5&: ENTEGRITY Soltionse

Gradient” DCE for True4™ UNIX"

Product Guide

Software Version 4.2

Notices

Gradient DCE for Tru64 UNIX Product Guide - Software Version 4.2 - Revised November 2001

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A
SEPARATE LICENSE AGREEMENT, AND MAY BE USED AND COPIED ONLY IN ACCORDANCE
WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE COPYRIGHT
NOTICE BELOW. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN
WITH ENTEGRITY SOLUTIONS CORPORATION AND OR ITS LICENSOREES.

The information contained in this document is subject to change without notice.

ENTEGRITY SOLUTIONS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
SOFTWARE, DOCUMENTATION AND THIS MATERIAL, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Entegrity Solutions shall not be liable for errors contained herein, or for any direct or indirect, incidental,
specia or consequential damages in connection with the furnishing, performance, or use of this material.

Use, duplication or disclosure by the Government is subject to restrictions as set forth in Entegrity’s
standard commercial license agreement and is commercial computer software and documentation pursuant
to Section 12.212 of the FAR and 227.7202 subparagraph (c) (1) (i) of the Rightsin Technical Data and
Computer Software clause at DFARS 252.227-7013.

Entegrity, Entegrity Solutions, and Gradient are registered trademarks of Entegrity Solutions Corporation.
NetCrusader is atrademark of Entegrity Solutions Corporation.

Compaq, TruCluster,and AlphaServer are registered trademarks of Compagq Computer Corporation. Tru64
is atrademark of Compag Computer Corporation. The the names of other Compag products referenced
herein are trademarks or service marks, or registered trademarks or service marks, of Compagq Computer
Corporation.

Kerberosis a trademark of Massachusetts Institute of Technology. UNIX is aregistered trademark of The
Open Group. The Open Group isatrademark of The Open Group. DCE is copyrighted by The Open Group
and other parties. Other products mentioned in the document are trademarks or registered trademarks of
their respective holders.

Portions of this documentation were derived from materials provided by Entrust Technologies Limited.
Copyright © 19912001 The Open Group

Copyright © 2001 Entegrity Solutions Corporation & its subsidiaries.

All Rights Reserved.

Entegrity Solutions Corporation, 2077 Gateway Place, Suite 200, San Jose, CA 95110, USA

Contents

Notices 2

Preface 11

Intended Audience 11

Overview of thisGuide 11

Conventions 11

Related Documentation 12

Contacting Entegrity Solutions 13

Obtaining Technical Support 13

Obtaining Additional Technical Information 14
Obtaining Additional Documentation 14

Chapter 1 Gradient DCE for Tru64 UNIX 15

1.1 Overview of the Software 15
1.2 Kit Contents 15
1.2.1 Runtime Services (RTS) Subset 16
1.2.2 Cell Directory Server Subset 17
1.2.3 Security Server Subset 17
1.2.4 Application Developer’sKit Subset 18
1.2.5 Online Manual Pages Subset 18
1.2.6 Distributed File Service Runtime Services Subset 18
1.2.7 DFSKernd Binary Subset 19
1.2.8 DFS Utilities Subset 19
1.2.9 DFSOnline Manual Pages 19
1.2.10 NFS-DFS Secure Gateway Server 19
1.3 Platforms and Networks Supported by Gradient DCE for Tru64 UNIX 19
1.3.1 Interoperating with PCs 19
1.3.2 Network Support 20
1.4 Threads 20
1.5 Enhancementsto OSF DCE 21
15.1 CDS Enhanced Browser 21
1.5.2 IDL Compiler Enhancements 21
1.5.3 The RPC Event Logger Utility 21
1.5.4 Name Service Interface Daemon for Microsoft RPC 21
1.5.5 Security Integration Architecture 22
1.5.6 RPC Support of DECnet/OSI| (Phase V) 22
1.5.7 DTS Support of DECnet/OSI (PhaseV) 22
1.5.8 CDS Cache Clerk Enhanced Memory Management 22
15.9 CDS Preferencing 22
1.5.10 DTS Support for DLI (DataLink Interface) and RPC 22
15.11 LDAP Directory Service 22
1.5.12 New localrpc Protocol Sequence 22
1.5.13 Kerberos 5-Compliant Utilities 23

4 NetCrusader/DCE Product Guide

15.14 DCEinaTrue4 UNIX TruCluster Application Server Environment 23
1.6 Diskless Support Removed from OSF DCE 23
1.7 Redtrictions Using Gradient DCE for Tru64 UNIX 23

1.7.1 DCE DFSRestrictions and Limitations 23

1.7.2 Utility Restriction 24

1.7.3 DIGITAL X.500 Redtrictions 24

Chapter 2 Interoperability and Compatibility 31

2.1 Overview of Compatibility with Other DCE Systems 31

2.2 Overview of Interoperability with Other DCE Systems 31

2.3 DCE DFS Interoperability and Compatibility 31

2.4 CDS and DECnet/OSI DECdns Compatibility 31

2.5 Interoperability with DECnet Phase IV and DECnet/OSI 31

2.6 Interaction Between DCE DTS and DECnet/OS| DECdts 32
2.6.1 Changing the Default for DCE DTSto RPC 34

Chapter 3 Security Integration Architecture 35

3.1 Overview of SIA 35
3.2 Benefitsof SIA 35
3.3 UsingSIA 36
3.4 Using the SIA Configuration Program 36
3.5 How DCE Security Affects the Security-Sensitive Commands and Routines 37
3.5.1 Login-Related Commands 37
3.5.1.1 login Command 38
3.5.1.2 Thesu Command 38
3.5.2 Registry Information Change Commands 40
3.5.3 Regigtry Information Inquiry Routines 41
3.6 Using DCE SIA With the Tru64 UNIX Enhanced Security Option 42
3.7 Performance Considerationsfor DCE SIA 44
3.7.1 Performance of getpwent() and getgrent() Functions 44
3.7.2 The Impact of DCE SIA on Login Performance 44
3.7.3 UID Management 44
3.7.4 Executablesin/shin 45
3.7.5 rlogin 45
3.7.6 Changing root Password 45
3.7.7 Credentials Obtained for Intercell Login are Poorly Protected 45
3.8 Performance Considerations for Registry Replication 46
3.9 Group Override and the group_override File 47
3.9.1 Use of /opt/dcelocal/etc/group _override 47
3.9.2 Effect of Loca Override on Group Data 47
3.10 Additional Information 47

Chapter 4 Introduction to the
DCE Directory Service 49

4.1 Overview of DCE Directory Service 49

Contents

5

4.2 How the DCE Components Use the DCE Directory Service 49
4.3 How to Use DCE Directory Services 50
4.4 Directory Services and the Cell Environment 51
4.5 How Cells Determine Naming Environments 54
45.1 Globa Names 54
4.5.2 Hierarchical Cell Names 55
4.6 AliasCell Names 56
4.7 Cell-Relative Naming in a Standalone Cell 57
4.8 Cell-Relative Naming in aHierarchy of Cells 58
4.8.1 Local Filenames 58
4.8.2 AnIn-Depth Analysis of DCE Names 58
49 CDSNames 58
49.1 Names 59
49.2 LDAP Names 62
4.9.3 DNSNames 62
4.9.4 Names Outside of the DCE Directory Service 64

Chapter 5 Cell Directory Service Enhancements 65

5.1 Overview of CDS Directory and Clearinghouse Operations 65
5.1.1 Reorganizing Existing CDS Directory Replicas 65
5.1.2 Creating Additional CDS Directory Replicas 66

5.2 Enhanced Browser 68
5.2.1 Displaying the Namespace 68
5.2.2 Filtering the Namespace Display 68

5.3 CDS Enhanced Cache Memory Control 69

5.4 CDS Clearinghouse Preferences 69

Chapter 6 LDAP Capabilities 71

6.1 Overview of LDAP 71
6.2 How NSI Works 72
6.2.1 LDAP Syntax 72
6.2.2 NSI Configuration 73
6.2.3 Configuration File Format and Syntax 73
6.2.4 NSI Call Categorization 74
6.2.5 Name Service Selection 75
6.2.6 Name Translation from CDSto LDAP 76
6.3 Using NSl 76
6.3.1 Modifying Runtime Configuration Options 76
6.3.2 Application Programming 77
6.3.3 NSI Known Limitations 78
6.3.3.1 Security 78
6.3.3.2 Schema 78
6.3.3.3 Schemafor Storing RPC Entriesin aDirectory Service 78
6.3.4 Objectsand Attributes 79
6.3.4.1 Notation 80
6.3.4.2 Object Naming 80
6.3.4.3 Object Definitions 80

6 NetCrusader/DCE Product Guide

6.3.4.4 RPCEntry 80
6.3.4.5 RPC Group 81
6.3.4.6 RPC Profile 81
6.3.4.7 RPC Server 82
6.3.4.8 Attribute Definitions 82
6.3.4.9 TherpcNsObjectiD 82
6.3.4.10 TherpcNsGroup 82
6.3.4.11 TherpcNsPriority 83
6.3.4.12 TherpcNsProfileEntry 83
6.3.4.13 TherpcNsInterfacelD 83
6.3.4.14 TherpcNsAnnotation 83
6.3.4.15 TherpcNsCodeset 84
6.3.4.16 TherpcNsBindings 84
6.3.4.17 TherpcNsTransferSyntax 84

6.3.5 UsageModel 84
6.3.5.1 Relative Names 85

6.4 How GDA Works 85

6.4.1 Cel Naming 86

6.4.2 Security 86

6.4.3 Regigtration Utility 86

Chapter 7 Managing Intercell Naming 87

7.1 Overview of Intercell Naming 87

7.2 How the Global Directory Agent Works 87

7.3 Managing the Global Directory Agent 90

7.4 Enabling Other Cellsto Find Your Cell 91
7.4.1 Defining a Cell inthe Domain Name System 92
7.4.2 Defining aCell inthe Global Directory Service 93
7.4.3 Defining aCeéll inan LDAP Server 94

Chapter 8 DCE Distributed File Service 97

8.1 Variation from OSF DFS 97

8.2 Using Tru64 UNIX ACLs 97
8.2.1 Tru64 UNIX ACL Limitations 98
8.2.2 DCE Responsesto Tru64 UNIX ACL Operations 98
8.2.3 Mapping between DCE ACLsand Tru64 UNIX ACLs 99
8.2.4 Disabling ACL Operations 100

8.3 NFS-DFS Secure Gateway Server Administration 100

8.4 DFSBackup 100

8.5 Solutionsto Common Problemswith DCE DFS 100
8.5.1 Running Commands Requiring the setuid Feature 100
8.5.2 Running cron Jobs with DCE Credentials 100

Chapter 9 - Compiling and Linking Applications 103

9.1 Overview of the Command Format 103

Contents

Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 105

10.1 Overview of Enhancements 105
10.2 Loca RPC Protocol Sequence 105
10.2.1 Using localrpc with well-known endpoints 105
10.2.2 Affected RPC API calls 106
10.2.3 Suppressing localrpc (or any other protseq) 107
10.2.4 Permissions of localrpc Socket 107
10.2.5 Added dced Support 108
10.2.6 Compatibility Issues 108
10.3 DTSD Timing and Timeout Changes 108
10.3.1 Affected RPC API Cal 109
10.4 Using Environment Variables to Restrict Network Interfaces and Addresses 109
10.5 IDL and ACF Enhancements 110
10.5.1 Automatic Binding Enhancement 110
10.5.2 EnumerationinIDL 110
10.5.3 Theclient_ memory ACF Attribute 110
10.6 IDL Compiler Enhancements 111
10.6.1 The-standard Build Option 111
10.6.2 Stub Auxiliary Files 111
10.6.3 Generating Application Templates Using the IDL Compiler 112
10.6.4 Example of IDL Template Feature 113
10.6.4.1 Example Interface Definition File 113
10.6.4.2 Example Manager Template 114
10.6.4.3 Creating the Executable Manager Program 115
10.6.5 C++ Application Support 115

Chapter 11 Application Debugging with the RPC Event Logger 117

11.1 Overview of Debugging Support 117
11.2 Introduction to the RPC Event Logging Facility 117
11.3 Generating RPC Event Logs 120
11.3.1 Enabling Event Logging 121
11.3.2 Using the -trace Option 121
11.3.3 Combining Event Logs 122
11.3.4 Disabling Event Logging 124
11.4 Using Environment Variables and the Log Manager to Control
Logging Information 124
11.4.1 Controlling Logged Events with Environment Variables 125
11.4.2 Controlling Logged Events with the RPC Log Manager 125
11.5 Using the -trace Option, Environment Variables, and the Log Manager Together 128
11.6 Using Event Logsto Debug Your Application 132
11.7 Event Names and Descriptions 133
11.8 Summary 135

Chapter 12 Developing Distributed Applications with FORTRAN 137

12.1 Overview of Applicationswith FORTRAN 137
12.2 Interoperability and Portability 137

8 NetCrusader/DCE Product Guide

12.3 Remote Procedure Calls Using FORTRAN — Example 138
12.3.1 Whereto Obtain the Example Application Files 138
12.3.2 The Interface File and Data File (payroll.idl and payroll.dat) 139
12.3.3 Compiling the Interface with the IDL Compiler 140
12.3.4 The Client Application Code for the Interface (print_pay.for) 142
12.3.5 The Server Initialization File (server.c) 143
12.3.6 The Server Application Code for the Interface (manager.for) 145
12.3.7 Client and Server Bindings 146
12.3.8 Building the Example (Makefile.unix) 146
12.3.9 Running the Example 148
12.4 Remote Procedure Calls Using FORTRAN — Reference 148
12.4.1 The FORTRAN Compiler Option 149
12.4.2 Redtrictions on the Use of FORTRAN 149
12.4.3 IDL Constant Declarations 150
12.4.4 TypeMapping 151
12.4.5 Operations 152
12.4.5.1 Parameter Passing by Reference 153
12.4.5.2 Function Results 153
12.4.6 Include Files 153
12.4.7 Thenbasefor File 154
12.4.8 IDL Attributes 154
12.4.8.1 Binding Handle Callout 154
12.4.8.2 ACFfile 155
12.4.8.3 Generated header file 155
12.4.8.4 Generated client stub 155
12.4.8.5 Binding cdlout routine 155
12.4.8.6 Error handling 156
12.4.8.7 Predefined binding callout routine 156
12.4.8.8 Thetransmit_as Attribute 157
12.4.8.9 The string Attribute 157
12.4.8.10 The context_handle Attribute 158
12.4.8.11 The Array Attributes on [ref] Pointer Parameters 158
12.4.9 ACF Attributes 158
12.4.9.1 Theimplicit_handle ACF Attribute 158
12.4.9.2 Therepresent_as ACF Attribute 158

Chapter 13 Example Programs 159

13.1 Overview of Remote Procedure Call Programs 159
13.2 RPC Test Program #1160
13.3 RPC Test Program #2 161
13.4 RPC Test Program #3 162
13.5 Book Distributed Calendar Program 163
13.6 The Time Operations Sample Application 164
13.6.1 Overview 164
13.6.2 Building timop_svc 164
13.6.3 Setting Up to Runtimop_svc 165
13.6.4 timop_svc Message Catalog 166
13.6.5 Running thetimop_svc Server 166

Contents

13.6.6 Runningthetimop_svc Client 167
13.6.7 Sample Server Output 167
13.6.8 Stoppingtimop_svc 168
13.6.9 timop_svc Server Options 168
13.6.10 timop_svc Client Options 169
13.6.11 timop_svc Principal And Keytab Names 170
13.6.12 timop_svc Debug Message Levels 170
13.7 Microsoft RPC Phonebook Program 170
13.7.1 Source Files for the phnbk Example 171
13.7.2 Building the Tru64 UNIX phnbk Client and Server Programs 172
13.7.3 Starting and Stopping the phnbk Server 172
13.7.4 Starting and Stopping the phnbk Client Program 172
13.8 The Echo Example Program 173
13.9 Time Provider Example Programs 175
13.10 The Serviceability APl Sample Program 175
13.10.1 Building the Program 175
13.11 The Generic Sample Application 176
13.11.1 Building the Sample Application 176
13.11.2 Ingtalling the Sample Application 176
13.11.3 Running the Sample Application 178
13.11.3.1 Runningthe Client 179
13.11.4 What the Sample Application Does 179
13.11.5 Viewing the Server ACL 180
13.11.6 Notes 180
13.12 Object Oriented idl Programs 180
13.12.1 Preparing to Run the Example Programs 180
13.12.2 The account Example Program 181
13.12.3 The accountc Example Program 182
13.12.4 Thecard Example Program 182
13.12.5 The stack Example Program 183

Index 185

Preface

Intended Audience

The audience for this guide includes the following:

Experienced programmers who want to write client/server applications.
Experienced programmers who want to port existing applications to DCE.
System manager s who manage the distributed computing environment.
Users who want to run distributed applications.

Overview of this Guide

Conventions

The Gradient® DCE for Tru64™ UNIX® Product Guide provides users of the
Distributed Computing Environment (DCE) with supplemental information
necessary to use Gradient DCE. This guide is best used with the documents
listed under Related Documentation .

Gradient DCE for Tru64 UNIX v4.0 is alayered product on the Tru64 UNIX
Version 5.0, 5.0a, and 5.1operating systems. It is a compatible upgrade of
DCE for Tru64 UNIX Version 3.0.. It consists of afull DCE implementation
as defined by The Open Group (TOG). This software includes these
components:

Remote Procedure Call (RPC)

Cell Directory Service (CDS)

Distributed Time Service (DTS

DCE Security

DCE Distributed File Service (DFS, based on DCE Release 1.2.2)
Lightweight Directory Access Protocol (LDAP)

NOTE: The products named Gradient DCE for Tru64 UNIX v3.1 (and higher),
Digital DCE v3.1, and Compag DCE v3.1 provide essentialy the same
features; however, only Gradient DCE for Tru64 UNIX functions on the
Tru64 UNIX v5.x operating system. Although other company names may be
referenced within this document (Digital, Compag, or Gradient
Technologies), this DCE product is now produced and supported by Entegrity
Solutions® Corporation.

The following conventions are used in this guide:

12 Gradient DCE for Tru64 UNIX Product Guide

UPPERCASE The operating system differentiates between lowercase and

and lowercase uppercase characters. Literal strings that appear in text, examples,
syntax descriptions, and function definitions must be typed exactly as
shown.

bold Boldface type in interactive examples indicates typed user input.
In general text reference, bold indicates file names and commands.

italics Italic type indicates variable values, placeholders, and function
argument names.

special type Indicates system output in interactive and code examples.

% The default user prompt is your system name followed by aright

angle bracket (>). In this manual, a percent sign (%) is used to
represent this prompt.

A number sign (#) represents the superuser prompt.

Ctrl/x This symbol indicates that you hold down the Ctrl key while pressing
the key or mouse button that follows the slash.

<Return> Refersto the key on your terminal or workstation that is labeled with
Return or Enter.

Related Documentation

The following documents are available in HTML and Acrobat format on the
Entegrity software CD:

» Gradient DCE for Tru64 UNIX Installation and Configuration Guide O
Describes how to install DCE and configure and manage your DCE cell.

» Gradient DCE for Tru64 UNIX Product Guide (this guide) O Provides
supplemental documentation for Gradient DCE for Tru64 UNIX
value-added features.

» Gradient DCE for Tru64 UNIX Reference Guide 0 Provides supplemental
reference information for Gradient DCE for Tru64 UNIX value-added
features.

» Gradient DCE for Tru64 UNIX Release Notes[] Lists new features, bug
fixes, and known problems and restrictions.

Thefollowing OSF DCE Release 1.2.2 technical documentation is provided
on the Entegrity software CD in PDF format:

= Introduction to OSF DCE O Contains a high-level overview of DCE
technology including its architecture, components, and potential use.

» OSF DCE Administration Guide - Introduction [0 Describes the issues
and conventions concerning DCE as awhole system and provides
guidance for planning and configuring a DCE system.

» OSF DCE Administration Guide - Core Components [0 Provides specific
instructions on how core components should be installed and configured.

Preface 13

» OSF DCE Application Development Guide - Introduction and Syle Guide
O Servesasastarting point for application developers to learn how to
develop DCE applications.

» OSF DCE Application Development Guide - Core Components [
Provides information on how to develop DCE applications using core
DCE components such as RPC and security.

» OSF DCE Application Development Guide - Directory Services [
Contains information for developers building applications that use DCE
Directory Services.

» OSF DCE Application Development Reference 0 Provides reference
information for DCE application programming interfaces.

