbin
	3.7.5 rlogin
	3.7.6 Changing root Password
	3.7.7 Credentials Obtained for Intercell Login are Poorly Protected

	3.8 Performance Considerations for Registry Replication
	3.9 Group Override and the group_override File
	3.9.1 Use of /opt/dcelocal/etc/group_override
	3.9.2 Effect of Local Override on Group Data

	3.10 Additional Information

	Introduction to the DCE Directory Service
	4.1 Overview of DCE Directory Service
	4.2 How the DCE Components Use the DCE Directory Service
	4.3 How to Use DCE Directory Services
	4.4 Directory Services and the Cell Environment
	4.5 How Cells Determine Naming Environments
	4.5.1 Global Names
	4.5.2 Hierarchical Cell Names

	4.6 Alias Cell Names
	4.7 Cell-Relative Naming in a Standalone Cell
	4.8 Cell-Relative Naming in a Hierarchy of Cells
	4.8.1 Local Filenames
	4.8.2 An In-Depth Analysis of DCE Names

	4.9 CDS Names
	4.9.1 Names
	4.9.2 LDAP Names
	4.9.3 DNS Names
	4.9.4 Names Outside of the DCE Directory Service

	Cell Directory Service Enhancements
	5.1 Overview of CDS Directory and Clearinghouse Operations
	5.1.1 Reorganizing Existing CDS Directory Replicas
	Table 5-1: Reorganizing Existing CDS Directory Replicas�

	5.1.2 Creating Additional CDS Directory Replicas
	Table 5-2: Creating Additional CDS Directory Replicas�

	5.2 Enhanced Browser
	5.2.1 Displaying the Namespace
	5.2.2 Filtering the Namespace Display

	5.3 CDS Enhanced Cache Memory Control
	5.4 CDS Clearinghouse Preferences

	LDAP Capabilities
	6.1 Overview of LDAP
	6.2 How NSI Works
	6.2.1 LDAP Syntax
	6.2.2 NSI Configuration
	6.2.3 Configuration File Format and Syntax
	Table 6-1: LDAP NSI Configuration Options and Values�

	6.2.4 NSI Call Categorization
	6.2.5 Name Service Selection
	6.2.6 Name Translation from CDS to LDAP

	6.3 Using NSI
	6.3.1 Modifying Runtime Configuration Options
	6.3.2 Application Programming
	6.3.3 NSI Known Limitations

	6.3.3.1 Security
	6.3.3.2 Schema
	6.3.3.3 Schema for Storing RPC Entries in a Directory Service
	Table 6-2: Entry Types and Object Groups�
	6.3.4 Objects and Attributes

	6.3.4.1 Notation
	6.3.4.2 Object Naming
	6.3.4.3 Object Definitions
	6.3.4.4 RPC Entry
	6.3.4.5 RPC Group
	6.3.4.6 RPC Profile
	6.3.4.7 RPC Server
	6.3.4.8 Attribute Definitions
	6.3.4.9 The rpcNsObjectID
	6.3.4.10 The rpcNsGroup
	6.3.4.11 The rpcNsPriority
	6.3.4.12 The rpcNsProfileEntry
	6.3.4.13 The rpcNsInterfaceID
	6.3.4.14 The rpcNsAnnotation
	6.3.4.15 The rpcNsCodeset
	6.3.4.16 The rpcNsBindings
	6.3.4.17 The rpcNsTransferSyntax
	6.3.5 Usage Model

	6.3.5.1 Relative Names
	6.4 How GDA Works
	6.4.1 Cell Naming
	6.4.2 Security
	6.4.3 Registration Utility

	Managing Intercell Naming
	7.1 Overview of Intercell Naming
	7.2 How the Global Directory Agent Works
	7.3 Managing the Global Directory Agent
	7.4 Enabling Other Cells to Find Your Cell
	7.4.1 Defining a Cell in the Domain Name System
	7.4.2 Defining a Cell in the Global Directory Service
	7.4.3 Defining a Cell in an LDAP Server
	Table 7-1: ldap_addcell Parameters and Environment Variables

	DCE Distributed File Service
	8.1 Variation from OSF DFS
	8.2 Using Tru64 UNIX ACLs
	Table 8-1: Tru64 UNIX ACLs�
	8.2.1 Tru64 UNIX ACL Limitations
	8.2.2 DCE Responses to Tru64 UNIX ACL Operations
	8.2.3 Mapping between DCE ACLs and Tru64 UNIX ACLs
	Table 8-2: Mapping Permission Bits�

	8.2.4 Disabling ACL Operations

	8.3 NFS-DFS Secure Gateway Server Administration
	8.4 DFS Backup
	8.5 Solutions to Common Problems with DCE DFS
	8.5.1 Running Commands Requiring the setuid Feature
	8.5.2 Running cron Jobs with DCE Credentials

	Compiling and Linking Applications
	9.1 Overview of the Command Format

	RPC, IDL, ACF, and IDL Compiler Enhancements
	10.1 Overview of Enhancements
	10.2 Local RPC Protocol Sequence
	10.2.1 Using localrpc with well-known endpoints
	10.2.2 Affected RPC API calls
	10.2.3 Suppressing localrpc (or any other protseq)
	10.2.4 Permissions of localrpc Socket
	10.2.5 Added dced Support
	10.2.6 Compatibility Issues

	10.3 DTSD Timing and Timeout Changes
	10.3.1 Affected RPC API Call

	10.4 Using Environment Variables to Restrict Network Interfaces and Addresses
	10.5 IDL and ACF Enhancements
	10.5.1 Automatic Binding Enhancement
	10.5.2 Enumeration in IDL
	10.5.3 The client_memory ACF Attribute