= OSF DCE Command Reference 0 Describes commands available to
system administrators.

Contacting Entegrity Solutions

Contact

Address

Phone/Fax/E-mail

DCE Product and Sales
Information

Entegrity Solutions Corporation
410 Amherst Street, Suite 150
Nashua, NH 03063 USA

E-mail: DCESales@entegrity.com
Web: www.entegrity.com

Telephone and Fax:

United States and Canada

Tel: +1 (603) 882-1306

Tel (US Only): 1-800-525-4343
Fax: +1 (603) 882-6092

All Other Product and Sales
Information Requests

Entegrity Solutions Corporation
2077 Gateway Place, Suite 200
San Jose, CA 95110 USA

E-mail: info@entegrity.com
Web: www.entegrity.com

Telephone and Fax:

Tel: +1 (408) 487-8600

Tel (US Only): 1-866-487-8600
Fax: +1 (408) 487-8610

Technical Support

Entegrity Solutions Corporation
Technical Support

2 Mount Royal Ave.
Marlborough, MA 01752 USA

United States and Canada:

Tel: +1 (508) 229-0239

Tel (USOnly): 1 (888) 368-3555
Fax: +1 (508) 229-0338

E-mail: support@entegrity.com
http://support.entegrity.com

Obtaining Technical Support

If you purchased your NetCrusader™ product directly from Entegrity
Solutions Corporation or Gradient Technologies, Inc. you are entitled to 30
days of limited technical support beginning on the day the product is expected

to arrive.

14 Gradient DCE for Tru64 UNIX Product Guide

You may aso purchase a support plan that entitles you to additional services.
You must register prior to receiving this support. For details, refer to the
customer support information package that accompanied your shipment or
refer to the Technical Support area of http://support.entegrity.com. Theweb
site also contains online forms for easy registration.

If you purchased NetCrusader from a reseller, please contact the reseller for
information on obtaining technical support.

Obtaining Additional Technical Information

Contact Address Phone/Fax/Email
The Open Group™ The Open Group™ Tel: +1 781-376-8200
Developer of DCE (Distributed 29B Montvale Ave Fax: +1 781-376-9358
Computing Architecture) Woburn MA 01801 http://www.opengroup.org
software and standards. U.S.A.

Obtaining Additional Documentation

All documentation for your NetCrusader product is provided in electronic
format on the same CD on which the product ships. See the product CD for
information on accessing this documentation.

Documentation for all of Entegrity’s productsis available at http://

support.entegrity.com. Enter the Support Web area and click the
Documentation link.

We are always trying to improve our documentation. If you notice any
inaccuracies or cannot find information, please send email to
docs@entegrity.com. We welcome any comments or suggestions.

CHAPTER 1

Gradient DCE for Tru64 UNIX

1.1 Overview of the Software

Distributed computing services, asimplemented in the Distributed Computing
Environment (DCE), provide an important enabling software technology for
the devel opment of distributed applications. DCE makes the underlying
network architecture transparent to application developers. It consists of a
software layer between the operating system and network interface and the
distributed application. It provides a variety of common services needed to
develop distributed applications, such as name, time, and security services,
and a standard remote procedure call interface.

Gradient® DCE for Tru64™ UNIX® provides a means for application
developersto design, develop, and deploy distributed applications. Gradient
DCE for Tru64 UNIX is based upon OSF® DCE Release 1.2.2.

1.2 Kit Contents

Gradient DCE for Tru64 UNIX consists of the following distributed

computing technologies:

» DCE Remote Procedure Call (RPC), which alows you to create and run
client/server applications.

= DCE Cédl Directory Service (CDS), which provides location-independent
naming for servers.

» DCE Distributed Time Service (DTS), which synchronizestimein
distributed network environments.

» DCE Security Service, which provides secure communications and
controlled access to resources.

» DCE Distributed File Service (DFS), which provides transparent file
access to asingle namespace in a distributed computing environment.

The Gradient DCE for Tru64 UNIX product consists of twelve subsets:

Runtime Services (RTS) subset

Security Server (SEC) subset

Cell Directory Server (CDS) subset

Six Distributed File Service (DFS) subsets

Application Developer’s Kit (ADK) subset

Online Command Reference Manual Pages (MAN) subset

16 Gradient DCE for Tru64 UNIX Product Guide

Online Application Developer’s Manual Pages (ADKMAN) subset

The rest of this chapter describes the subsets, additional support, and
restrictions for this product.

1.2.1 Runtime Services (RTS) Subset

You must install the DCE Runtime Services subset on all systems on which
you want to run DCE applications. This subset includes the DCE client
software necessary to run DCE distributed applications and the administrative
tools required to configure and maintain the DCE environment. This subset is
aprerequisite for all the other subsets. For DCE server configurations, you
must install the appropriate subsets described in the following sections. .

Specifically, this subset includes the following components:

Remote Procedure Call runtime library

The RPC runtime library includes routines that manage communications
between client and server stubs. The DCE host daemon (dced) maintains
the endpoint map (addresses). The RPC Event Logger (rpclm) isaso
provided in this subset.

Céll Directory Server (CDS) clerk and CDS advertiser

The CDS clerk (cdsclerk) runs on the client node and serves as an
intermediary between client applications and CDS servers. Clerkslearn
about CDS servers by listening to messages sent out by the CDS advertiser
(cdsadv).

DIGITAL X.500 XDS Library
The XDS library provides support for use of XDS with DCE nhaming.
Distributed Time Service (DTS) clerk and server

The DTS clerk and server (dtsd) synchronize timein distributed network
environments.

PC name service interface daemon

The Runtime Services subset provides the name service interface daemon
(nsid), also called the PC Nameserver Proxy Agent, to allow
interoperability with machines running Microsoft® RPC on MS-DOS®,
Windows®, Windows NT™, or Windows 95™. If the PC isrunning DCE
services, the nsid is not necessary.

Audit Service daemon

The Audit Service daemon (auditd) records and logs significant events
(such as creating a user, logging in, or obtaining aticket) in an audit trail
file. Application servers can be designed to use the Audit Service for
logging purposes.

Administrative tools

Chapter 1 Gradient DCE for Tru64 UNIX 17

The administrative tools include the control program dcecp and the
enhanced CDS Browser (cdsbrowser). The Browser provides agraphical
user interface for viewing the CDS namespace. The dcecp program
replaces the earlier control programsrpccp for RPC, cdscp for CDS, and
dtscp for DTS. These control programs remain available for special
purposes, however.

The administrative tools also include rgy_edit, passwd_import,
passwd_export, acl_edit, getcellname and sec_admin.

» DCE Configuration Program

The DCE configuration program (dcesetup) allows you to configure your
DCE environment.

» DCE Login Facility

Thedce login command allows you to log into DCE.
» Other DCE tools

Kinit

kdestroy

Klist

UUID Generator (uuidgen)

1.2.2 Cell Directory Server Subset

The Cell Directory Service (CDS) Server subset provides a consistent
mechanism for naming and locating users, applications, files, and systems
within aDCE cell. The CDS Server subset requires the Security Server subset
to beinstaled. The CDS Server subset includes the following components:

» CDS server (cdsd)
= Global Directory Agent (gdad)

The Global Directory Agent (GDA) alows you to link multiple CDS or

L DAP namespaces using the Internet Domain Name System (DNS) or X.500.
To link multiple CDS namespaces using X.500, you must install the DIGITAL
X.500 Base kit and the DIGITAL X.500 API kit on your CDS server.
Optionaly, you caninstall the DIGITAL X.500 Administration Facility kit for
debugging and general administrative support. LDAP directory services using
X.500 can be enabled during configuration.

The XDS library allows applications to access the CDS and X.500 directory
services. The XDS routine library reference pages are provided in the
Gradient DCE for Tru64 UNIX Reference Guide.

1.2.3 Security Server Subset

The Security Server (SEC) subset provides secure communications and
controlled access to resourcesin a DCE environment. DCE Security includes
authentication, secure communication, and authorization. The Security Server
subset includes these components:

= Security server (secd)

18 Gradient DCE for Tru64 UNIX Product Guide

= Tool used to create the security database (sec_create db)
= Tool used to move the security database (sec_salvage db)

1.2.4 Application Developer’s Kit Subset

The Application Developer’sKit (ADK) subset provides the files necessary to
develop DCE client and server applications using RPC, CDS, DTS, and
Security application programming interfaces. Specifically, this subset
includes these components.

Interface Definition Language (IDL) stub compiler

Required DCE application development include files

Sample time-provider routines

Sample DCE applications

Symbols and message strings (SAMS) compiler for building DCE
message files, as described on the sams reference page.

1.2.5 Online Manual Pages Subset

Product Name provides two sets of online reference (manual) pages:
administrative commands for managing DCE, and application development
routines for programming distributed applications. To usethe online reference
pages on Tru64 UNIX systems, specify the command or routine name with
the man command. For example, this command displays the reference page
for uuidgen:

% man uuidgen

If more than one reference page exists for atopic (for example, intro), you
must specify the section number. For example, this command displays the
introduction reference page for security:

% man 3sec intro

For multiple-word commands, use underscore charactersto connect the words
in the command. For example, this command displays the reference page for
rpcep show entry:

% man rpccp_show_entry

1.2.6 Distributed File Service Runtime Services Subset

You must install the Distributed File Service (DFS) Runtime Services subset
on all systems on which you want to run DCE DFS. This subset provides
runtime services, including the DCE DFS client software necessary to run
DCE DFS, and the administrative tool s required to configure and maintain the
DCE DFS environment.

Specificaly, this subset includes the following components:

» User-level commands that include the DCE DFS configuration program
(dfssetup), Basic OverSeer (BOS) Server commands (bos, bosser ver),
Cache Manager commands (cm), user-space services to the Cache
Manager or File Exporter (dfsbind), Cache Manager daemon (dfsd),
non-DCE LFS partitions exporter (dfsexport), Fileset Location Database

Chapter 1 Gradient DCE for Tru64 UNIX 19

Server daemon (flserver), Fileset Server and Fileset Location Server
commands (fts), Fileset Server daemon (ftserver), File Exporter daemon
(fxd), Update Server daemon for clients (upclient), and Update Server
daemon for servers (upserver).

» Error message files
» DFSshared library (libcedfs.so)

1.2.7 DFS Kernel Binary Subset

This subset contains the kernel binary files.

1.2.8 DFS Utilities Subset

This subset contains DCE DFS utilities:
= scout displays File Exporter statistics.

» dfstrace helpsyou diagnose problemsin the kernel or within server
processes that interface with dfstrace.

= udebug displays Ubik status information.

1.2.9 DFS Online Manual Pages

This subset contains the online reference (manual) pages for the
administrative commands for managing DCE DFS. See Section 1.2.5 on
page 18 for information on displaying the online manual pages.

1.2.10 NFS-DFS Secure Gateway Server

This subset contains the NFS-DFS Secure Gateway server components. It
includes the gateway authentication daemon and the local authentication
registration utility.

See the Gradient DFSfor Tru64 UNIX Configuration Guide for more
information on configuring DFS.

1.3 Platforms and Networks Supported by Gradient DCE for Tru64 UNIX

1.3.1 Interoperating with PCs

Your DCE server can interoperate with a PC client that has Microsoft RPC
software installed on it. To use RPC from a PC, you need not make any
changes to the DCE server system.

20 Gradient DCE for Tru64 UNIX Product Guide

1.3.2 Network Support

1.4 Threads

Gradient DCE for Tru64 UNIX supports Tru64 UNIX Version 5.0a. Gradient
DCE for Tru64 UNIX provides RPC communications over UDP/IP, TCP/IP,
and the DECnet/OSl (Phase V) network protocol family. This network family
includes both NSP and OSlI transport protocols.

DECnet/OSl| support provides upward compatibility for applications on
OpenVMS™ nodes running DECnet™ Phase IV. Client applications that run
over DECnet Phase IV on OpenVMS can use DECnet Phase |V addressing
semantics to communicate with server applications running over the DECnet/
OSl Phase V protocol families on Tru64 UNIX.

Application writers can establish arelationship between aclient and server by
specifying a protocol sequence in one of three ways: in an explicit string
binding, in an interface definition, or by registering in the Cell Directory
Service. (Seethe OSF DCE Application Development Reference, intro(3rpc),
for alist of valid DCE protocol sequences.) A server that prints addresses as
part of its runtime operation prints network addresses and endpoint semantics
as string bindings. (For a complete description of the format of string
representations of binding information, see the OSF DCE Application
Development Guide)

The following string bindings are examples for each protocol supported on
True4 UNIX platforms. In any DCE implementation that supports the OSl
protocol stack, whether from Entegrity Solutions® or another vendor, string
bindings such as these are printed when an application fully implements all
supported protocols.

String Bindings for the I P protocol:

ncacn_ip_tcp:16.20.16.155[3924]
ncadg_ip_udp:16.20.16.155[1575]

String Bindings for the DECnet Phase IV protocol:
ncacn_dnet_nsp:12.36[RPC2DD20001]

String Bindings for the DECnet/OS| (Phase V) protocols.

ncacn_osi_dna:%x49000caa000400243021[RPC52DD20001 , tpid=cots]
ncacn_osi_dna:%x49000caa000400243020[RPC52DD20001 , tpid=nsp]
ncacn_osi_dna:NODENAME[RPC52DD20001, tpid=cots]

The Pthreads interface is an important part of the architecture for DCE, and
the DCE servicesrely on it. DCE uses the Pthreads interface from POSI X
1003.4a/d4. DECthreadsis provided as part of the Tru64 UNIX operating
system. Refer to the Guide to DEC Threads in the operating system’s
documentation set for information about threads.

Chapter 1 Gradient DCE for Tru64 UNIX 21

1.5 Enhancements to OSF DCE

The Gradient DCE for Tru64 UNIX kit provides the following added-value
features, which are not included in the OSF offering, to help users develop
and deploy DCE applications:

CDS Enhanced Browser

IDL compiler enhancements

RPC Event Logger Utility

NSI daemon (PC Nameserver Proxy Agent)
Security Integration Architecture (SIA)

RPC support of DECnet/OSI (Phase V)

DTS support of DECnet/OSI (Phase V)

CDS Cache Clerk Enhanced Memory Management
CDS Preferencing

DTS Support for RPC and DLI (Data Link Interface)
LDAP Directory Service

New localrpc protocol sequence

Kerberos 5-compliant utilities

DCE inaTru64 UNIX TruCluster Application Server Environment

1.5.1 CDS Enhanced Browser

The CDS Enhanced Browser contains additional functions beyond those
contained in the OSF DCE Version 1.1 Browser. See Chapter 5 for more
information.

1.5.2 1DL Compiler Enhancements

The Gradient DCE for Tru64 UNIX IDL compiler in thiskit includes
important enhancements, which are Entegrity value-added functionality
available only with Gradient DCE for Tru64 UNIX:

= Runtime routine templates
= DEC Fortran support

See Chapter 10 for more information about IDL.

1.5.3 The RPC Event Logger Utility

Entegrity provides the RPC Event Logger, which records information about
operations relating to the execution of an application interface.

1.5.4 Name Service Interface Daemon for Microsoft RPC

Entegrity provides the name service interface daemon (nsid), also known as
the PC Nameserver Proxy Agent, to allow RPC communication with personal
computers running the DCE-compatible Microsoft RPC. The nsid enables an
RPC application on MS-DOS, DOS Windows, and Windows NT to perform
name-service operations that are available through RPC, asif the RPC
applications on the PC were directly involved in the full CDS namespace.

22 Gradient DCE for Tru64 UNIX Product Guide

1.5.5 Security Integration Architecture

Security Integration Architecture (SIA) lets users of Gradient DCE for Tru64
UNIX use both BSD security and DCE security by using the same system
commands and routines for both.

1.5.6 RPC Support of DECnet/OSI (Phase V)

Thisversion of Gradient DCE for Tru64 UNIX supports Entegrity’s DECnet/
OSl implementation. See Section 1.3 on page 19 for more information.

1.5.7 DTS Support of DECnet/OSI (Phase V)

Thisversion of the Gradient DCE for Tru64 UNIX supports full functionality
of DECnet/OSl| implementation.

1.5.8 CDS Cache Clerk Enhanced Memory Management

The CDS enhanced command, dcecp cdscache discard, lets an administrator
release specified structures from the cache without any need to stop and
restart DCE.

1.5.9 CDS Preferencing

This enhancement improves performance at CDS clients by providing a
ranking to the order in which clearinghouses are contacted by the client for
CDS information. This can be accomplished automatically through the use of
defaults associated with the location of CDS clients with respect to CDS
servers or by manual overrides made by cell administrators. For more
information, see Section 5.4 on page 69.

1.5.10 DTS Support for DLI (Data Link Interface) and RPC

Thisversion of the Gradient DCE for Tru64 UNIX allows the acceptance of
messages on both RPC (a new default) and DLI (the old default).

1.5.11 LDAP Directory Service

The Lightweight Directory Access Protocol (LDAP) provides access to the
X.500 directory service without the overhead of the full Directory Access
Protocol (DAP). LDAP supports the TCP/IP protocol.

1.5.12 New localrpc Protocol Sequence

Gradient DCE for Tru64 UNIX now supports a new protocol sequence. It is
implemented with UNIX Domain sockets and can only be used by clients and
servers that are on the same node. By using UNIX Domain sockets, the IP
layer can be bypassed, providing gainsin performance that may vary with the
nature of the RPC traffic. The user must explicitly choose to use the localrpc
protocol sequencein either awell-known endpoint inthe IDL file, or ascalled

Chapter 1 Gradient DCE for Tru64 UNIX 23

out by one of the rpc_server_use protseg* () functions wherever a protocol
sequence string can be used. String bindings can also be used to pass localrpc
binding information from server to client.

1.5.13 Kerberos 5-Compliant Utilities

Massachusetts Institute of Technology (MIT) Kerberos Version 5
authentication and key distribution service is supported. The Kerberized
secure and encrypting versions of UNIX network utilities are supported:
telnet, rlogin, rsh, and ftp.

1.5.14 DCE in a Tru64 UNIX TruCluster Application Server Environment

Compag TruCluster™ Solutionsisafault-resilient technology that maximizes
uptime for mission-critical applications, databases, and operating systems.
Gradient DCE for Tru64 UNIX is Compag TruCluster tolerant.

1.6 Diskless Support Removed from OSF DCE

Support for diskless workstations was removed from OSF DCE Release 1.1.
Consequently, Gradient DCE for Tru64 UNIX does not support diskless
workstations.

1.7 Restrictions Using Gradient DCE for Tru64 UNIX

This section describes the following restrictions:

» Useof DCEDFS
» Use of the chpass utility
» Use of some features of the XDS Directory Interface

1.7.1 DCE DFS Restrictions and Limitations

For thisrelease, Gradient DFS for Tru64 UNIX is based on OSF DCE
Release 1.2.2, and has the following restrictions:

» Supportsthe UNIX® File System (UFS) and POLY CENTER™ Advanced
File System (AdvFS) only. Enhanced DFS server capabilities (for
example, fileset cloning) are not supported on the server side.

= DFShuilt-in backup is not supported. Instead, use the Tru64 UNIX native
file system backup facility.

» TheNFS-DFS Secure Gateway server does not support remote DFSlogin/
logout capabilities. For authenticated access to DFS, users of
DCE-unaware NFS clients must authenticate to DCE from the Gateway
Server machine using a dfsgw add operation. Refer to the OSF DCE DFS
Administration Guide and Reference for information about authenticating
from a Gateway Server machine.

24 Gradient DCE for Tru64 UNIX Product Guide

» Gradient DFSfor Tru64 UNIX uses Tru64 UNIX ACLs. These lack some
of the features of DCE ACLs. Chapter 8 discusses how Gradient DCE for
True4 UNIX compensates for some ACL limitations.

» DCE DFSuses DCE credential s to authorize access to objects in the DCE
DFS namespace. Background daemons lacking DCE Security credentials
may not be able to use the DCE DFS namespace. Processes started by
system daemons (that is, cron(8), inetd(8), rdistd(8)) may be denied
accessto filesin the DCE DFS namespace if they do not have DCE
credentias. For example, attempts to use the commands at(1) or rdist(1)
when the remote files are in the DCE DFS namespace may fail. Thisisan
important security feature of DCE and DFS. See Section 8.5 on page 100
for information on obtaining DCE credentials by using the -k flag with
dce login.

1.7.2 Utility Restriction

If SIA isenabled, the registry information change commands, passwd
(change password), chsh (change shell) and chfn (change finger information)
can alter the information in one of the configured security mechanism
registries.

The OSF DCE chpass utility is not supported by Gradient DCE for Tru64
UNIX. The three commands noted previously provide most functions of
chpass, which is a platform-dependent tool that was originally intended only
as areference implementation.

1.7.3 DIGITAL X.500 Restrictions

Version 3.1 of the DIGITAL X.500 Directory Service programming interface
to the XDS and XOM APIs does not support the Basic Directory Contents
Package (BDCP).

The BDCP permits certain X.500 attribute values to be expressed as OM
objects. Applications using Compag's implementation of XDS must instead
specify the values of the X.500 attribute supported in the BDCP as ASN.1
BER.

An important instance of this restriction occurs when representing attribute
values that are Distinguished Names, for example, when creating an alias
entry with theds _add_entry() routine. You can still create aliases, but not as
described in the OSF DCE Application Development Guide.

The OSF DCE Application Development Guide states that, to add an aias
entry, these two attributes are required in the list of X.500 attributes specified
in the Entry argument to ds add_entry():

DS_A_OBJECT_CLASS = DS_O_ALIAS
DS_A_ALIASED_OBJECT NAME = alias-target-name

When the BDCP is supported, the dias-target-name valueisaDS-DN OM
object. The syntax of this vaue in the Attribute-Value OM Attributeis
OM_S OBJECT.

Chapter 1 Gradient DCE for Tru64 UNIX 25

The current DIGITAL X.500 Directory Service product requires that the
alias-target-name value be supplied as ASN.1 BER, with a syntax of
OM_S ENCODING_STRING in the Attribute-Value OM Attribute.

To encode the alias-target-name from a DS-DN OM object to ASN.1 BER,
compl ete the following steps.

1 Ifthe DS-DN OM object ispublic, make it a OM private object by calling
om_create() and om_put() routines.

2 Call theom_encode() routine to convert the DS-DN OM private object to
an Encoding OM object. Specify ‘OM_BER’ asthe ‘Rules’ parameter to
om_encode() routine. The ASN.1 BER valueisreturned in the Encoding
OM private object.

3 Call theom_get() routineto extract the value. This value can be passed as
the alias-target-name.

You must do the same thing when supplying member names for groups. In
this case, the Entry argument to the ds_add_entry() routine requires these
attributes.

DS_A OBJECT CLASS = DS_O GROUP_OF NAMES
DS_A_MEMBER = member-name

The member-name value must be supplied as an ASN.1 BER value.

This encoding reguirement applies whenever a Distinguished Name is input
as either an attribute value to the ds_compare() routine, or asavaueto be
added to or removed from the ds_modify_entry() routine.

Whenever a Distinguished Name is returned as an attribute value from
ds read(), the application must do the following:

1 Create an Encoding OM private object containing the value to be decoded
by calling om_create() and om_put() routines.

2 Call the om_decode() routine to convert the Encoding OM private object
to aDS-DN OM private object.

Entegrity’simplementation of the XDS APl om_encode() and om_decode()
routines supportsonly DS-DN OM objects. Other types of OM objects are not
supported.

The following example shows how to create an alias without the BDCP. The
example illustrates the steps for performing a synchronous Add Entry
operation.

NOTE: The Invoke id argument is not needed and isset to NULL. The
workspace and bound session arguments are assumed to have been set up
previoudly.

The entry adds the following string as an alias entry in the CDS namespace:
/C=US/0=""Compaq Computer Corporation"/0U=Research/Projects/CDS

This entry, in turn paints to the entry
/C=US/0=""Compaq Computer Corporation'/0U=Research/Projects/DECdns

26 Gradient DCE for Tru64 UNIX Product Guide

This example shows the additional steps required to supply the attribute value
forthe DS A_ALIASED OBJECT NAME attribute if the Basic Directory
Contents Package (BDCP) optional XDS package is not supported.

OM_private_object bound_session; /* Assumed to be externally set up */
OM_workspace workspace; /* Assumed to be externally set up */

OM_private_object name, alias, alias_enc_obj;
OM_public_object alias_enc_string;
OM_value_position desc_count;

OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor

OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor

OM_return_code
OM_return_code

cpub_dn[7];

cpub_rdnO[3];
cpub_rdnl[3];
cpub_rdn2[3];
cpub_rdn3[3];
cpub_rdn4[3];
cpub_avaO[4];
cpub_aval[4];
cpub_avaz[4];
cpub_ava3[4];
cpub_avad[4];

cpub_attr_list[4];
cpub_attri[4];
cpub_attr2[4];
cpub_context[3];

ds_status
om_status

DS_SUCCESS;
OM_SUCCESS;

/* Define the name AVA descriptors */

OMX_CLASS_DESC(

cpub_ava0O[0], DS_C AVA);

OMX_ATTR_TYPE_DESC(cpub_avaO[1], DS_ATTRIBUTE_TYPE,

OMX_ZSTRING_DESC(

OMX_OM_NULL_DESC(

OMX_CLASS_DESC(

OMX_ATTR_TYPE_DESC(

OMX_ZSTRING_DESC(

OMX_OM_NULL_DESC(

DSX_TYPELESS_RDN);
cpub_avaO[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
“CDS™);
cpub_avaO[3]);

cpub_aval[0], DS_C AVA);
cpub_aval[l], DS_ATTRIBUTE_TYPE,
DSX_TYPELESS_RDN);
cpub_aval[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Projects™);
cpub_aval[3]);

Chapter 1 Gradient DCE for Tru64 UNIX

27

OMX_CLASS_DESC(

OMX_ATTR_TYPE_DESC(

OMX_ZSTRING_DESC(

OMX_OM_NULL_DESC(

OMX_CLASS_DESC(

OMX_ATTR_TYPE_DESC(

OMX_ZSTRING_DESC(

OMX_OM_NULL_DESC(

OMX_CLASS_DESC(

OMX_ATTR_TYPE_DESC(

OMX_ZSTRING_DESC(

OMX_OM_NULL_DESC(

cpub_ava2[0], DS_C AVA);
cpub_ava2[1], DS_ATTRIBUTE_TYPE,
DS_A_ORG_UNIT_NAME);
cpub_ava2[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Research");
cpub_ava?[3]);

cpub_ava3[0], DS_C AVA);

cpub_ava3[1], DS_ATTRIBUTE_TYPE,
DS_A_ORG_NAME);

cpub_ava3[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Compaq Computer Corporation™);

cpub_ava3[3]);

cpub_ava4[0], DS_C AVA);

cpub_ava4[1], DS_ATTRIBUTE_TYPE,
DS_A_COUNTRY_NAME) ;

cpub_ava4[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Us™);

cpub_ava4[3]);

/* Define the name RDN descriptors */

OMX_CLASS_DESC(
OMX_OBJECT DESC(
OMX_OM_NULL_DESC(

OMX_CLASS_DESC(
OMX_OBJECT DESC(
OMX_OM_NULL_DESC(

OMX_CLASS_DESC(
OMX_OBJECT DESC(
OMX_OM_NULL_DESC(

OMX_CLASS_DESC(
OMX_OBJECT DESC(
OMX_OM_NULL_DESC(

OMX_CLASS_DESC(
OMX_OBJECT DESC(
OMX_OM_NULL_DESC(

cpub_rdnO[0],
cpub_rdnO[1],
cpub_rdnO[2]);

DS_C_DS_RDN);
DS_AVAS, cpub_ava0);

cpub_rdnl[0],
cpub_rdnl[1],
cpub_rdnl[2]);

DS_C_DS_RDN);
DS_AVAS, cpub_aval);

cpub_rdn2[0],
cpub_rdn2[1],
cpub_rdn2[2]);

DS_C_DS_RDN);
DS_AVAS, cpub_ava?2);

cpub_rdn3[0],
cpub_rdn3[1],
cpub_rdn3[2]);

DS_C_DS_RDN);
DS_AVAS, cpub_ava3);

cpub_rdn4[0],
cpub_rdn4[1],
cpub_rdn4[2]);

DS_C_DS_RDN);
DS_AVAS, cpub_avad);

/* And now the Distinguish Name descriptor list */

OMX_CLASS_DESC(
OMX_OBJECT DESC(
OMX_OBJECT_DESC(
OMX_OBJECT_DESC(

cpub_dn[0], DS_C_DS _DN);

cpub_dn[1], DS_RDNS, cpub_rdn4);
cpub_dn[2], DS_RDNS, cpub_rdn3);
cpub_dn[3], DS_RDNS, cpub_rdn2);

28 Gradient DCE for Tru64 UNIX Product Guide

OMX_OBJECT_DESC(cpub_dn[4], DS_RDNS, cpub_rdnl);
OMX_OBJECT_DESC(cpub_dn[5], DS_RDNS, cpub_rdn0);
OMX_OM_NULL_DESC(cpub_dn[6]);

/* define the first entry attribute descriptor */

OMX_CLASS_DESC(cpub_attr1[0], DS_C_ATTRIBUTE);
OMX_ATTR_TYPE_DESC(cpub_attri[1], DS_ATTRIBUTE_TYPE,
DS_A_OBJECT_CLASS);
OMX_ATTR_TYPE_DESC(cpub_attri[2], DS_ATTRIBUTE_VALUES,
DS_O_ALIAS);
OMX_OM_NULL_DESC(cpub_attrl[3]);

/* define the second entry attribute descriptor */

OMX_CLASS_DESC(cpub_attr2[0], DS_C ATTRIBUTE);
OMX_ATTR_TYPE_DESC(cpub_attr2[1], DS_ATTRIBUTE_TYPE,
DS_A_ALIASED_OBJECT_NAME);
OMX_STRING_DESC(cpub_attr2[2], OM_S_ENCODING_STRING,
DS_ATTRIBUTE_VALUES,
NULL, 0); /*Do dynamic fix later*/
OMX_OM_NULL_DESC(cpub_attr2[3]);

/* and now the attribute descriptor list */

OMX_CLASS_DESC(cpub_attr_list[0], DS_C_ATTRIBUTE_LIST);
OMX_OBJECT_DESC(cpub_attr_list[1], DS_ATTRIBUTES, cpub_attrl);
OMX_OBJECT_DESC(cpub_attr_list[2], DS_ATTRIBUTES, cpub_attr2);
OMX_OM_NULL_DESC(cpub_attr_list[3]);

/* create the OM private object: name */

om_status = om_create(DS_C_DS DN, OM_FALSE, workspace, &name);

/* Copy the attribute list from the cpub_dn public object into */
/* the name private object */

om_status = om_put(name, OM_REPLACE_ALL, cpub_dn, 0,0,0);

/* create the OM private object: alias */

om_status = om_create(DS_C DS DN, OM_FALSE, workspace, &alias);

/* For brevity in this example we reuse the cpub_dn public object */
/* for the alias target name by fixing up one of its descriptors. */

OMX_ZSTRING_DESC(cpub_avaO[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"DECdns");

Chapter 1 Gradient DCE for Tru64 UNIX

/* Copy the attribute list from the cpub_dn public object into */
/* the alias private object. */

om_status = om_put(alias, OM_REPLACE_ALL, cpub_dn, 0,0,0);

/* Additionally encode the alias private object */

om_status = om_encode(alias, OM_BER, &alias_enc_obj);

/* Extract the actual encoding string from the encoded object */

om_status = om_get(alias_enc_obj, OM_NO_EXCLUSIONS, 0, OM_FALSE,
0, 0, &alias_enc_string, &desc_count);

/* create the OM private object: entry */

om_status = om_create(DS_C_ATTRIBUTE_LIST, OM_FALSE, workspace,
&entry);

/* Fixup the cpub_attr_list to hold the encoding string */

OMX_STRING_DESC(cpub_attr2[2], OM_S_ENCODING_STRING,
DS _ATTRIBUTE_VALUES,
alias_enc_string->value.string.elements,
alias_enc_string->value.stringngth);

/* Copy the attribute list from the cpub_attr_list public */
/* object into the entry private object */

om_status = om_put(entry, OM_REPLACE_ALL, cpub_attr_list,
0, 0, 0);

/* Call the Add Entry function using entry as a parameter */

ds_status = ds_add_entry(bound_session, DS_DEFAULT_CONTEXT, name,
entry, NULL);

if (ds_status == DS_SUCCESS)

{

}

else

{
}

printf(""ADD ENTRY request was successful\n");

printf(""ADD ENTRY request failed\n");

CHAPTER 2

Interoperability and Compatibility

2.1 Overview of Compatibility with Other DCE Systems

Gradient DCE for Tru64 UNIXis based on OSF DCE Release 1.2.2. This
product provides source-level runtime compatibility with DCE systems from
other vendors for applications that conform to the OSF DCE Application
Environment Specification (AES).

2.2 Overview of Interoperability with Other DCE Systems

Gradient DCE for Tru64 UNIX provides interoperability with DCE systems
from other vendors as long as the implementations of DCE on those systems
conform to the OSF DCE Application Environment Specification (AES).

2.3 DCE DFS Interoperability and Compatibility

Gradient DFSfor Tru64 UNIX is a64-hit implementation of OSF DCE
Release 1.2.2. DFS, capable of supporting fileset sizes larger than 2 GB. Itis
compatible with the Cray 64-bit implementation of DFS.

Because most 32-hit systems cannot handle fileset sizes larger than 2 GB,
operationsinvolving these large filesets can produce unpredictabl e results.
Take measures to prevent fileset interactions between 32-bit and 64-bit file
serversin your environments. One approach is to avoid mixing 32-bit and

64-bit file serversin your environments.

2.4 CDS and DECnet/OSI DECdns Compatibility

The Compaq Distributed Name Service (DECdns) and the DCE Cell
Directory Service (CDS) can coexist in a DECnet/OS| network, but they
cannot interoperate. You can run both CDS and DECdns servers on the same
machine, and you can build applications that make calls to both APIs. The
CDS and DECdns libraries are maintained separately, as are the namespaces.

2.5 Interoperability with DECnet Phase IV and DECnet/OSI

To use Gradient DCE for Tru64 UNIX over DECnet/OSI, you must use
DECnet in Phase IV compatibility mode. DECnet Phase IV compatibility
mode consists of assigning a Phase IV node address to your system. A Phase

32 Gradient DCE for Tru64 UNIX Product Guide

IV-compatible address is a DECnet/OS| address that falls within Phase IV
limits: the area number isless than 63, and the node I|D number isless than
1023. For acomplete explanation of Phase IV compatibility mode, refer to the
DECnet-ULTRIX Installation and Transition Guide.

Before you start or stop DECnet/OSl, you should first stop the DCE services.
Then, after you start or stop DECnet, restart the DCE services. Use the
dcesetup command clean, as described in the system configuration chapter, to
stop the DCE services.

Enter the following command sequence to stop and start DECnet and DCE
Services.

» dcesetup clean
» /etc/decnetshutdown or /etc/decnetstartup
= dcesetup start

You also have to stop and restart any DCE server applications that are
running.

2.6 Interaction Between DCE DTS and DECnet/OSI DECdts

When you install Gradient DCE for Tru65 Unix, DTS is automatically
installed. Normally, DTS synchronizes system clocks with other systems that
use the RPC transport. The RPC transport runs on Tru64 UNIX and on other
DCE systems. In addition, you can choose to synchronize system clocks with
hosts running DECnet/OSI DECdts. In this section, we refer to the DTS that
runs on Tru64 UNIX asDCE DTS.

The benefit of allowing DCE DTS to synchronize with DECnet/OSI DECdts
is that the DECnet/OS| DECdts servers can be connected to time sources to
which the DCE DTS servers do not have access. In thisway, resources can be
shared across a network.

One drawback to this scheme stems from DECnet/OS| DECdts servers using
DECnet protocols to communicate with other DTS entities, such as servers
and clerks. These protocols provide aless secure environment than the RPC
protocol because the servers are unauthenticated. For example, any node can
become a DECnet/OS| DECdts server at any time and could maliciously
broadcast invalid times to other DECnet/OS| DECdts servers. Servers using
the DECnet protocols accept and propagate this time around the network.
Servers using RPC do not accept time from a server unless the server’s
authenticity is verified.

If your network must use authenticated connections, do not allow DCE DTS
entities to accept time from DECnet/OS| DECdts servers. If your network can
tolerate a small security risk, then consider allowing this interoperation.

When you answer y to the following configuration question, you are
accepting time from DECnet/OS| DECdts servers.

Should this node accept time from DECnet/0SI DECdts servers? (y/n) [n]:

To verify whether your node is accepting time from DECnet/OS| DECdts
servers, enter the following command:

% dtscp show all characteristics

Chapter 2 Interoperability and Compatibility 33

L ook for the command output line that says:
DECnet Time Source = FALSE

If you want to allow a DCE DTS entity to accept time from DECnet/OSI
DECdts servers after you have configured the cell, you must reconfigure or
use the dtscp set decnet time sour ce command, as follows:

% dtscp set decnet time source true

To prevent a DCE DTS entity from synchronizing with DECnet/OS| DECdts
servers, you must reconfigure or use the dtscp set decnet time source
command, as follows:

% dtscp set decnet time source false

NOTE: Falseisthe default value for the decnet time sour ce attribute.

The nodes on your network can have different DECnet time source settings.
For example, you may want to allow some DCE DTS clerks to accept time
from DECnet/OS| DECdts servers, while ensuring that other DTS clerks
receive time from DCE DTS servers only. This scheme works because DTS
clerksreceive time, but they do not propagate time to other DTS entities.

However, if even one DCE DTS server can accept DECnet/OS| DECdtstime,
the DECnet time eventually propagates to other DTS entities throughout the
cell. Theresult isthe sameasalowing all DCE DTS entitiesin acell to accept
DECnet/OS| DECdts time.

DCE DTS servers also give time to DECnet/OS| DECdts clients. If you have
three or more Compag DCE DTS servers and a DECnet/OS DECdts client on
your LAN, ensure that either the DCE DTS servers have accessto atime
provider or that at least one DCE DTS server has the decnet time source
attribute set to tr ue wherever the DECnet environment has accessto atime
provider. Otherwise, the three DCE DTS servers do not have an accurate time
base and can give incorrect time information to a DECnet client.

You can use the DTS dtscp show command to display the names and values
of the following specified attribute groups:

Any local serverson aL AN segment.

Any DECnet local serverson aLAN segment.

Any DCE local serverson aLAN segment.

Any global serversin the network.

Any DECnet global serversin the network.

Any DCE global serversin the network.

= The courier role of your server for both DCE DTS and DECnet/OSl
DECdts environments.

» Whether your server is running as a DECnet/OSI DECdits courier.

= Whether your server isrunning asa DCE DTS courier.

If you have DECnet/OSl installed on your system, you can also use the
DECnet/OSI NCL commands to manage the DCE DTS.

34 Gradient DCE for Tru64 UNIX Product Guide

2.6.1 Changing the Default for DCE DTS to RPC

DCE DTSisinstalled by the dcesetup configuration program at system
startup. Gradient DCE for Tru64 UNIX uses RPC to transport timing
synchronization. Former versions used DLI, afeature of DECnet. To return to
accepting time synchronization on DLI, you can change the default value in
the dcesetup configuration program or you can issue a dstd command with
the new -m option to override the defaullt:

dtsd -mAccept time synchronization messages on DLI only.

DLI (DataLink Interface) is amore specific reference than DECdts. DECdts
can communicate through DECnet and DLI. DLI is narrower in meaning and
not synonymous with DECdts.

CHAPTER 3

Security Integration Architecture

3.1 Overview of SIA

The Security Integration Architecture (SIA) is aframework that supports
multiple security mechanisms on Tru64 UNIX. All configured security
mechanismsthat run on the Tru64 UNIX operating system run under the SIA.
The SIA alowsyou to layer various local and distributed security
mechanisms onto Tru64 UNIX with no modification to either the
security-sensitive commands (such as login, su, and passwd), or the
application programming interface (API) routines that obtain password or
group entries, particularly getpwnam and getgrgid.

The Tru64 UNIX operating system provides two local security mechanisms:
Berkeley Standard Distribution (BSD) security and C2 class security. The
default Tru64 UNIX configuration has BSD security enabled.

DCE Security, provided by OSF DCE, is a distributed network security
service based on secret-key technology. It provides secure communications
(authentication and data protection) and controlled access to resources
(authorization) in the distributed environment. Within a DCE cell, DCE
registry databases on the Security server nodes (where the Security server
daemons, secd, run) contain information about principals, groups,
organizations, accounts, and so forth. The local system administrator can
create a DCE password override file, /opt/dcelocal/etc/passwd_override, to
exclude people from using the local machine, to establish alocal root
password, or to tailor the local user environments.