	10.6 IDL Compiler Enhancements
	10.6.1 The �standard Build Option
	10.6.2 Stub Auxiliary Files
	10.6.3 Generating Application Templates Using the IDL Compiler
	Table 10-1: IDL Constructs Supported by Template Feature�

	10.6.4 Example of IDL Template Feature

	10.6.4.1 Example Interface Definition File
	10.6.4.2 Example Manager Template
	10.6.4.3 Creating the Executable Manager Program
	10.6.5 C++ Application Support

	Application Debugging with the RPC Event Logger
	11.1 Overview of Debugging Support
	11.2 Introduction to the RPC Event Logging Facility
	Table 11-1: Event Types�
	Table 11-2: Event Log Fields�

	11.3 Generating RPC Event Logs
	11.3.1 Enabling Event Logging
	Table 11-3: Event Values and Types�

	11.3.2 Using the �trace Option
	11.3.3 Combining Event Logs
	11.3.4 Disabling Event Logging

	11.4 Using Environment Variables and the Log Manager to Control Logging Information
	11.4.1 Controlling Logged Events with Environment Variables
	11.4.2 Controlling Logged Events with the RPC Log Manager
	Table 11-4: Command Interface to rpclm�

	11.5 Using the �trace Option, Environment Variables, and the Log Manager Together
	11.6 Using Event Logs to Debug Your Application
	11.7 Event Names and Descriptions
	11.8 Summary

	Developing Distributed Applications with FORTRAN
	12.1 Overview of Applications with FORTRAN
	12.2 Interoperability and Portability
	12.3 Remote Procedure Calls Using FORTRAN — Example
	12.3.1 Where to Obtain the Example Application Files
	Table 12-1: Example Files Created by the Programmer�

	12.3.2 The Interface File and Data File (payroll.idl and payroll.dat)
	12.3.3 Compiling the Interface with the IDL Compiler
	Table 12-2: Example Files Created by IDL�

	12.3.4 The Client Application Code for the Interface (print_pay.for)
	12.3.5 The Server Initialization File (server.c)
	12.3.6 The Server Application Code for the Interface (manager.for)
	12.3.7 Client and Server Bindings
	12.3.8 Building the Example (Makefile.unix)
	12.3.9 Running the Example

	12.4 Remote Procedure Calls Using FORTRAN — Reference
	12.4.1 The FORTRAN Compiler Option
	12.4.2 Restrictions on the Use of FORTRAN
	12.4.3 IDL Constant Declarations
	12.4.4 Type Mapping
	Table 12-3: Mappings for IDL Types�

	12.4.5 Operations

	12.4.5.1 Parameter Passing by Reference
	12.4.5.2 Function Results
	12.4.6 Include Files
	12.4.7 The nbase.for File
	Table 12-4: Standard Declarations�

	12.4.8 IDL Attributes

	12.4.8.1 Binding Handle Callout
	12.4.8.2 ACF file
	12.4.8.3 Generated header file
	12.4.8.4 Generated client stub
	12.4.8.5 Binding callout routine
	12.4.8.6 Error handling
	12.4.8.7 Predefined binding callout routine
	12.4.8.8 The transmit_as Attribute
	12.4.8.9 The string Attribute
	12.4.8.10 The context_handle Attribute
	12.4.8.11 The Array Attributes on [ref] Pointer Parameters
	12.4.9 ACF Attributes

	12.4.9.1 The implicit_handle ACF Attribute
	12.4.9.2 The represent_as ACF Attribute

	Example Programs
	13.1 Overview of Remote Procedure Call Programs
	Table 13-1: Features of Example Programs�

	13.2 RPC Test Program #1
	13.3 RPC Test Program #2
	13.4 RPC Test Program #3
	13.5 Book Distributed Calendar Program
	Table 13-2: Options for Starting the Book Distributed Calendar Program�

	13.6 The Time Operations Sample Application
	13.6.1 Overview
	13.6.2 Building timop_svc
	13.6.3 Setting Up to Run timop_svc
	13.6.4 timop_svc Message Catalog
	13.6.5 Running the timop_svc Server
	13.6.6 Running the timop_svc Client
	13.6.7 Sample Server Output
	13.6.8 Stopping timop_svc
	13.6.9 timop_svc Server Options
	13.6.10 timop_svc Client Options
	13.6.11 timop_svc Principal And Keytab Names
	13.6.12 timop_svc Debug Message Levels
	Table 13-3: timeop_svc Debug Message Levels�

	13.7 Microsoft RPC Phonebook Program
	13.7.1 Source Files for the phnbk Example
	13.7.2 Building the Tru64 UNIX phnbk Client and Server Programs
	13.7.3 Starting and Stopping the phnbk Server
	13.7.4 Starting and Stopping the phnbk Client Program

	13.8 The Echo Example Program
	Table 13-4: Server Options for the echo_server Command
	Table 13-5: Client Options for the echo_server Command

	13.9 Time Provider Example Programs
	13.10 The Serviceability API Sample Program
	13.10.1 Building the Program

	13.11 The Generic Sample Application
	13.11.1 Building the Sample Application
	13.11.2 Installing the Sample Application
	13.11.3 Running the Sample Application

	13.11.3.1 Running the Client
	13.11.4 What the Sample Application Does
	13.11.5 Viewing the Server ACL
	13.11.6 Notes

	13.12 Object Oriented idl Programs
	13.12.1 Preparing to Run the Example Programs
	13.12.2 The account Example Program
	13.12.3 The accountc Example Program
	13.12.4 The card Example Program
	13.12.5 The stack Example Program

	Index