3.2 Benefits of SIA

Thelocal system administrator can configure DCE security to use the local
SIA facility. Doing so permits users to establish alocal terminal session and
DCE credentials with a single login command and password.

Enabling DCE SIA aso integrates DCE security with the local security
mechanism. In addition, Tru64 UNIX account-related functions (such as
getpwent) can display information from both the local and DCE registries.

DCE SIA alowsyou to use the DCE registry asthe sole repository for all user
accounts. This makes account maintenance easier because there is one central
DCE registry to manage. This means that you can log in to any DCE client
system if you have a DCE account, even if you do not have aloca account on
that system.

36 Gradient DCE for Tru64 UNIX Product Guide

When a DCE system isinitially configured with SIA support, you may want
to use the passwd_import utility to migrate local accounts to the DCE
registry. Account information stored on alocal system in /etc/passwd and /
etc/group can selectively be merged into the DCE registry. The
passwd_import command with the check option, -c, displays alisting of the
differences between the local registry and the DCE registry. After the
command is executed, the system administrator can decide what datato
merge. Having run passwd_import to create a brand new account in the DCE
registry, you must then modify the account with rgy_edit to assign a
password and then enable the account for DCE logins. Refer to the OSF DCE
Administration Guide — Core Components for more information on
passwd_import.

3.3 Using SIA

Thelocal security mechanism for Tru64 UNIX aways uses SIA. The system
administrator can select DCE SIA when the machine is configured in a DCE
cell. The dcesetup utility asks the administrator whether DCE SIA should be
enabled. The default response is to enable SIA. See the Gradient DCE for
Tru64 UNIX Installation and Configuration Guide for further instructions.
Once you have configured a machine in a DCE cell, you can run dcesetup at
any time to enable or disable DCE SIA.

When dcesetup enables DCE SIA, it modifies asystem SIA configuration
file, /etc/sia/matrix.conf. File matrix.conf is afunction dispatch table used
by all Trué4 UNIX security-related commands (such as login and su).
Security commands call subcommands, which arein turn dispatched to one or
more security mechanisms that appear in the table. Users should not modify
matrix.conf, which isatext file, unless they need to implement a highly
specialized security mechanism.

When you enable or disable SIA using dcesetup, you should reboot your
machine. This ensures that account attribute inconsi stencies are not
introduced into system daemons and applications running at the time this
DCE modification takes place.

When SIA is enabled and one or more serversin the cell are reconfigured, the
client systems must also be reconfigured. Otherwise, DCE services cannot
operate.

3.4 Using the SIA Configuration Program

The SIACFG configuration program hel ps system administrators to manage
their SIA environments. Administrators can use SIACFG to display and
resolve inconsistencies between UNIX account information stored in the
DCE/Kerberos user database and corresponding information stored in the user
database of the local machine.

SIACFG aids administrators in an environment where DCE SIA has been
selected to control system logon based on shared/network user configuration
data (that is, passwords, uids, group memberships, and gids), and where the
administrator may not have the option of discarding an existing local user
account database, replete with its own uid assignments, group memberships,
etc.

Chapter 3 Security Integration Architecture 37

Thebasic function of SIACFG isto compare each account and group defined
in the local user database to determineif an entity with the same name and
type exists in the DCE registry. If amatch isfound, a more detailed
comparison is performed to determine if there are any inconsistencies (for
example, same name but different uids, or same name but different
membership lists) between the corresponding entities.

When an inconsistency is detected, SIACFG provides the administrator with
an opportunity to resolve the conflict by designing an override entry. (See
passwd_override(5sec) in OSF DCE Command Reference for a description
of overrides and their format.)

When aloca account or group has no analogous entity in the registry, the
administrator will be asked to choose whether the account or group should
have local-only or cell-wide/public significance. If local-only is chosen,
SIACFG will add an override entry to the plan. When published, the plan will
insure that the local entity remains distinct from any equivalently named and
typed entity that might be added to the DCE registry. If the administrator
chooses cell-wide, SIACFG will add directions to the plan to create a
corresponding entity in the DCE registry.

For information on activating SIACFG, see the Gradient DCE for Tru64
UNIX Installation and Configuration Guide.

3.5 How DCE Security Affects the Security-Sensitive Commands and Routines

Enabling DCE SIA affects three areas of security:

» Login-related commands
» Registry information change commands
» Registry information inquiry routines

The following sections discuss these commands and routines.

A log file (Jopt/dcelocal/var fadm/secur ity/sialog) briefly logs the history of
executing DCE SIA routines and the configured security mechanisms. You
can use thisfile for troubleshooting or diagnosing security-related problems.
You should clean up thisfile occasionally.

3.5.1 Login-Related Commands

SIA isolates the security-sensitive commands (login, su, ftp, xdm, lock,
dxsession, telnet, rtools, and dtools) from the specific security mechanisms
which eliminates the need to modify them for each new security mechanism.
When DCE SIA isenabled in the matrix.conf file, SIA invokes DCE routines
in response to these commands, to authenticate the login session. The
following sections explain the login and the su commandsin more detail. The
other commands are similar to the login command.

38 Gradient DCE for Tru64 UNIX Product Guide

3.5.1.1 login Command

When DCE SIA is enabled, using the login command to start a session
invokes both the local security mechanism and DCE. If the login command
acceptsthe password you enter, you have DCE credentials and are also logged
in to the local security system.

NOTE: You may be logged in to the local security system even if you have no
account on the local system, or if you supplied avalid DCE password that is
not your local password.

If you have identical account namesin both the local BSD registry and the
DCE registry, account attributes in the DCE registry override those in the
local registry. In other words, DCE account attributes supersede attributesin /
etc/passwd and /etc/group.

If, during login, DCE security rejects your password, the local security
mechanism still attempts to validate the login. If your nameisin the local
account database and your password isvalid, you are logged in to the local
system, but without DCE credentials; otherwise, the login attempt fails,

Once you have successfully logged in to DCE, ashell variable called
KRB5CCNAME iscreated to point to the current session’slogin context and
ticket cache. This variable points to a filename, such as the following:

/opt/dcelocal/var/security/creds/dcecred _68091c00

Help prevent misuse of credentials by requiring users to remove their
credentias (by running kdestroy) before terminating their login sessions. If
your login shell is csh, you can insert the following lines as part of your
logout profile:

if (“printenv KRB5CCNAME® != "™") then

echo "Removing login context and ticket cache..."
kdestroy

endif

If you run ksh, you can add the following line to your .profile:

trap “"echo Removing login context and ticket cache..; kdestroy® EXIT

3.5.1.2 The su Command

DCE does not support a superuser in its environment. When you issue an su
command on a Trué4 UNIX system with DCE turned on, four results are
possible. Table 3-1 summarizes these combinations

NOTE: User 1 and user 2 are nonprivileged accounts.

Chapter 3 Security Integration Architecture 39

Table 3-1: User Combinations

Combination Current UID New UID
1 userl user2
2 userl root
3 root user2
4 root root

The following paragraphs discuss each combination.

Combination 1: Userl to User2

You are currently user 1 and may or may hot have DCE credentials. You issue
an su user 2 command and are prompted for a password. The username user 2
and the password are presented to DCE Security. If they pass the security
check, you get anew processwith UID and DCE credentials of user 2. If they
do not pass the DCE security check (see Section 3.5.1 on page 37), the
username and password are presented to BSD security. If they pass the BSD
security check, the new process has user2's UID but does not have DCE
credentias. If they do not pass the BSD security check, the su command fails.

Combination 2: Userl to Root

You are currently user 1 and may or may not have DCE credentials. You issue
an su or su root command and are prompted for a password. The username
root and the password are presented to DCE Security. Because the
passwd-override file overridesthe root account, you are not allowed to log in
to DCE root. However, you get the principal credentials of the local host
machine (/.:/hosts/<hosthame>/self) after you pass the BSD security check
for theroot account.

Combination 3: Root to User2

If you only use BSD security, ho password is required because root has the
power to become anyone. Thistransformation is not possible in a DCE
environment, because root (on this system) does not have any special
privileges and cannot be permitted to become any principal in the cell. In this
case, you are currently root and may or may not have DCE credentials. You
issue an su user 2 command and are prompted with the following message:

(DCE) Enter DCE password to obtain DCE credentials,
(DCE) or press return for none.
Password:

The username user 2 and password are presented to DCE Security. If they pass
the DCE security check, you get a new process with the UID and DCE
credentials of user2. If they do not pass the DCE security check, or if you
press <Return> at the prompt, the username user 2 and password are
presented to BSD security. Because you are root, they will passthe BSD
security check and the new process has user 2's UID but does not have DCE
credentials.

40 Gradient DCE for Tru64 UNIX Product Guide

Combination 4: Root to Root

In this case, you are also prompted for a password, asin case 3. The username
root and the password are presented to DCE Security. Because the
passwd-overridefile overrides the root account, you are not allowed to log in
to DCE root. However, because you are root, you pass the BSD security
check, and the new process has a UID of zero and DCE credentias for the
local host machine principa (/.:/hosts/<hosthname>/self).

3.5.2 Registry Information Change Commands

Theregistry information change commands — passwd (change password),
chsh (change shell), and chfn (change finger information) — change
information in one of the configured security mechanism’s registries. These
commands invoke SIA routines, which prompt for a choice of the configured
security mechanisms. In the following example, DCE SIA and BSD security
are enabled.

You are registered with the following security mechanisms

1 DCE
2 BSD

Select ONE item by number:

If you choose option 1 (DCE), SIA displays the following message:

You have selected:
DCE

SIA then invokes DCE routines that allow you to make changesin the
passwd_overridefile, if your requested information exists, or in the DCE
registry. The system displays the foll owing message:

You can change information in passwd_override or DCE registry

1 passwd_override file
2 DCE registry

Select ONE item by number:

Therest of thedialog issimilar to the BSD dialog. When DCE SIA isenabled,
there is no practical reason to maintain identical passwords in both the local
and DCE security registries. A login succeeds when avalid DCE account and
password are presented if the host remains configured as a DCE client and the
DCE security service isavailable. In any event, presenting avalid local
password always results in a successful local login.

The commands passwd, chsh, and chfn provide most functions of the OSF
DCE utility chpass, a platform-dependent tool intended as a reference
implementation from OSF. This product does not provide chpass.

The commands adduser, removeuser, and vipw do not affect the DCE
registry regardless of whether DCE SIA is enabled.

Chapter 3 Security Integration Architecture 41

Refer to the passwd_override(5sec) reference page in the OSF DCE
Command Reference for details of the passwd_override command.

3.5.3 Registry Information Inquiry Routines

There are ten registry information inquiry routines:

getpwent
getpwuid
getpwnam
setpwent
endpwent
getgrent
getgrgid
getgrnam
setgrent
endgrent

These API calls also include their reentrant routines, if they exist. For these
registry information inquiry routines, SIA invokes the configured security
mechanism routines in the order in which they are placed in the SIA
configuration file (matrix.conf file) until it finds the needed information. If
none of the configured mechanisms fulfills the request, the get call fails. For
example, the following line existsin the matrix.conf file:

siad_getgrnam=(DCE,/usr/shlib/libdcesiad.so), (BSD, libc.so)

The getgrnam (get agroup entry by its name) call first callsthe DCE
siad_getgrnam routine to try to extract the requested information from either
the passwd_overridefile, if it exists, or the DCE registry. If it succeeds, the
getgrnam call returns the DCE information in its return group structure. If
DCE fails, it continues to call the BSD siad_getgr nam routine to get the
needed information. If it succeeds, the getgr nam routine returns the BSD
information in its return group structure. If the getgr nam routine does not
find the requested information in either DCE or BSD, it returns afailure; that
is,aNULL pointer.

Operations that depend on registry information can behave more reliably
when you maintain consistency between names that exist in both the local
registry and the DCE registry. For instance, if a user account isregistered in /
etc/passwd and DCE, consistent password information, default shell, and
similar information lets userslog in using the same password even if the DCE
registry is not available.

Consistency between group names in the local registry and the DCE registry
isaso desirable. Theinitial DCE cell configuration procedure declares
several standard UNIX group names (such as system, bin, and kmem) in the
DCE registry.

Because DCE SIA has precedence in the SIA matrix, acall to getgrnam() for
the bin group extracts the group attribute record from DCE rather than /etc/
group. This has asubtle effect on such programs as newgr p, which call
getgrpnam() implicitly. In the example % newgr p bin, the membership list
for the bin group is consulted to determine if the primary group of the caller

42 Gradient DCE for Tru64 UNIX Product Guide

can be set to bin. However, newgr p will simply fail if membership in the bin
group is denied in the DCE bin record, even though it is granted in /etc/

group.

NOTE: The su command does not call getgrnam() to determine membership
in the system group. Therefore users can be granted privilege to su root
simply by adding them to the system record in /etc/group. Also, nhote that the
attribute values of three groups (system, bin, and kmem) are further qualified
by their presence, by default, in the group_overridefile. See Section 3.9.2 on
page 47 for more information.

UNIX account functions such as finger and getpwent also get their attribute
data from the DCE registry. Consequently, attributes such as default directory
and shell must be properly maintained in the local and DCE registries. Any
unintentional inconsistencies between the two registries can be troublesome.
Administrators must also be careful not to inadvertently break alocal account
by creating an identical account name in the DCE registry for another user

el sewhere on the network.

3.6 Using DCE SIA With the Tru64 UNIX Enhanced Security Option

This section explains special considerations for using the DCE SIA feature
with the Tru64 UNIX Enhanced Security option.

The Tru64 UNIX Enhanced Security option, also known as C2 security, isthe
stricter of two security mechanisms supplied with Tru64 UNIX. The other,
BSD, is supplied with the base operating system and is enabled by default.
Enhanced Security is offered as an optional product, and is documented in the
Tru64 UNIX Security Manual.

Enhanced Security derives much of its value from a more conservative
approach toward security management. When DCE uses Enhanced Security
via SIA, it operates under restrictions that affect ease of use for the DCE user
and administrator. This added inconvenience is the price of amore secure
system.

DCE SIA under Enhanced Security is best described by a comparison with
BSD security. Table 3-2 compares therelative SIA advantages available when
the underlying security mechanism is Enhanced Security or BSD security.

Table 3-2: Benefits of Using SIA with BSD Security or Enhanced Security

SIA BSD Security SIA Enhanced Security (C2) Option
BSD security enabled Strict C2 security enabled
Integrated login Integrated login (password consistency must be maintained

between local and remote (DCE) registries).

Local and remote registries Manua synchronization of local and remote (DCE)
synchronized with registry required. (the passwd_export utility is not
passwd_export currently available)

Local login even without an | Local login requires an account in the local registry
account in the local registry

Chapter 3 Security Integration Architecture 43

DCE SIA offers several advantages which differ somewhat depending on
whether the underlying security mechanism is BSD security or Enhanced
Security.

= Integrated login gives a user both the local login context and the DCE
network credentials simultaneoudy when performing aUNIX login. When
the underlying security mechanism is Enhanced Security, additional
administrative action is usually necessary to enable integrated login. This
action will be described shortly.

= A loca login to participating hosts.

While SIA offers both of these advantages with either BSD security or
Enhanced Security, there are some administrative differences:

= With DCE SIA and BSD security, user account information can reside
solely in the DCE Security Service registry. Account information need not
be maintained in a host’s local registry. This provides a significant
administrative advantage as all accounts can be maintained in one
convenient location rather than on separate hosts with separate login
requirements. Integrated login and local login work because thelocal DCE
SIA mechanism overrides the local registry.

= The BSD security mechanism allows the use of the passwd_export and
passwd_import utilities to move account information between the local
registry and the DCE registry. If account information is also maintained in
the local registry, consistent passwords, UIDs, GIDs, and so on must be
maintained in both the local and DCE registries.

= With DCE SIA and enhanced security, consistent user account information
must be maintained in both the DCE Security Service registry and the
host’slocal registry. Section 3.5.3 on page 41 described the need for
consistent information for routines that rely on DCE registry information.
Similarly, consistent passwords must be maintained between the DCE
registry and the local registry or integrated login will fail.

= Thecurrent version of the Enhanced Security mechanism does not support
the use of the passwd_export or passwd_import utilities and so account
information must be manually copied between DCE and participating
hosts.

Aswith DCE SIA and BSD security, SIA does not provide an
all-encompassing change password mechanism for SIA. But with Enhanced
Security, the local login mechanism must succeed, so if passwords are
inconsistent, integrated login is not achieved. When users run the passwd
utility to change their passwords, the system prompts the user to select one or
the other registry mechanism. The user must run passwd twice, to change the
password in both places. If passwords are inconsistent, the user may use the
local password to log in.

44 Gradient DCE for Tru64 UNIX Product Guide

3.7 Performance Considerations for DCE SIA

DCE SIA isaconvenience feature that greatly simplifies account
administration and the acquisition of DCE credentials. However, itsimpact on
the performance of some UNIX security functionsisworth noting in certain
cell and host configurations. In generd, performanceis constrained by a
characteristic of DCE SIA-enabled systems: whenever aBSD security
function is called, transparent DCE registry lookups can occur. Non-DCE
applicationsthat run on the host can perform DCE registry lookups unawares,
with the result that certain functions (getpwent() and getgrent() in
particular) may take noticeably longer.

3.7.1 Performance of getpwent() and getgrent() Functions

DCE SIA affects the speed of the getpwent() and getgrent() functions.
When DCE SIA is not enabled, these operations result in asimple lookup in
the /etc/passwd and /etc/group files. When DCE SIA is enabled, each
invocation of these routines resultsin at |east three process context switches, a
bind operation to aregistry (that may be remote), and aregistry lookup. If
performanceiscritical, an application or UNIX utility may need to be
modified to get this data directly from the UNIX files, unless DCE registry
datais specifically sought.

3.7.2 The Impact of DCE SIA on Login Performance

The UNIX login function, which isvirtually instantaneous without DCE SIA,
now takes from between 2 to 5 seconds. This delay affectsloginsto all
accounts on a DCE SIA enabled host, even those that do not use the DCE
registry. In most cases, users will not care because the loginisasingle
operation performed once or twice aday.

However, some server applications, such as ftp, perform a system login as a
matter of course and for every client connect. If a server application performs
many hundreds of logins an hour, the performance of the application and the
system itself may degrade noticeably.

DCE SIA is not recommended on hosts where applications make extremely
heavy use of system login and registry query operations (such as getpwent()
and getgrent()). When administrators want such applications to use the DCE
registry, they can copy the DCE account and group datato the local system
registry by using the DCE passwd_export utility. The applications can then
get the DCE data from the local registry.

3.7.3 UID Management

When you create a DCE cell, you are responsible for managing the UIDs for
that cell. Having incompatible UIDs between the DCE registry and the local
password file is not a problem until either DCE DFSis available or DCE SIA
isenabled. Theinitial cell creation does not use UIDs that are already in use
on the local system. For its default accounts, DCE SIA uses UIDs 30to 35 if
they are available. Other DCE implementations may use accountsin the range

Chapter 3 Security Integration Architecture 45

of 100 to 105. After cell creation, subsequent accountsin the DCE registry
use the next available UID. The minimum UID value used is controlled by the
rgy_edit command.

3.7.4 Executables in /shin

3.7.5 rlogin

The executablesin the /shin directory are statically linked. When DCE SIA is
enabled, executables such as/shin/ls may not properly trandate UIDs and
GIDs. To avoid this problem, use the executablesin the /bin directory, which
are dynamically linked with the libc.so shareable image. You can do this by
putting /bin before /sbin in your PATH environment variable.

NOTE: The root account has /shin its PATH by default.

During rlogin to a host with DCE SIA enabled, if the incoming account has
an entry in the .rhostsfile of the target account, no DCE credentials are
obtained and a warning message is displayed.

If the user’s home directory is specified in the DFS namespace, access to that
directory may be denied.

3.7.6 Changing root Password

If you change a machine’s root password, you should run the passwd
command twice, first to change it in the BSD location, /etc/passwd, then to
changeit in the DCE registry location, /opt/dcel ocal/etc/passwd_override. If
you changeit in /etc/passwd but not passwd_override, you will seeaDCE
informational message, when you attempt to enter the su command, that says
“Unable to validate/certify identify”. If you changeit only in
passwd_override, the new password does not take effect.

3.7.7 Credentials Obtained for Intercell Login are Poorly Protected

When auser logsin asaprincipal of aforeign cell to a machine running DCE
SIA (or any other integrated login system that performs alocal system login
on behalf of aDCE user), hisor her UID identity on that machineisthat of the
Kerberos cross cell proxy principal created for the foreign cell. If multiple
users log in to the same machine from the same cell, the local credential files
created for each are owned by the same UID. Asaresult, users from the same
cell can tamper with or borrow the credentials of others. Because exclusive
control of one's credential filesis an important part of DCE security, this
behavior may be unacceptable for some customers running multicell
environments who have strict security requirements.

46 Gradient DCE for Tru64 UNIX Product Guide

NOTE: This problem does not affect the trustworthiness of intercell credentials,
only those obtained during integrated login where other users from the same
cell are not trusted. Administrators can disable intercell login from aforeign
cell by setting the valid flag of the foreign cell principal to be not valid for
login.

3.8 Performance Considerations for Registry Replication

Registry replication is amethod of achieving robustness and redundancy in
DCE cdlls. If one registry becomes unavailable, users or applications can rely
on other replicas for security information. Unfortunately, replication does not
always improve response, as DCE presently has no intelligent algorithm for
selecting the fastest replicato bind to.

During login, the DCE runtime may choose to bind to areplicain another
LAN (inthe case of amulti-LAN cell), or time out waiting to connect to a
replicathat is not operational. With DCE SIA enabled, this behavior may
present unacceptable delays in such routine UNIX shell commands as % Is-I.

You might consider the following guidelines and suggestions as ways to
minimize replication-related latencies:

= You must actively monitor and maintain the availability of all replicasin
the cell. A sound strategy is to have two hosts per LAN that serve as
dedicated security replica servers, and to have a process that constantly
monitors the replicas to sense their availability. Because some registry
operations will bind first to aread-only replica, amulti-LAN cell should
have at least one additional read-only replica on the LAN that has the
master replica.

= If thecell spans LANS, be aware of latencies that may be introduced if a
user in one LAN attempts to bind to and operate on a replicain another
LAN. You can avoid the CDS overhead of binding to areplica, and offer a
specific list of candidate replicas by inserting bindingsin the pe_sitefile.
This technique requires administrative attentiveness and is not generally
recommended, but may be useful in some situations. Normally the pe_site
fileisused only during configuration time, to facilitate accessto aregistry
server without reliance on CDS. It contains a hard coded list of registry
bindings, one being selected randomly during asite bind. Use of thisfileis
activated by setting the BIND_PE_SITE environment variable, and the
effect isonly for the process in which the variable is declared. A pe _site
fileis created when a host is configured, and placed in /opt/dcelocal/etc/
security.

= Should you choose to definethe BIND_PE_SITE environment variable,
as aregular DCE management strategy, you should monitor the status of
serverslisted inthe pe_sitefile. If aclient goesto the pe_sitefileandis
unable to bind successfully, the client will simply fail to bind. Thereisno
fall-through to other registry serversthat may be available.

Chapter 3 Security Integration Architecture 47

3.9 Group Override and the group_override File

This section describes how to use the group_override file and its effect on
local data.

3.9.1 Use of /opt/dcelocal/etc/group _override

Whenever aDCE host isinitially configured, agroup_overridefileiscreated
automatically in the /opt/dcelocal/etc directory. This file contains override
GIDsfor the bin and kmem groups. Its purpose is to correct GID

inconsi stencies between /etc/group on Tru64 UNIX systems and the registry
for these standard UNIX-style group names. Without this adjustment, a host
running DCE SIA reports incorrect group names for these standard group
UIDswith thels\ -I command and produces other undesirable effects.

3.9.2 Effect of Local Override on Group Data

The new group override feature may affect local system routines, such as
groups and Is, that use group name attributes. The local group_overridefile
may override membership and GID attributes for group names stored in the
registry. System routines such as chgr p, which confer access rights based on
group membership, assign rights according to the following rule:

A user is given membership in agroup in one of three ways:

= When granted in /etc/group and the group hame does not appear in the
registry

= When granted on the group’s member list in the registry and no explicit
group_overridefile entry exitsto prevent it

= When agroup override entry for a given group lists the user as a member

3.10 Additional Information

The following books provide more information about SIA and managing
security registries:

» DIGITAL UNIX Guide to System Administration. This book provides a
detailed explanation of SIA.

» OSF DCE Administration Guide — Core Components. The DCE Security
Service part provides information on performing routine maintenance and
importing UNIX accounts to DCE.

» OSF DCE Command Reference. This book contains reference pages for
passwd_import(8sec), passwd_export(8sec), and
passwd_override(5sec).

CHAPTER 4

Introduction to the
DCE Directory Service

4.1 Overview of DCE Directory Service

Distributed processing involvesthe interaction of multiple systemsto do work
that is done on one system in atraditional computing environment. One
challenge resulting from this network-wide working environment is the need
for auniversally consistent way to identify and locate people and resources
anywhere in the network.

The DCE Directory Service makes it possible to contact people and to use
resources such as disks, print queues, and servers anywhere in the network
without knowing their physical location. The directory serviceis much like a
telephone directory assistance service that provides a phone number when
given a person’s name. Given the unique name of a person, server, or
resource, it can return the network address and other information associated
with that name.

The DCE Directory Service stores addresses and other relevant information as
attributes of the name. For example, attributes can contain the name of an
organizational unit, such as European Sales; alocation, such asthe first floor
of Building A; or atelephone number. Users can search for a name by
supplying one or more of its attributes. For example, given the search criteria
of John Smith and Chicago, the directory service could produce alist of
telephone numbers for users in Chicago named John Smith.

NOTE: Search capabilities are currently limited to the global part of the DCE
Directory Service environment.

4.2 How the DCE Components Use the DCE Directory Service

The DCE Directory Serviceisafundamental servicethat applications canrely
on and use to their advantage. This section describes how other DCE
components use the DCE Directory Service.

The DCE remote procedure call (RPC) interface facilitates the development
and use of distributed applications that follow a client/server model. In the
RPC model, clients are programs that make remote procedure calls, and
servers are programs that carry out the procedures. The DCE RPC software
storesinformation in the directory service about the addresses of RPC servers
and the interfaces they support.

50 Gradient DCE for Tru64 UNIX Product Guide

When an RPC client wants to make acall to a particular server, it can query
the directory service for theinformation necessary to contact that server. If the
client wants to access a specific resource that is named in the directory
service, it can query for that specific name. If a client application knows the
type of service that it wants, such as C compilers, printers, or employee
information, but does not know the address of a specific server, it can also use
the directory serviceto find that information.

The DCE Security Service, which verifies the identity of users when they log
in, uses the directory service to store the addresses of its authentication
servers.

The Distributed File Service (DFS) provides alocation service for filesets
(logical groups of files) so that users can access remote files asif they are on
the local system. DFS uses the DCE Directory Service to find out how to
contact its fileset location servers.

The Distributed Time Service (DTS) isresponsible for synchronizing system
clocks in the network. Synchronized clocks are important to any distributed
application that needs to keep track of the order in which events occur across
multiple systems. DTS uses the DCE Directory Serviceto find out how to
locate its time servers.

4.3 How to Use DCE Directory Services

Other than DCE administrators, the people who use directory services
normally do so indirectly, through an application interface. An application can
interact with the directory service on behalf of users who create aname for a
resource and subsequently refer to it by that name.

Thefollowing examples, both real and hypothetical, explain some of the ways
that users can use the directory service:

= A user invokes a spell-checking application on anew document. The
application contains DCE RPC client code on the user’slocal system. The
RPC client contacts the directory service for information on an available
spell-checking server. The directory service returns the address of the
server, the protocol type it usesto communicate, and auniversal unique
identifier (UUID) that represents an interface. Using thisinformation, the
RPC client makes aremote call to the server and the server checks the
spelling in the user’s document. The user is unaware that use of the spell
checker involved acall to the directory service and interaction with a
remote server.

= A user logging into a system enters a name and password. The directory
service helpsthe login program locate an authentication server, which
verifiesthe user’sidentity in an authentication database.

» A user enters afile specification. The directory service provides the
address of a DFS fileset |ocation database, which contains the network
address of a server that allows the user to access the file.

= A user enters the name of a computer conference or e ectronic bulletin
board and the directory service provides an address, allowing the
application to connect to the conference service.

Chapter 4 Introduction to the DCE Directory Service 51

= By entering a name or some information about a printer’s capabilities, a
user can learn the printer’s network address. For example, the user may
want to find the address of the closest and fastest available color printer.

= A user needsinformation from an employee in the marketing department.
The user remembers that the employee’s last name is Wong, but cannot
remember the first name. By entering the last name and department name
in an employee locator application, the user can check the directory
service for information on all Wongs in the marketing department and find
out how to contact the employee.

= A user enters areport in a problem-tracking database. Although the
database was recently moved to a new node, the user is not aware of the
change because the database is always referred to by its name only. The
directory service stores the current network address and provides it to the
problem-tracking application and any other application that requestsit.

The remainder of this chapter explains how the DCE Directory Service
environment works with regard to cells. It introduces the main directory
service components: the Cell Directory Service (CDS), the Global Directory
Service (GDS), and the Global Directory Agent (GDA), which is a gateway
between the local and global naming environments. The chapter also
discusses DCE support for the Domain Name System (DNS) and LDAP
Server, which are global name services that are not parts of the DCE
technology offering.

4.4 Directory Services and the Cell Environment

This section introduces the following main components of the DCE naming
environment and explains their relationship to the cell:

CDS

GDS Client/Server
DNS

LDAP Client/Server
GDA

CDS is ahigh-performance distributed service that provides a consistent,
location-independent method for naming and using resources inside a cell
(intracell). CDS can also be used for communication between cells (intercell)
when cells are connected into a hierarchy.

GDS supports the global naming environment inside cells (intracell) and
outside of cells (intercell). GDS is an implementation of a directory service
standard known as X.500. This standard is specified by the International
Organization for Standardization (1SO) 9594 and the International Telegraph
and Telephone Consultative Committee (CCITT) X.500 series. Becauseitis
based on aworldwide standard, GDS offers the opportunity for a universally
interoperable global directory.

52 Gradient DCE for Tru64 UNIX Product Guide

The X.500 server is aserver that will accept the directory access protocol
(DAP) from an X.500 client to access objects in its directory. In DCE, the
server isthe GDS server and the client is the GDS client. The GDA
communicates with the GDS client viathe XDS/XOM API. The GDS client
and server are based on the 1988 X.500 standard.

TheLDAPCclientisaclient that isimplemented in two libraries, libldap.a and
liblber.a and they are shipped with DCE. The client is based on the University
of Michigan 3.3 source code. The LDAP client accepts the LDAP API from
the GDA and communicates with the LDAP server viathe LDAP protocol.

The LDAP server is aserver that will accept the LDAP protocol from an
LDAP client to access objectsin its directory. The LDAP server may be an
X.500 server that also accepts the LDAP protocol or any proprietary directory
service that accepts the LDAP protocol. The LDAP server is not provided by
DCE and must be provided by the user. The GDA communicates with the
LDAP client viathe LDAP API.

Figure 4-1 represents a hypothetical configuration of two cells that each use
X.500 or an LDAP server to access names in the other cell. Namesthat are
stored directly in X.500 or the LDAP Server also are accessible from each
cell. CDSisthedirectory service within each cell. The same organization
administers both cells, which are configured based on geographic location and
network topology.

Figure 4-1: Cell and Global Naming Environments

X500
GDS or
LDAP
server

CDS CDS

Cell 1 Cell 2

DNSisawidely used existing globa name service for which DCE offers
support. Many networks currently use DNS primarily as a name service for
Internet host names. Although DNSis hot a part of the DCE technol ogy
offering, the directory service contains support for cellsto interoperate
through DNS.

Chapter 4 Introduction to the DCE Directory Service 53

The GDA isthe DCE component that makes cell interoperation possible. The
GDA enables CDS to access a name in another cell through one of the global
naming environments (X.500, LDAPR, or DNS), or through the CDS of the
parent cell, if the cell is part of ahierarchical cell configuration. The GDA is
an independent process that can exist on a system separate from aCDS server,
although by default the DCE configuration script configures the GDA on the
same machine as a CDS server. CDS needs to be able to contact at least one
GDA to participate in the global haming environment.

Figure 4-2 shows how the GDA helps CDS access hames outside of a cell.
When CDS determines that anameis not inits own cell, it passes the nameto
aGDA, which searches the appropriate naming environment (CDS, X.500,
LDAP, or DNS) for more information about the name. The GDA returns
information that enables the original CDS server to contact the CDS server in
whose cell the nameresides. The GDA can help CDSfind namesin acell that
isregistered in DNS (Scenario A), acell that is registered in an X.500 or
LDAP server (Scenario B), or acell that is registered in the originating cell’s
parent cell (not shown). The GDA decides which name service to use based
on the syntax of the name. Section 4.8.2 on page 58 describes name syntaxes
in detail.

NOTE: Theinterface between the GDA and the X.500, GDS, or LDAP serveris
dependent on the type of server being used. The GDA usesthe XDS/IXOM
API to interface with the GDS client. The GDS client uses the DAP protocol
to interface with the X.500 Server. The GDA usesthe LDAP API to interface
with the LDAP client. The LDAP client uses the LDAP protocoal to interface
with the LDAP server.

Figure 4-2: Interaction of CDSs, GDAs, and Global Directory Services

Scenario A Scenario B

X500
GDS or
LDAP
server

The GDA helps CDS resolve names:
Scenario A—in another cell that is registered in DNS
Scenario B—in another cell that is registered in GDS

54 Gradient DCE for Tru64 UNIX Product Guide

4.5 How Cells Determine Naming Environments

In addition to delineating security and administrative boundaries for users and
resources, cells determine the boundaries for sets of names. Because different
naming components operate in a cell and outside of a cell, naming
conventionsin the cell and global environments differ aswell. The DCE
naming environment supports two kinds of names: global names and
cell-relative, or local, names. The following subsectionsintroduce the concept
of global and local names. Section 4.8.2 on page 58 describes CDS, GDS,
X.500, LDAP, and DNS namesin detail.

45.1 Global Names

All entriesin the DCE Directory Service have aglobal namethat is
universally meaningful and usable from anywhere in the DCE naming
environment. The prefix /... indicatesthat anameisglobal. A global name can
refer to an object within acell (named in CDS) or an object outside of acell
(named in DNS), or an object outside of a cell (named in X.500).

The following example shows the global name for an entry in the X.500
namespace. The name represents user Ellie Bloggs, who worksin the
administrative organization unit of the Widget organization, a British
corporation.

/.../C=GB/0=Widget/OU=Admin/CN=Ellie Bloggs

The X.500 name syntax consists of a global prefix /... and a set of elements,
called relative distinguished names (RDNs). Each RDN consists of one or
more pairs of parts separated by an = (equal sign) character. Theitemsthat are
separated by an equa sign are multiple attribute value assertions (AVAS). See
the OSF DCE GDSAdministration Guide and Reference for more information
about AVAs. Thefirst part of apair is an abbreviation that indicates atype of
information. Some common abbreviations are Country (C), Organization (O),
Organization Unit (OU), and Common Name (CN). The second part of the
pair isavalue. (See Section 4.9.1 on page 59 for more information on X.500
names.)

The following example shows a global name for a price database server
named in CDS. The server is used by the Portland sales branch of XYZ
Company, an organization in the United States.

Figure 4-3: Global Name in CDS

Cell name CDS name

- N/ N\
/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/price_serverl

Chapter 4 Introduction to the DCE Directory Service 55

Asthe exampleillustrates, global names for entriesthat are created in CDS
look dlightly different from pure X.500 -style names. The first portion of the
name, /.../C=US/O=XY Z/OU=Portland, isaglobal cell name that existsin
an X.500 server or LDAP server. The remaining portion, /subsys/PriceM ax/
price_serverl, isaCDS name.

The cell name exists because cells must have names to be accessible in the
globa naming environment. The GDA looks up the cell name in the process
of helping CDSin one cell find a name in another cell. Cell names are
established during initial configuration of the DCE components. Before
configuring a cell that will participate in standard intercell communication
(that is, the name is resolved viaDNS, X.500, or LDAP server), the DCE
administrator must obtain a unique cell name from either of the global naming
environments, depending on whether the cell needs to be accessed through
X.500 or DNS.

NOTE: The GDA transformsan X.500 cell name to the LDAP name syntax if
using an LDAP server to access cell information.

The next example shows the global name of ahost at ABC Corporation. The
globa name of the company’s cell, /.../abc.com, existsin DNS.

Figure 4-4: Global Name Including a DNS Cell Name

Cellname CDS name

e Vi

/...Jabc.com/hosts/mysystem

4.5.2 Hierarchical Cell Names

In ahierarchy of cells, the names of one or more cells, called child cdlls, are
registered in acell’s CDS; thiscell is called the parent cell. The cell at the top
of the hierarchy must be registered in aglobal directory service (X.500,
LDAP, or DNS server), but the cells underneath do not need to be since they
use CDS to communicate. A child has one and only one parent at any given
time, while a parent can have more than one child.

The GDA is the communications gateway between the CDS namespaces of
cellsin ahierarchy, asit is between CDS and the global directory services.
When the GDA receives a request for information about acell, and the cell is
achild cell, the GDA returns information about the CDS in the parent cell.
The CDS of the parent cell provides the pointersto the child cell.

A child cell’s name begins with the parent’s global cell name; that is, the name
of the cell beginning at the globa root /... prefix. (This nameis also known as
the parent cell’s fully qualified name.) It ends with the specific child cell
name. The parent’s global name can contain CDS syntax as well as X.500 or
DNS syntax, depending on where the parent cell islocated in the hierarchy.

The following example shows the global cell names of two child cells:

56 Gradient DCE for Tru64 UNIX Product Guide

Figure 4-5: Global Names and Child Cells

Global Cell Name for Sales1

o R
Parent Global Cell Name Child Cell

f /N

[.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/Sales1

Global Cell Name for Marketing

Y R
Parent Global Cell Name Child Cell

o N\
/.../C=US/O=XYZ/OU=Portland/subsys/PriceMax/Marketing

The global cell name for each child includes:

= The parent’s global name, /.../.C=US0=XY Z/OU=Portland
= Thechild'sunique CDS name, /Salesl or /M arketing

If aDCE administrator is establishing a hierarchy of cells during initial cell
configuration, he or she must obtain a unique X.500 or DNS cell name for the
cell at thetop of the hierarchy from the X.500 or DNS global directory service
authorities. All of the cells beneath this cell share this name. The OSF DCE
Administration Guide— ntroduction provides details on how to obtain X.500
and DNS cell names.

If a DCE administrator establishes a hierarchy of cells after the cells have
been configured, the global names of the child cells change to point to the
parent’s cell name. The OSF DCE Administration Guide—Core Components
provides details on how to establish a hierarchy of cells.

4.6 Alias Cell Names

You can give a cell more than one global name by creating an alias name for
the cell. In this case, the cell has a primary name, which is the name that DCE
services return for the cell when queried, and one or more cell aliases that the
DCE servicesrecognize in addition to the primary name. For example, if your
cell isregistered in the DNS global directory service, and you want to register
itin X.500 aswell, you obtain a X.500 name for the cell and set it up asacell
alias. The DNS name remains the primary name.

Chapter 4 Introduction to the DCE Directory Service 57

Chapter 6 of the OSF DCE Administration Guide—Core Components
explains how to use the dcecp cellalias task object to manage your cell names.
Chapter 21 of the OSF DCE Administration Guide—Core Components
explains how to create a hierarchical cell.

4.7 Cell-Relative Naming in a Standalone Cell

In addition to their global names, all CDS entries have a cell-relative, or local,
name that is meaningful and usable only from within the local cell where that
entry exists. The local name is a shortened form of aglobal name, and thusis
amore convenient way to refer to resources within auser’s own cell. Local
names have the following characteristics:

= They do not include aglobal cell name.
= They beginwith the/.: prefix.

Local names do not include aglobal cell name because the/.: prefix indicates
that the name being referred to iswithin the local cell. When CDS encounters
a/.: prefix on aname, it automatically replaces the prefix with the local cell’s
name, forming the global name. CDS can handle both global and local names,
but it is more convenient to use the local name when referring to anamein the
local cell. For example, these names are equally valid when used within the
cell named /.../C=US/O=XY Z/OU=Portland:

/.. ./C=US/0=XYZ/0U=Portland/subsys/PriceMax/price_serverl

/. :/subsys/PriceMax/price_serverl

The naming conventions required for the interaction of local and global
directory services may at first seem confusing. In an environment where
references to names outside of the local cell are necessary, the following
simple guidelines can help make the conventions easy to remember and use:

= Know your cell name.
= Know whether aname that you are referring to isin your cell.

= When using anamethat iswithin your cell, you can omit the cell name and
includethe /.. prefix.

= When using anamethat is outside of your cell, enter its global syntax,
including the /... prefix and the cell name.

= When someone asks for the name of aresourcein your cell, giveits global
name, including the /... prefix.

= When storing a name in persistent storage (for example, in ashell script),
use its global name, including the /... prefix. Local names (that is, names
with a/.: prefix) are intended only for interactive use and should not be
stored. (If alocal nameis referenced from within aforeign cell, the /.
prefix is resolved to the name of the foreign cell and the resulting name
lookup either fails or produces the wrong name.)

58 Gradient DCE for Tru64 UNIX Product Guide

4.8 Cell-Relative Naming in a Hierarchy of Cells

In ahierarchy of cells, cell-relative names and local names may not be the
same. A parent cell can reference aname in achild cell by using cell-relative
naming (/.:). Consequently, you can no longer determine whether acell isin
your local cell by merely looking at its name. In the following example, the
child cell (eng) is named relative to its parent cell:

/.:/eng

This type of naming allows you to access namesin a child cell (for example, /
../leng/hosts/admin) from the parent cell, without having to specify the global
name of the cell.

NOTE: When referencing namesin achild cell from a parent cell, you should
be mindful that your statusisthat of aforeign user. Therefore, the child cell
may have access controlsimposed on it that will deny you accessto its
namespace.

4.8.1 Local Filenames

When referring to pathnames of filesin the local cell, you can shorten alocal
name even further by using the /: prefix. This prefix translates to the root of
the cell file system. The default name of the file system root is/.:/fs, whichis
one level down from the root of the cell namespace. So, for example, the
following are all valid ways to refer to the same file from within the/.../
widget.com cell:

/... /widget.com/fs/smith/myfile
/. /fs/smith/myfile
/:/smith/myfile

(See the OSF DCE DFS Administration Guide and Reference for more
information on local file system abbreviations.)

4.8.2 An In-Depth Analysis of DCE Names

The rest of this chapter describes in depth the different kinds of names that
make up the DCE namespace. The OSF DCE Administration Guide—Core
Components and the OSF DCE GDS Administration Guide and Reference
contain further details about valid characters and naming conventionsin CDS,
GDS, and DNS names.

4.9 CDS Names

Every cell contains at least one server that isrunning a CDS server. A CDS

server stores and maintains names and handles requests to create, modify, and
look up data. The total collection of names shared by CDS serversinacell is
called a cell namespace. The cell namespace administrator can organize CDS

Chapter 4 Introduction to the DCE Directory Service 59

names into a hierarchical structure of directories. CDS directories, which are
conceptually similar to the directoriesin your operating system’s file system,
are alogical way to group names for ease of management and use.

In acell namespace, any directory that has a directory beneath it is considered
the parent of the directory beneath it. Any directory that has a directory above
it is considered a child of the directory aboveit. The top level of the cdll
namespace is called the cell root. You can refer to the cell root either by the
globa name of the cell or by the short-form /.. prefix.

Figure 4-6 shows a simple cell namespace hierarchy, starting at the cell root.
Thecdl root (/.:) isthe parent of the directories named /.:/hostsand /.:/
subsys. The/.:/subsys directory is achild of the cell root directory and the
parent of the /.:/subsys/dce directory.

Figure 4-6: Sample CDS Namespace Hierarchy

49.1 Names

/.

/ N\

hosts subsys

N\

dce

The complete specification of a CDS name, going left to right from the cell
root to the entry being named, is called the full name. Each element within a
full nameis separated by a/ (slash) and is called asimple name. For example,
suppose the /.:/hosts directory, shown in Figure 4-6, contains an entry for a
host whose simple name is bargle. The CDS full name of that entry is/.:/
hostg/bar gle. Multiple consecutive slashes are turned into asingle slash in a
full name.

Multiple directory levels enable flexibility in distributing, controlling access
to, and managing many names. A directory hierarchy also reduces the
probability of duplicate names. For example, the names/.:/subsys/
Hypermax/printQ/server1l and /.:/subsys/ABC/spell/server 1 are unique.

The operation of X.500 is similar to that of CDS, but some important
differences exist in the structure of names and the waysthey can be looked up.
Like CDS, X.500 and the LDAP Server have a server process that provides
access to and management of names for X.500. This processiscalled a
Directory System Agent (DSA). The combined knowledge of al DSAs that
participate in the same global directory service implementation is called the
Directory Information Base (DIB). This collective knowledgeisviewed asa
single global directory consisting of many entries.

60 Gradient DCE for Tru64 UNIX Product Guide

Information existsin the X.500 global directory in the form of arooted
hierarchy that is called a directory information tree (DIT). The DIT issimilar
to a CDS namespace. However, unlike a namespace, which has no inherent
rules regarding structure and content, the X.500 hierarchy isinfluenced by a
set of rulesthat is called a schema. Every X.500 DSA must define a standard
schemato which al of the entriesin its portion of the DIB conform.

Although the X.500 standard does not mandate a specific schema, it does
make general recommendations that are based largely on existing X.400
standards for electronic mail. For example, countries and organi zations
should be named close to the root of the DIT; people, applications, and
devices should be named further down in the hierarchy. X.500 supplies a
default schemathat complies with these recommendations.

Every X.500 entry has a distinguished name, which uniquely and
unambiguously identifies that entry. The distinguished name consists of a
sequence of valid relative distinguished names (RDNs). Each RDN consists
of one or more assertions of the type and value of an attribute at a particular
position in the DIT. Attribute typesindicate the nature of the information that
isstored in the attribute value. A pair consisting of an attribute type and value
is known as an attribute value assertion (AVA). RDNs can have multiple
AVAs. For example, the distinguished name:

/C=us/0=0sf/0U=branch1/CN=nol Iman,OU=doc-team

consists of four RDNs. Thefinal RDN consists of two AVAsthat are
separated by a comma.

Figure 4-7 illustrates the concepts of RDNs and distinguished hames and how
they relate to the DIT. The figure shows the following:

= A DIT consisting of ahierarchy of schema-defined attribute types
= RDNsthat result from assertions of an attribute type and value
» Distinguished names that result from a concatenation of the RDNs

An X.500 name is understood by the GDA, and it contacts either an X.500
client (GDS) viathe XDS/XOM API or an LDAP client viathe LDAP API to
resolve the X.500 cell name.

The LDAP server contacted by the LDAP client may be proprietary or could
be an X.500 server that supports the LDAP access protocol. Therefore, you
may need to contact the supplier of your LDAP server for thisinformation.

Chapter 4 Introduction to the DCE Directory Service 61

Figure 4-7: RDNs and Distinguished Names

DIT Relative Distinguised Name Distinguished Name

Schema-Defined Distinguished
Attribute Type Value

7 |
I
SN S I S B VS JRREE
P
=< [

N

@ @ CN = Smith /...IC=US/O=ABC/OU=Sales/CN=Smith

The shaded boxes in the DIT represent the entries that are named in the
column labeled relative distinguished name. The schema dictates that
countries are named directly below the root, followed by organizations,
organization units, and names of users. Each attribute value that makes up an
RDN (and thus a distinguished name) is called a distinguished value.

Astherightmost column in Figure 4-7 illustrates, the distinguished name of
the entry at each level of the DIT is a concatenation of RDNs from the root of
the global directory to that entry’slevel. The lowest entry in the hierarchy, /.../
C=US/O=ABC/OU=Sales/CN=Smith, represents the name of a user, John
Smith, who worksin the sales division of ABC Company, an organization in
the United States. The abbreviated attribute type label s stand for Country (C),
Organization (O), Organization Unit (OU), and Common Name (CN).

Figure 4-7 shows the global DCE convention for distinguished names. Each
distinguished name starts with the representation of the global root (/...).
Attribute types and values are separated by equal signs, and RDNs are
separated by slashes. These conventions for specifying names are not
followed by all X.500 implementations. In addition, these conventions are
only used at the X.500 administration interface level. Internally, distinguished
names are specified in other ways.

The structure of X.500 names points out another important difference
between X.500 and CDS. A CDS nameisdistinct from its attributes; thatis, it
consists of astring of directory names ending with the simple name of the
entry. In contrast, a X.500 name consists solely of a series of attribute types
and their values.

Figure 4-8 illustrates this difference in the construction of CDS and X.500
names. The CDS full name /.:/Admin/Per sonnel/Employee DB isthe
complete directory specification of an entry with the simple name
Employee DB. Attributes and their values are not a part of the CDS fulll
name. The X.500 distinguished name /.../C=US/O=ABC/OU=Salesis a
concatenation of attribute types and values, one from each level of aDIT
schema.

62 Gradient DCE for Tru64 UNIX Product Guide

Figure 4-8: Comparison of CDS and X.500 Names

/. /...

Admin C=Us
Personnel O=ABC
I
Employee_DB
Attribute Attribute
name value ou Sales
CDS full name:

x.500 distinguished name:

[.:IAdmin/Personnel/Employee_DB | /C=US/O=ABC/OU=Sales

LDAP distinguished name:
OU=Sales, O=ABC, C=US

NOTE: The LDAP name/.../OU=Sales,O=ABC,C=USisnot vaid in DCE.
The name must be specified as an X.500 distinguished name (/.../C=UY
O=ABC/OU=Sales).

X.500 supports the ability to search for names by supplying the values of one
or more attributes. Thisresultsin what is called descriptive naming; in a
sense, users can describe the name they are looking for. Although the search
capability is valuable, it can be expensive and time consuming; so, X.500
allows usersto restrict the scope of a search. Support for the search operation
islimited to the X.500 environment.

4.9.2 LDAP Names

The LDAP name contains the same information as an X.500 name, but differs
in its syntax. LDAP names start with the last RDN of an X.500 name and use
acomma (,) instead of aslash (/) for RDN separators. The following example
shows these differences:

X.500 name: /C=us/0=0sf/0U=branchl/CN=nolIman/OU=doc_team
LDAP name: OU=doc_team,CN=nollman,OU=branchl,0=0sf,C=us

DCE only supports X.500 cell names. GDA will convert an X.500 cell name
to LDAP syntax when accessing an LDAP server viathe LDAP client.

4.9.3 DNS Names

The DCE naming environment supports the version of DNS that is based on
Internet Request for Comments (RFC) 1034 and RFC 1035. Many networks
currently use DNS primarily as a name service for host names. The most
commonly used implementation of DNS is the Berkeley Internet Naming

Chapter 4 Introduction to the DCE Directory Service 63

Domain (BIND). The BIND namespace is a hierarchical tree with its topmost
levels under the control of the Network Information Center (NIC). (Seethe
OSF DCE Administration Guide— ntroduction for information on how to
contact the NIC Domain Registrar to register adomain name.)

The names directly under the root of the BIND namespace include 2-letter
codes for countries, such asus and gb, as defined in | SO Standard 3166,
“Codesfor the Representation of Names of Countries.” Other names one level
below the root include several generic administrative categories, such as com
(commercial), edu (educational), gov (government), and or g (other
organizations). The owners of these names can grant permission to companies
and organizations to create new subordinate names. Figure 4-9 shows a
sampl e portion of the BIND namespace. (The double quotes indicate that the
root of the namespace has a null name and is not addressable.)

NOTE: Like CDS names, DNS names are not typed; that is, they do not consist
of pairs of attribute types and values.

Figure 4-9: Sample Portion of the BIND Namespace

com edu gov org gb

mit usc

A DNS name consists of astring of hierarchical names that are separated by .
(dots) and arranged right to left from the root of the namespace. For example,
the name ai.mit.edu represents the branch of the namespace owned by the

M assachusetts Institute of Technology artificia intelligence department.

NOTE: The order of elementsin the name isthe reverse of the order for CDS
and GDS names.

To use aDNS cell name as part of aglobal DCE name, specify the DNS name
intact between two slashes. For example, a cell whose DNS nameis
ai.mit.edu might contain a directory whose CDS nameis/.:/profiles. Users
should enter /.../ai.mit.edu/pr ofiles to refer to the directory by its global
name.

64 Gradient DCE for Tru64 UNIX Product Guide

4.9.4 Names Outside of the DCE Directory Service

Not all DCE names are stored directly in the DCE Directory Service. Some
services connect into the cell namespace by means of specialized CDS entries
called junctions. A junction entry contains binding information that enables a
client to connect to a server outside of the directory service.

For example, the security service keeps a database of principals (users and
servers) and information about them, such as their passwords. The default
name of the security service junction is/.:/sec.

The following exampleillustrates the parts of a global DCE principal hame:

Figure 4-10: Global DCE Principal Name

CDS Security Service
Cell name name name

i

s ~y

/../C=US/O=ABC/OU=west/sec/principals/mozart

The cell name, /.../C=USO=ABC/OU=west, is a GDSan X.500 name. The
sec portion isthe junction entry in CDS, and principals'mozart isaprincipal
name that is stored in the security service database.

Another service that uses junctionsis DFS. The DFS fileset location service
keeps a database that maps DFS filesets to the servers where they reside. The
junction to this database has a default name of /.:/fs. The following example
illustrates the parts of aglobal DCE filename:

Figure 4-11: Global DCE Filename

CDS)
Cellname name File name

i

S Vi

[...Jai.mit.edu/fs/users/mozart/myfile

The global name contains a DNS cell name, /.../ai.mit.edu. Thefsportionis
the file system junction entry in CDS, and /user s‘fmozart/myfile is the name
of afile.

Thus, the DCE namespace is a connected tree of many kinds of names from
many different sources. The GDA component of the directory service
provides connections out of the cell and to other cells through a global
namespace, such as GDS or X.500 or DNS. In asimilar manner, junctions
enable connections downward from the cell namespace to other services.

CHAPTER 5

Cell Directory Service
Enhancements

5.1 Overview of CDS Directory and Clearinghouse Operations

Product Name offers some enhancements that extend the capabilities provided
by OSF DCE Release 1.2.2 software. These enhancements include:

CDS directory and clearinghouse convenience operations
Enhanced CDS browser

CDS Enhanced Cache Memory Control

CDS Preferencing

CDS directory and clearinghouse convenience operations enable cell
administrators to easily reorganize CDS directories and subtrees and to
automate some tedious directory replication tasks.

5.1.1 Reorganizing Existing CDS Directory Replicas

After you have worked with a DCE cell for aperiod of time, you may observe
that new CDS directories have been created in one or more clearinghouses
within the cell.

When cells have multiple clearinghouses, CDS directory proliferation can
cause problems or have overhead not associated with single-clearinghouse
cells. For instance, at some point in the CDS directory hierarchy, master and
read-only replicas of directories can become disorganized with master
replicas spread among different or inappropriate clearinghouses.

For convenience in backing up your part of the namespace, you might want all
of the master replicasin your part of the namespace to reside in one
clearinghouse. With this strategy you need to back up a single clearinghouse
because master replicas contain the most recent updatesto CDS.

Gradient DCE for Tru64 UNIX provides special options (-propagate and
-force) to the directory modify operation. These options reorganize master
and read-only replicasin a CDS subtree to match the directory configuration
of the subtree root directory that you name as an argument to the directory
modify operation.

Say adirectory subtree's replicas are spread among four clearinghouses
(CH_A, CH_B, CH_C, and CH_D) asshownin Table 5-1. In the table, the
master replicafor /.:/subsys/dec/srvs/ivsrv (the subtree root directory) isin
CH_A. However, master replicas for its descendantsreside in CH_B and
CH_D. To back up the master CDS databases for this subtree, you must back
up clearinghouses CH_A, CH_B, and CH_D.

66 Gradient DCE for Tru64 UNIX Product Guide

You can perform a directory modify operation to reorganize all master and
read-only directories to be in the same clearinghouse as the subtree root
directory. Once all master replicas are in the same clearinghouse (CH_A in
our example), you need only back up clearinghouse A.

Table 5-1: Reorganizing Existing CDS Directory Replicas

Item Description CH_A CH B CH C CHD
1 /.:Isubsys/dec/srvsivsrv master r-only r-only
(subtree root) configuration
2 /.:/subsys/dec/srvsivsrv/vdatl r-only master r-only
3 /.:/subsys/dec/srvsivsrv/vdat2 r-only r-only master
4 /.:Isubsys/dec/srvs/vsrvivdat3 r-only r-only r-only | master
5 All directoriesin subtree master r-only r-only

Items 1, 2, 3, and 4 depict the master directory organization before
reorganizing them with the directory modify operation. Item 5 illustrates the
results of the following directory modify operation:

% directory modify /.:/subsys/dec/srvs/vsrv -propagate -force

Note that the preceding directory modify operation removes the replicafrom
clearinghouse C (CH_C) becausethe root directory (/.:/subsys/dec/srvs/vsrv)
has no replicasin clearinghouse C.

5.1.2 Creating Additional CDS Directory Replicas

You can also use a directory modify -propagate operation to automate the
manual steps formerly needed to create additional (read-only) replicas of new
directories you have created. This operation creates read-only replicas of the
new directory. Note that this operation also affects any siblings of the new
directory and all of their descendants.

When you create anew directory or directory subtreein a CDS clearinghouse,
the directory create operation creates only the master replica. By default, the
replicais created in the same clearinghouse where the parent directory’s
master replica resides.

You can use a directory modify -propagate operation to create read-only
replicas of the new directory or directory subtree. The new replicaswill be
created and organized so that their master and read-only replicaswill bein the
same clearinghouses as the subtree root directory (the parent directory) which
you name as the argument to the dir ectory modify operation.

The next tableillustrates the behavior of the directory modify -propagate
operation used for creating read-only replicas of a new directory.

Chapter 5 Cell Directory Service Enhancements 67

Table 5-2: Creating Additional CDS Directory Replicas

Item Description CH_A CH B CH C CHD
1 Initial parent replica master r-only r-only
configuration
2a Create new child directory master
using default
2b Use -propagate option master r-only r-only
3a Create new child directory master
using default
3b Use -propagate -force options master r-only r-only

Item 1 shows the initial configuration of the parent directory. The master
replicaisin clearinghouse A (CH_A). Read-only replicas of the parent
directory reside in clearinghouses B and D. Clearinghouse C does not contain
any replicas of the parent directory.

Item 2aillustrates the result of the default directory create operation which
creates the new directory in the same clearinghouse where the parent
directory’s master replicaresides. Default means not specifying an alternative
clearinghouse in which to create the new directory.

Item 2b shows the results of the directory modify -propagate operation
which creates master and read-only directory replicas in the same
clearinghouses that contain the parent’s master and read-only directory
replicas.

Item 3aillustrates the result of adirectory create operation which creates the
new directory in adifferent clearinghouse than where the parent directory’s
master replicaresides. An optiona -clearinghouse option to the directory
create operation specifies to create the new directory in clearinghouse B.

Item 3b shows the results of the directory modify -propagate -force
operation. Here, the -for ce option must be used. Otherwise, an error occurs
because the new directory’s master replicaisin a different clearinghouse than
the parent directory’s master replica. The -for ce option performs an extra step,
causing the new directory master and read-only replicas to conform to the
same configuration as the parent directory replicas.

Thedirectory modify -propagate operation affects al the descendant
directories of the named directory. For example, assume your cell has the
following subtree configuration:

/.:/subdirl/subdir2/newdirl
/.:/subdirl/subdir2/olddirl/oldsubdirl
/.:/subdirl/subdir2/olddir2/oldsubdir2

The following operation organizes the replicas of all three child directories (
newdirl, olddirl, and olddir2) and their descendant directories to match
the master and read-only replica configuration of the parent directory (/.:/
subdir 1/subdir2) which is named in the operation.

% directory modify /.:/subdirl/subdir2 -propagate -force

68 Gradient DCE for Tru64 UNIX Product Guide

Of course you can have the master replicas of child directoriesin different
clearinghouses than their parent’s master replicas. However you must
manually create any read-only replicas using separate directory create
operations for each replica you want to create.

5.2 Enhanced Browser

The Browser is a Motif-based tool for viewing the CDS namespace. The
Browser can display an overall directory structure as well as show the
contents of directories, enabling you to monitor growth in the size and number
of directoriesin your namespace. You can customize the Browser so that it
displays only a specific class of object names. The Gradient DCE for Tru64
UNIX Enhanced Browser contains some additional functions beyond those
contained in the OSF DCE Version 1.1 Browser.

5.2.1 Displaying the Namespace

When you start the Browser, an icon representing the root directory isthefirst
item to appear in the window. Directories, soft links, and object entries al
have distinct icons associated with them. Most object entries have unique
icons based on their class; the class indicates the type of resource that the
entry represents (for example, clearinghouse object entries). When the
Browser does not recognize the class of an entry, it displays a generic icon.

The following figure shows the Enhanced Browser icons and what they
represent.

Figure 5-1: Enanced Browser lcons

Icon Entry Type

IJE afl Directory

.é‘ Object entry (generic)

i Soft Link

':"‘lIII Clearinghouse object entry
B Group

5.2.2 Filtering the Namespace Display

Using the Filters menu, you can selectively display object entries of a
particular class. With the Enhanced Browser, you can choose from either the
RPC_Class or CDS_Clearinghouse object classes. For example, if you are
interested in seeing the entries for clearinghouse objects only, choose the class

Chapter 5 Cell Directory Service Enhancements 69

CDS _Clearinghouse from the Filters menu. If you are interested in seeing
object entries used in the name service interface (NSI), choose RPC_Class.
You can filter only one object class at atime.

Setting afilter does not affect the current display, but when you next expand a
directory, you see only object entries whose class matches the filter. Note that
soft links and directories still appear because only object entries can be
filtered out. To reset the filter to view all object entries, choose the asterisk (*)
from the Filters menu.

For afull description of the Browser, see the CDS part in the OSF DCE
Administration Guide — Core Components.

5.3 CDS Enhanced Cache Memory Control

Two options for the cdscache discard command allow administrators to
control the release of memory from the cache clerk without having to stop and
shut down DCE. The new options -entry and -replica specify structuresinthe
cache for deletion. The following command shows how to delete areplica:

dcecp -c cdscache discard -replica /.:/foo_ch

where foo_ch should be replaced by avalid clearinghouse name.

5.4 CDS Clearinghouse Preferences

With thisrelease, CDS is able to make more intelligent choices about which
clearinghouse to contact in satisfying a user request. This has the potential of
greatly improving performance, depending on your cell configuration. Each
client machine ranks clearinghouses in the order in which they should be
contacted by the client for CDS information. Default behavior prioritizes
those located “closest” to the client on the network. However, the
administrator of a client node can override the default rankings.

This enhancement is useful in situations where, for example, there are
multiple high-performance LANSs, each with its own CDS server, connected
by a low-performance WAN. With this feature, the clearinghouse with the
best ranking is the one on the machine with the server, followed by one on the
same LAN with the client. Local clearinghouses are preferred over distant
clearinghouses. Clients use distant clearinghouses only when local
clearinghouses cannot satisfy arequest. The administrator can override the
defaults as needed.

Clearinghouse preferences are achieved by assigning a numeric rank to each
clearinghouse. A rank is a 16-bit unsigned integer (range 0-65535). Lower
numbersare preferred over higher numbers (and arank of 65535 means “don't
ever use this clearinghouse”).

To override defaults, ranks must be specified in atext file called opt/dcelocal/
etc/cds serv_pref. The format of the file is one clearinghouse name and one
rank on each line of the file. Blank lines and comments (“#” to the end of the
line) are ignored. Ranks can be 0-65535 (0x0000-0xffff) and can be specified
in decimal, octal (with leading “0"), or hex (with leading “0x").
Clearinghouse names can be in any of the following formats:

70 Gradient DCE for Tru64 UNIX Product Guide

/.../cellname/foo_ch
/foo_ch

foo_ch

/.:/foo_ch

If the clearinghouse’s cell name is not specified, thelocal cell is assumed.

Examplefile:

/.:/foo_ch 50 # most preferred clearinghouse
/.:/bar_ch 100
/.../mycellname/baz_ch 100

If aclearinghouseis not mentioned in the preferencesfile, arank is calculated
for it. Thus, you need to specify rank for aclearinghouse only when you want
to override its default rank.

The default ranks are calcul ated based on | P address:

Clearinghouses with addresses that match the local host address get a
default rank of 5000.

Clearinghouses on the same | P subnet asthelocal host get a default rank of
20000.

Clearinghouses on the same I P network as the local host get a default rank
of 30000.

All other clearinghouses get a default rank of 40000.

The clearinghouse preferences fileis read upon cdsadv startup and the values
are cached. If you change rank values, you must stop the CDS client, remove
the cache, then restart the CDS client.

The following commands now include arank attribute:

dcecp -c cdscache show -clearinghouse /.:/foo_ch
cdscp show cached clearinghouse /.:/foo_ch

where foo_ch should be replaced by avalid clearinghouse name.

CHAPTER 6

LDAP Capabilities

6.1 Overview of LDAP

The Lightweight Directory Access Protocol (LDAP) provides access to the
X.500 directory service without the overhead of the full Directory Access
Protocol (DAP). Thesimplicity of LDAP, along with the powerful capabilities
it inherits from DAP, has made it a defacto standard for Internet directory
services.

DCE hasrelied on CDS to provide both intra-cell and inter-cell directory
service. Inside acell, the directory service is accessed mostly through the
name service interface (NSI), implemented as part of the runtime library.
Cross-cell directory service is controlled by a global directory agent (GDA),
which looks up foreign cell information on behalf of the application in either
the Domain Naming Service (DNS) or X.500 database. Once that information
is obtained, the application contacts the foreign CDS in the same way as the
local CDS.

DCE gains LDAP support for both NSI and GDA. From an application
standpoint, any application within NSI can now reach the LDAP directory
service. From a GDA standpoint, GDA can now look up foreign cell
information by communicating through LDAP to either an LDAP-aware
X.500 directory service or astandalone LDAP directory service, in addition to
DNS and DAP.

Thisrelease provides LDAP as an optional directory servicethat is
independent of CDS. From an application standpoint, it duplicates CDS
functionality. LDAP does not replace CDS as the directory service for DCE
nor does it coexist with CDS Version 3.0 of DCE for Compaq Tru64 UNIX .
LDAP s provided as an option for customers looking for an alternative that
offers TCP/IP and internet support.

Gradient DCE for Tru64 UNIX does not automaticaly install LDAP. Prior to
installing DCE, a DCE administrator must obtain LDAP software and install
it asan LDAP server in the environment. Next, a DCE administrator must
choose LDAP during the DCE installation and configuration procedure and
configure LDAP directory service for acell. Once LDAP is configured,
applications can request directory services from either CDS or LDARP, or both.
Whether or not LDAP is configured, DCE system processes continue to rely
on CDSto provide directory service.

72 Gradient DCE for Tru64 UNIX Product Guide

6.2 How NSI Works
NSI stores and retrieves RPC binding, group, and profile information in either
the CDS directory service or LDAP, or both.

NSI implements the name service switch (NSS), which selects among
configured directory services when executing an NSI call.

Exactly which name service(s) are selected by NSS depends upon the name
and syntax arguments to the NSI call, the NSI runtime configuration options,
and the nature of the call itself, as shown in Figure 6-1

Figure 6-1: NSI Architecture

NSI API

J L

1| /|

CDS NSI LDAP NSI
R /
CDS Clerk
CDS Advertiser

~~
CDS Server LDAP Server

6.2.1 LDAP Syntax

In addition to the CDS syntax, rpc_c_ns syntax_dce (previously supported
by NSI), the LDAP-enabled NSI supports a new name syntax,
rpc_c_ns syntax_ldap.

If this new syntax is specified in an NSI call, the corresponding name must be
an LDAP Distinguished Name (DN), which NSI uses to obtain information
from the LDAP directory service.

If the CDS syntax isused in an NSI call, it is not apparent from the syntax
which directory service, LDAP or CDS, isto be contacted. The run-time NSI
configuration options and the nature of the call join in the decision. If LDAP
is selected, NSS trand ates the name from CDS syntax to LDAP syntax. The
purpose of the syntax trandator isto make LDAP accessible from
applications using a CDS syntax.

Chapter 6 LDAP Capabilities 73

6.2.2 NSI Configuration

A one-time initiaization executes when an application accesses NS| for the
first time. Theinitialization determines which name services the application
wants to use and the priority of each name service. The easiest way to provide
the required information is with a configuration file.

If the LDAP name service is specified, the initialization must be able to find
the address of the host where the LDAP server isrunning, the port it is
listening on, and the cell name mapping from DNS or X.500 syntax to LDAP
syntax. If more than one name service is configured, the export mode that
determinesif updates need to be sent to all name services has to be specified.

The environment variable RPC_CONFIG_FILE can be used to specify a
configuration file. A configuration file can specify a DNS name to query for
configuration information, allowing central control of client configuration.
Storing LDAP configuration information in the TXT records of a DNS name
is the recommended way of configuring the LDAP NSI.

Here is the recommended way to use a configuration file for LDAP:
1 Choose a DNS name. (Consult with the DNS administrator.)

2 Storetheconfiguration information inthe TXT records of aDNS name for
use before the first process that uses RPC is executed.

3 Createafileusingthe LDAP NSI configuration file syntax, and include all
the options and values appropriate to your site, as explained in the next
section.

4 Ask the DNS administrator to create a TXT record for each linein thisfile
and to add these TXT recordsto the set of records belonging to the domain
name you chose.

5 Usethe RPC_CONFIG_FILE environment variable to specify the
location of the file you want to be the configuration file. Thisfile contains
only asingle line, specifying the target DN'S name you chose previoudly:

RPC_NS_DNS_CONFIG_INFO domain_name

The syntax of the LDAP NSI configuration file maps easily to a set of
attribute type/value pairs. The pairs are described in the next section.

6.2.3 Configuration File Format and Syntax
The configuration file contains values for various configuration options used
by the NSI runtime library. Each line of thefileis of the following form:
config_option_name config_option_value

If multiple values are specified for a particular configuration option separated
by atab or a space character. Each value must be specified as a separate
option name/option value pair on a separate line.

Thefollowing table describes the possible values for the config_option_name
and config_option_value fields in the LDAP configuration file.

74 Gradient DCE for Tru64 UNIX Product Guide

Table 6-1: LDAP NSI Configuration Options and Values

config_option_name

config_option_value

RPC_NS_NAME_SERVI
CE

integer: 1 100 CDS|LDAP

An integer priority value followed by the name of a name service

known to the NSI. Currently, the only known servicesare CDS and
LDAP. Multiple name services may be configured and are tried in
priority order subject to the service selection rules. Lower priority
values indicate higher priority

No default. At least one name service must be specified. Multiple
name services may be specified, if desired. If the same name

serviceis specified more than once, the last priority value specified
isused. If more than one name service has the same priority value,
it is undefined which service has (effectively) the highest priority.

RPC_NS_EXPORT _MOD
E

write_one|write_all

Specifies whether export operations should write only to the first
possible name service or al possible name services. Services are
tried in priority order.

Default iswrite_one; in the case that the option is specified
multiple times, only the last-specified valueis used

RPC_NS_LDAP_SERVE
R

hostname_or_ip_addr[:port]
The name or | P address of an LDAP server to which the NSI can
connect. The appropriate port number may also be specified.

The default port number (389) is used if another is not specified.
Multiple LDAP servers can be specified, but only the first
specified server will be used.

RPC_NS_LDAP_CELLM
APPING

dce _cell_name Idap_dn

Associates the Idap_dn with the dce_cell_name so that namesin
the specified cell are searched for in the specified LDAP subtree.
No default. Multiple options may be specified; if multiple
mappings for the same cellname are specified, the last-specified
mapping is used.

RPC_NS_DNS_CONFIG
_INFO

domain_name

A domain name the NSI can query to obtain configuration
information. This domain name should possess TXT records
formatted exactly like lines in the configuration file: each TXT
record hasan initial config_option_name followed by white space
and a config_option_value.

No default. Multiple options may be specified; the effect isto read
each specified DNS name for configuration information.

6.2.4 NSI Call Categorization

Usually, an NSI call is either read or write. A read NS| call obtains
information from the directory service but makes no changes. A write call
creates, deletes, or updates a directory. An example of theread NSI call is
rpc_ns binding_lookup_next. Thecall rpc_ns binding_export isan
example of write NSI call.

NSI callsthat are neither read nor write calls are miscellaneous calls, of which
an exampleisrpc_ns binding_select.

Chapter 6 LDAP Capabilities 75

A read NSI call completes when the information is obtained from a
configured directory service. NSI does not guarantee the consistency of
information between different configured name services.

A write NSI call may or may not complete when the operation succeeds in
one configured directory service, depending on the export mode run-time
configuration option.

6.2.5 Name Service Selection

For aread NSI call, the following pseudocode describes the NSS selection
algorithm:

for each configured name service in the specified priority {
if the name is in the native syntax of the name service {

or

a translation routine exists to the native syntax {
append the name service to the trial list
}
}

if there is no name services on the trial list {
return rpc_s_name_service_unavailble

}

for each name service on the trial list {

make the call

if the call succeeds {

return success

} else if the call fails with other than rpc_s_entry not_found {
return the error

} else if there is no more name services {

return rpc_s_entry_not_found

}

}

For a write NSI call, the following pseudocode describes the NSS selection
algorithm:
for each configured name service in the specified priority {
if the name is in the native syntax of the name service {
or
a translation routine exists to the native syntax {
append the name service to the trial list
}
}

if there is no name services on the trial list {
return rpc_s_name_service_unavailble

}

for each name service on the trial list {

make the call

if the call succeeds {

if export mode is to update one name service {
return success

}

76 Gradient DCE for Tru64 UNIX Product Guide

} else {
return the error

¥
¥

Among the read NSI calls, contexts provide away to maintain information
across successive calls. An example of aread NSI call with context is
rpc_ns binding_lookup_next. The context is built in aprevious

rpc_ns binding_lookup_begin and destroyed in

rpc_ns binding_lookup_done. NSS manages calls to assure that only the
call to construct the context runs the selection algorithm. Successive cals
bypass the algorithm and use the same selected name service.

6.2.6 Name Translation from CDS to LDAP

6.3 Using NS

The NSI controls the CDS-syntax-to-L DA P-syntax trandation of names.
CDS-to-LDAP trandlation supports applications using the LDAP directory
service with names based on CDS syntax. Another, larger purpose of name
tranglation is to separate applications from dependence on particular directory
services.

A configuration file controls NSI. A specific DCE cell name is associated
with the DN of a subtree in the LDAP name space. The mapping of aDCE
cell namein either DNS or X.500 style to the distinguished name (DN) must
be provided in the NSI configuration file.

To translate aname in CDS syntax to LDAP syntax, the cell name part is
translated using the mapping(s) specified in the NSI configuration file. The
cell relative part is transformed with the order of the component names
reversed. The component name is prefixed with cn=, commas are substituted
for slash separators. Quoted special charactersin CDS, and unquoted and
unquoted special charactersin LDAP, are quoted.

For example, if the mapping between /.../dce.mycompany.com and
ou=dce,o=mycompany,c=us is defined, the name /.../dce.mycompany.com/
foo/bar istransated as cn=bar,cn=foo,ou=dce,o=mycompany,c=us. The name
/.../dce.mycompany.com/foo=bar is trandlated as
cn=foo\=bar,ou=dce,o=mycompany,c=us. Note the handling of special
characters in the second example.

This section describes NSI configuration issues and possible differences
between CDS and LDAP.

6.3.1 Modifying Runtime Configuration Options

The NSl initialization process first checks if avalue (file name) is set for the
environment variable, RPC_CONFIG_FILE. If it finds the environment
variable and the name of afile, the contents of the file is used to initialize the
NSI. If no environment variable is present, the NSI initialization process
looks for the default system runtime configuration file, /opt/dcelocal/etc/
rpc.conf.

Chapter 6 LDAP Capabilities 77

If neither the default configuration file nor the environment variable exists,
NSI initidization fails with the error statusrpc_s file not_found. If thefile
isnot inthe format as described earlier or is corrupted, NSI initialization fails
with error statusrpc_s invalid_file format.

Note that the default configuration file is very important. Modifying the
default configuration file, /opt/dcelocal/etc/r pc.conf, affects configuration
options for all DCE processes on the same host machine.

DCE installation configures CDS. DCE system processes rely on CDSto
provide directory service security and reliability. Poorly-considered changes
to the system defaults in the NSI configuration file can have particular
consequences for the security daemon and CDS advertiser, and thereby
compromise a DCE cell.

Please note that it is strongly recommended that you leave the default
configuration file unchanged. Instead, use the environment variable
RPC_CONFIG_FILE to alter runtime NSI configuration options. By
providing a user-specified configuration file rather than altering the system
default file, you safeguard an environment in which CDS and LDAP can
continue to work properly.

6.3.2 Application Programming

For the sake of source and binary compatibility, the application programming
interface (API) for the name service is unchanged. Note that an application
might behave differently if LDAP isconfigured. A difference may result from
LDAP itself or the avail ability of multiple name services.

A programmer must keep several thingsin mind:

» CDSisadirectory service that has no schema support. Any kind of data
can be written to any kind of entry. Although users are advised to follow
certain styles, they are not required to do so. LDAP mandates the use of
schema, as X.500 does. It islikely that if a program does not follow the
style and it succeeds in CDS, it might fail with LDAP configured.

» Security isnot supported in LDAP in Gradient DCE for Tru64 UNIX. All
NSI calls are unauthenticated. The NSl call rpc _ns set_authn hasno
effect on LDAP operations.

» NSl calsfor setting expiration ages have no effect on LDAP operations as
LDAP does not support caching.

» LDAP does not guarantee consistency among different directory services.
Searching an entry in the LDAP directory service can return completely
different results from the corresponding entry in CDS. Also, setting export
mode to updating all configured directory services does not guarantee
transactional behavior, which means the update procedure may succeed in
one directory service and fail in another one and not try yet others.

To use multiple directory services, the understanding of NSS selection
algorithmsis essential.

78 Gradient DCE for Tru64 UNIX Product Guide

6.3.3 NSI Known Limitations

6.3.3.1 Security

6.3.3.2 Schema

LDAP NSl offers no support for security. The lack of security makes an
LDAP directory service vulnerable to spoofing or denial of service attacks.

Although CDS does not support schemas, it does support the following
concepts:

» Default Entryd Stores bindings

= UUID Entryd Stores universal unique identifiers

= Group Entry Stores members information

= Profile Entryd Stores profile elements

In LDAP, the object schema implements those same concepts and reinforces
them.

Asaresult of the schema, certain kinds of datacan only be exported to certain
kinds of entries. For example, bindings cannot be exported to group entries
and group members cannot be exported to profile entries. If an LDAP NS
operation is called for an incompatible kind of entry, the call fails with

rpc_s entry not_found even if the entry indeed exists in the name space.

However, both CDS and L DAP support the notion of “upgrade.” Namely, one
can perform operations that are permissible to a server entry on a default
entry, in which case the default entry is“upgraded” to a server entry. The
same appliesto group entry and profile entry.

Thereis one exception to therule. In CDS, it islegal to export only UUIDsto
adefault entry, but thisis not allowed in LDAP. Because the default entry
does not allow UUIDs, LDAP would have to “upgrade” it. But both server
entry and group entry allow UUIDs, thereis no way of knowing which type of
entry to “upgrade” to. Thisimplementation of LDAP NSI choosesto return an
error in an ambiguous case like this.

6.3.3.3 Schema for Storing RPC Entries in a Directory Service

This section defines a schemathat conforms closely to the DCE conceptual
model for RPC entries. This schema allows an RPC NSI implementation to
use LDAP to store RPC entries and to use LDAP queries to implement the
RPC NSI lookup APIs,

The implementation supports three kinds of RPC Name Service Entries:

» Server Entries—Support the retrieval of a set of string bindings for any
combination of Entry Name, Interface ID and version, Object ID, Transfer
Syntax, and transfer syntax version.

» Group Entries—A set of RPC entries identified by an Entry name.

» Profile Entries—A profile establishes a priority-based search order
through a set of entries. Thisisessentially a“list of sets” with the outer list
ordered by priority and each inner set at the current priority.

Chapter 6 LDAP Capabilities 79

DCE RPC defines the concept of a“mixed entry” in which a single entry
serves multiple purposes—for example, entries that serve as both Group and
Server entries. Mixed entries are not supported by this schema. This
seldom-used DCE RPC feature leads to unnecessary complexity for both
implementers and users of the RPC NSI.

To meet these requirements, a schema defines six object classes:

= rpcEntry

= rpcGroup
rpcServer
rpcServerElement
rpcProfile
rpcProfileElement

A schema also defines nine attribute types:

= pcNsObJectID
rpcNsGroup
rpcNsPriority
rpcNsProfileEntry
rpcNslInterfacel D
rpcNsAnnotation
rpcNsCodeset
rpcNsBindings

» rpcNsTransferSyntax

Taken together, these object classes and attributes implement the DCE-RPC
concept of an entry.

TherpcEntry object classis the class from which al other RPC objects
derive, so that they may be easily located in a search.

AnrpcGroup, rpcServer, or rpcProfile object formsthe “root” of an entry.
Thetype of entry is determined by the object class. Note that the types are
mutually exclusive; an entry cannot serve multiple purposes. Separating the
entry typesinto distinct object classes, as shown in Table 6-2, simplifies the
task of the NSI provider in determining how to handle a given entry.

Table 6-2: Entry Types and Object Groups

Entry Type Object Class(es)
Group rpcGroup holds a set of referencesto other rpcEntry objects
Profile rpcProfile, acontainer holding a set of r pcProfileEntry objects, each

holding alist of referencesto entries with a given priority

Server rpcServer, acontainer holding a set of rpcServer Element objects, each
holding the identification of one or more interfaces (and/or objects)
offered by agiven server

6.3.4 Objects and Attributes

The following treats a number of items for programmers.

80 Gradient DCE for Tru64 UNIX Product Guide

6.3.4.1 Notation

The notation used in this document is the same as that used in Lightweight
Directory Access Protocol: Sandard and Pilot Attribute Definitions, with the
following difference: the referenced notation does not allow the expression of
both permissible parentage and class inheritance. The BNF in the cited draft
for defining object classes is therefore extended as follows:

<ObjectClassDescription> ::= “(“

<oid> -- ObjectClass ldentifier

[”NAME” <DirectoryStrings>]

[”DESC” <DirectoryStrings>]

[“OBSOLETE”]

[-”SUP” <oids>] — ObjectClass[es] from which this class is derived

[-”PARENT” <oids>] - Permissible parents of this object class
[(-”ABSTRACT” | -”STRUCTURAL” | -”AUXILIARY”)]

[-”MUST” <oids>] -- AttributeTypes

[-”MAY” <oids>] -- AttributeTypes

“)11

6.3.4.2 Object Naming

All objects have cn (common name) as their naming attribute; this attribute
provides the RDN for the object.

6.3.4.3 Object Definitions

6.3.4.4 RPC Entry

In addition to the object classes listed in the sections below as allowed
parents, there must be at |east one other object class alowed as a parent to
root the tree. Furthermore, we recommend that the following object classes
also be allowed to parent RPC object classes:

= country

= Organization

= organizational Unit
= locality

= container

These object classes are included in the Lightweight Directory Access
Protocol: Sandard and Pilot Attribute Definitions, an ETF standard
document, still in progress.

The RPC Entry isthe class from which all other RPC classes are derived.

(1.2.840.113556.1.5.27

NAME *rpcEntry*®

SUP top

PARENT (rpcEntry $ rpcGroup $ rpcProfile $ rpcServer)
STRUCTURAL

MUST cn

)

Chapter 6 LDAP Capabilities 81

6.3.4.5 RPC Group

6.3.4.6 RPC Profile

NOTE: Theimplementation treatsr pcEnt ry asastructural, rather than an
abstract, object class.

TherpcGroup object definesan RPC Group. Thecn is the RDN
component of the entry name provided by the user in the NSI API call that
creates the group. The rpcNsObjectI D attribute contains string UUIDs of
objects added to the group entry by applications. These object IDs are not
used by the NSI provider during lookup operations.

(1.2.840.113556.1.5.80

NAME *rpcGroup”’

SUP rpcEntry

PARENT (rpcEntry $ rpcGroup $ rpcProfile $ rpcServer)
STRUCTURAL

MAY rpcNsGroup

MAY rpcNsObjectID

)

The next-to-last code line, MAY rpcNsGroup, is changed here from the Open
Group specification, which uses MUST. To make the attribute r pcNsGroup
mandatory not only disallows the notion of empty groups, but also makes
deleting alast member of a group impossible. Because both those operations
must be supported by DCE, it is best to make the rpcNsGroup attribute
optional instead of mandatory.

RPC Profile entries are implemented by two object classes. TherpcProfile
object classis a container used to gather profile elementsinto asingle profile
instance. Thecn i s the RDN component of the entry name provided by the
user inthe NSI API call that creates the profile.

(1. 2. 840.113556.1.5.82

NAME “rpcProflle”

SUP rpcEntry

PARENT (rpcEntry $ rpcGroup $ rpcProflle $ rpcserver)
STRUCTURAL

)

The rpcProfileElement object describes a single element in the profile. The

entire profileisretrieved with asingle-level LDAP search rooted at the parent
rpcProfile container. The cn isastring UUID generated by the NSI provider
when the r pcProfileElement instance is created.

(1.2.840.113556.1.5.26

NAME ’rpcProfileElement’

SUP rpcEntry

PARENT rpcProfile

STRUCTURAL

MUST (rpcNsPriorlty $ rpcNsProfileEnt an $ rpcNsinterfacQld)
MAY rpcNsAnnotation

)

82 Gradient DCE for Tru64 UNIX Product Guide

6.3.4.7 RPC Server

RPC Server entries are implemented by two object classes. The rpcServer
object classisacontainer. It is used to gather rpcServer Element entriesinto
asingle server instance. The cn is the user-provided RDN component of the
entry namein the NSI API call that creates the server entry.

(1.2.840.113556.1.5.81

NAME *rpcServer’

SUP rpcEntry

PARENT (rpcEntry $ rpcGroup $ rpcProfile $ rpcServer)
STRUCTURAL

MAY (rpcNsObjectID $ rpcNsCodeSet)

TherpcServer Element object describes a single interface in the server entry.
The entire Server entry isretrieved with asingle-level LDAP search rooted at
the parent rpcServer container. The attributes of the rpcSer ver Element
object alow for efficient searching using straightforward LDAP query
expressions. The cn isastring UUID generated by the NSI provider when the
rpcServer Element instance is created.

(1.2.840.113556.1.5.73

NAME *rpcServerElement”’

SUP rpcEntry

PARENT rpcServer

STRUCTURAL

HOST (rpcNsinterfacelD $ rpcNsBindings $ rpcNsTransferSyntax)

)

6.3.4.8 Attribute Definitions

RPC Name Service implementations search on awell-known set of attributes.
Implementations of this schema are advised for performance reasons to index
the following attributes:

= pcNsObjectID
= rpcNsinterfacelD

6.3.4.9 The rpcNsObjectlD

A set of string UUIDs for objects (in the DCE RPC sense of objects):

(1.2.840.113556.1.4.312
NAME *"rpcNsObjectID’
EQUALITY caselgnoreListMatch
SYNTAX directoryString

USAGE userApplications

6.3.4.10 The rpeNsGroup

A set of DNsfor RPC entries that are members of a given RPC group:

(1.2.840.113556.1.4.11d

NAME *rpcNsGroup®

EQUALITY distinguishedNameMatch
SUBSTRING distinguishedNameMatch

Chapter 6 LDAP Capabilities 83

SYNTAX DN
DBAGE userApplications
)

6.3.4.11 The rpcNsPriority

An integer value indicating the priority of agiven RPC profile element:

(1.2.840.113556.1.d.117
NAME ~rpcNsPriority’
EQUALITY integerMatch
SYNTAX INTEGER

USAGE userApplicationa

)
6.3.4.12 The rpcNsProfileEntry

The DN of asingle RPC entry that is amember of agiven RPC profile:

(1.2.840.113556.1.4.118

NAME *rpcNsGroup”

EQUALITY distinguishedNameMatch
SUBSTRING distinguishedNameMatch
SYNTAX DN

SINGLE-VALUE

USAGE userApplications

)
6.3.4.13 The rpcNsinterfacelD

A string composed of the UUID for an interface exported by an RPC server
and the interface major and minor version numbers in the form:

string-UUID"",” *major®™”.” minor
The BNF description of thisitemis:

(12 840 113556 1 4 115
NAME “rpcNslinterfacelD®
EQUALITY caselgnoreMatch
SYNTAX directoryString
SINGLE-VALUE
USAGE userApplications

)
6.3.4.14 The rpcNsAnnotation

A string describing a given RPC Profile element:

(12840 113556 1 4 366
NAME *rpcNsAnnotation”
EQUALITY caselgnoreMatch
SUBSTRING caselgnoreMatch
SYNTAX directoryString
SINGLE-VALUE

USAGE userApplications

)

84 Gradient DCE for Tru64 UNIX Product Guide

6.3.4.15 The rpcNsCodeset

A set of strings identifying the character sets supported by a given RPC
server:

(12840 113556 1 4 367
NAME *rpcNsCodeset”

EQUALITY caselgnoreListMatch
SYNTAX directoryString

USAGE userApplications

)
6.3.4.16 The rpcNsBindings

A set of binding strings for a given interface and transfer syntax, in the form:

ProtocolSequence””:””NetworkAddress’’[]””

The BNF description of thisitemis:

(12 840 113556 1 4 113
NAME “"rpcNsBindings®
EQUALITY caselgnoreMatch
SYNTAX dlrectoryString
USAGE userApplications

)
6.3.4.17 The rpcNsTransferSyntax

A set of strings composed of the string UUID for atransfer syntax supported
by an RPC server, and the transfer syntax major and minor version numbersin
the form:

string-UUID"* ", " "major™" ""minor
The BNF description of thisitemis:

(12840 113556 1 4 314
NAME "rpcNsTransferSyntax’
EQUALITY caselgnoreLletMatch
SYNTAX directoryString

USAGE userApplications

)
6.3.5 Usage Model

Instantiating an rpcGroup, rpcProfile, orrpcServer object and any
necessary child objects (e.g., rpcServer Element or rpcProfileElement) can
create any RPC entry type. Searching is simplified because thereis a
well-known set of object classes and attributes for each entry type.

A group entry containsthe rpcNsGroup attribute listing the entriesin the
group. Each group isasingle object and can beretrieved in asingle operation.
AnrpcGroup object can have rpcNsObjectiD presentd the list of object
IDs, if present, is explicitly stored and retrieved by applications and not used
by the NSI provider in locating rpcNsGroup objects.

Chapter 6 LDAP Capabilities 85

A profile entry consists of an rpcProfile container with one or more
rpcProfileEntry objects as children, one for each priority level defined. The
complete profileisretrieved in asingle operation by performing asingle-level
LDAP search for objects of class rpcProfileElement rooted at the
rpcProfile entry.

A server entry consists of an rpcServer container with one or more
rpcServer Element objects as children. The complete entry isretrieved in a
single operation by performing a single-level LDAP search for objects of
classrpcServerElement rooted at therpcProfile entry. The NSI provider
creates anew rpcServer Element entry when the interface and transfer
syntax provided by the caller do not match an existing rpcServer Element in
the named server entry. If a matching rpcServer Element exists, the NS|
provider updates it with the string bindings provided by the caller.

This schema allows many discrete rpcServer Element objectsto be stored in
agiven entry. This avoids a number of problemsin trying to store multiple
interfaces with their versions and transfer syntax in asingle entry while
providing convenient access and searching with LDAP. Indexing the Interface
ID and Object UUIDs reduces the performance cost for retrieving multiple
objects.

6.3.5.1 Relative Names

On the surface, CDS can be said to support cell-relative names; LDAP does
not. DCE RPC allows names presented to the RPC NSI to be absolute or
relative. An absolute name contains the full DN of the entry in question. A
relative name isrelative to the DCE cell where the name is stored. The full
DN isthe DN of the cell with the relative name appended. When using an
LDAP directory to store RPC entries as defined by this schema, the
implementation of relative names isimplementation dependent, but should be
consistent. A suggested approach is the creation of a container at the root of
the namespace; for example, directly below the first instantiated object, such
as Organization or organizational Unit, which forms the root for cell-relative
names.

6.4 How GDA Works

LDAP support at the GDA level is achieved by adding an LDAP path for
cross-cell information. Depending on the syntax of the cell name and if a
specific path is enabled via command line options, GDA is how able to ook
up foreign cell information in either DNS, or LDAP, or X.500.

In cases when both LDAP and X.500 are enabled and the cell name is typed,
GDA first resolves the name using LDAR, only if the typed name cannot be
resolved, the X.500 pathisinvoked. Figure 6-2 showsthe various elements at
work in the gdad environment.

86 Gradient DCE for Tru64 UNIX Product Guide

Figure 6-2: Operation at gdad Level

Foreign Cell Name

gdad
Untyped Names v Typed Names .
Path If LDAP fails....
\/ A l
DNS LDAP X.500
L |
A J A J A
X.500
Server
DNS Server X.500 Server
v LDAP | that v
Server | under-
stands
LDAP

6.4.1 Cell Naming

6.4.2 Security

Cell names remain either as untyped namesin DNS format or typed namesin
X.500 format. LDAP cell names are not supported.

If LDAP isenabled, GDA converts an X.500 typed cell name into LDAP
syntax when sending arequest to an LDAP directory service. The conversion
routine can return unexpected results if special characters defined by either
X.500 or LDAP are used in the cell name.

GDA supports the minimum level of authentication. Authentication
information may be supplied on the command line when gdad is started.
However, these command line arguments can be viewed by most users and
therefore a security problem can exist.

6.4.3 Registration Utility

The utility Idap_addcell is provided to register cell information in the LDAP
directory service. The utility obtains and dynamically adds DCE cell
information to the LDAP directory service. Authentication information must
be provided on the command line.

CHAPTER 7

Managing Intercell Naming

7.1 Overview of Intercell Naming

To find names outside of the local cell, CDS clerks must have away to locate
directory serversin other cells. The Global Directory Agent (GDA) enables
intercell communications by serving as a connection to other cellsthrough the
global naming environment. This chapter describes how the GDA works and
how to manage it. The chapter also describes how to define the local cell in
either of the global naming environments (DNS, X.500, or LDAP), where a
step is necessary to make the local cell accessible to other cells.

NOTE: If the cell nameis an X.500 formal name, then either GDS or an LDAP
server may be used as the global name server.

7.2 How the Global Directory Agent Works

The GDA isan intermediary between CDS clerksin the local cell and CDS
serversin other cells. A CDS clerk treats the GDA like any other name server,
passing it name lookup requests. However, the GDA provides the clerk with
only one specific service; it looksup a cell nameinthe X.500, LDAPR, or DNS
namespace and returns the resultsto the clerk. The clerk then uses those
results to contact a CDS server in the foreign cell.

A GDA must exist inside any cell that wants to communicate with other cells.
It can be on the same system as a CDS server, or it can exist independently on
another system. You can configure more than one GDA in acdll for increased
availability and reliability. Like a CDS server, a GDA isaprincipal and must
authenticate itself to clerks.

CDSfinds a GDA by reading address information that is stored in the

CDS _GDAPointer s attribute associated with the cell root directory.
Whenever a GDA process starts, it creates a new entry or updates an existing
entry inthe CDS_GDAPointer s attribute. The entry contains the address of
the host on which the GDA is currently running. If multiple GDAs existina
cell, they each create and maintain their own address information in the
CDS _GDAPointer s attribute.

When a CDS server receives arequest for aname that is not in the local cell,
the server examinesthe CDS_GDAPointer s attribute of the cell root
directory to find the location of one or more GDAs. The next figure shows
how a CDS clerk and CDS server interact to find a GDA.

88 Gradient DCE for Tru64 UNIX Product Guide

Figure 7-1: How the CDS Clerk Finds a GDA

LEGEND

Node A - - - -+ =Request path

-«——— = Response path

-M ! Node B
:
R : ________ -

GDA is at
Node C

I
I
I
I
I
1 Node C
I
I
I
I

The following steps summarize the GDA search that isillustrated in the

preceding figure:

1 OnNodeA, aclient application passes a global name, beginning with the
/... prefix, to the CDS clerk.

2 Theclerk passesthe lookup request to a CDS server that it knows about on
Node B.

3 Theserver'sclearinghouse contains areplica of the cell root directory, so
the server readsthe CDS_GDA Pointer s attribute and returns the address
of Node C, where a GDA isrunning.

4 Theclerk passes the lookup request to the GDA.

The next figure shows how CDS and a GDA interact to find anamein a
foreign cell that is defined in DNS. Suppose the nameis/.../widget.com/
printsrvl, which represents a print server in the foreign cell.

Chapter 7 Managing Intercell Naming 89

Figure 7-2: How the GDA Helps CDS Finds a Name

LEGEND

Node A - - - -+ =Request path

-«+——— = Response path

-M X Node B
I
T ®
;
JE E e -
- GDA is at

Node C

1
1
1
1
I Node C Node D
1
1
1
1

widget.com @
cell root is

at Node E

Node E

®,
____________________ .

@ Success!

0
©

The following steps summarize the name search that isillustrated in the
preceding figure:

1

The client application passes the name/.../widget.com/printsrv1 to the
CDS clerk.

The clerk passes alookup request to a CDS server that it knows about on
Node B.

The server’s clearinghouse contains a replica of the cell root directory, so
the server looks up the CDS_GDAPointer s attribute and returns the
address of Node C, where a GDA is running.

The clerk passes the lookup request to the GDA.

The GDA recognizes that the name is a DNS-style name, so it assumes
that the second component is acell name that is defined in DNS. It passes
that portion of the name (widget.com) to DNS. For simplicity, the figure
shows only one DNS server; more than one DNS server can actually be
involved in resolving aglobal cell name.

90 Gradient DCE for Tru64 UNIX Product Guide

NOTE: Although this example concerns the lookup of a DNS-style name, the
sequence and execution of operationsis nearly identical for an X.500 name or
ahierarchical cell name. If the GDA recognizesthat anameis an X.500-style
name, it passes the nameto either an LDAP client (viaLDAP APIs) or aGDS
client (viaXDS/XOM APIs) rather than to aDNS server. The LDAP client or
GDS client then communicates with the appropriate server to obtain the cell
bindings (the same information as would be obtained from a DNS server). If
the GDA recognizesthat anameis ahierarchical cell name, it passesit to the
CDS server of thetopmost cell in the hierarchy, which isregistered in one of
the global namespaces. The CDS server in this cell walks down the cell
hierarchy to locate the name.

6 DNSlooks up and returnsto the GDA information that is associated with
the widget.com cell entry. The information includes the addresses of
servers that maintain replicas of the root directory of the/.../widget.com
cell namespace.

7 The GDA passes the information about the foreign cell to the clerk.

8 Theclerk contactsthe CDS server on Node E in theforeign cell, passing it
alookup request.

9 The Node E server’s clearinghouse contains a replica of the root directory,
so the server looks up the entry for printsrvlin the root and passes the
requested information to the clerk on Node A. For simplicity, this example
shows the clerk contacting only one server in the foreign cell. While
resolving afull name, the clerk may actually receive referralsto several
serversin the foreign cell.

10 The clerk passes the information to the client application that requested it.

Note that both of the previous examples represent initial lookups. The CDS
clerk caches the locations of GDAs once it discovers them. The clerk also
caches the addresses of serversin foreign cellsthat it learns about, enabling it
to contact the foreign serversdirectly on subsequent requests for namesinthe
same cell.

Note also that a GDA knows its own cell name and can therefore avoid
contacting a global directory service to look up namesin its own cell.
Furthermore, the GDA can recognize whether a cell name conforms to the
X.500 or DNS naming syntax, and it uses that knowledge to route alookup
request to the appropriate global directory service. If the cell name conforms
to the X.500 naming syntax, the GDA will first send the request to the LDAP
client and then to the GDS client if it is not resolved by the LDAP client/
server.

7.3 Managing the Global Directory Agent

Use the DCE configuration program to configure the GDA; the GDA requires
little management onceit is configured. (See the OSF DCE Administration
Guide—Introduction for details on configuring the GDA.)

Chapter 7 Managing Intercell Naming 91

The GDA istypically started and stopped automatically by scripts that
execute as part of normal system startup and shutdown procedures.
Sometimes, however, you may want to use commands to stop and restart a
GDA.. Once you have configured GDA with the DCE configuration program,
you can use these steps to start and stop GDA.

The GDA runs as a process caled gdad. To start the gdad process, follow
these steps.

1 Makesurethat a CDS server isaready running somewhere within the cell.

2 Log into the system as superuser (root).

3 Enter thefollowing command to seeif the dced processis already running:
#ps

If the dced process appears on the list of active processes, proceed to step
5. If the dced process does not appear on the list of active processes, enter
the following command to start the process:

#dced

4 Enter the following command to start the cdsadv process:
cdsadv

5 Enter the following command to start the gdad process:
gdad

NOTE: See the OSF DCE Administration Guide— ntroduction for the
parameters required if gdad isto use LDAP to obtain cell bindings.

To stop the GDA, enter the following command, where pid is the process
identifier of the gdad process:

#Kkill pid

7.4 Enabling Other Cells to Find Your Cell

The GDA isthe mechanism that allows CDS clerksin your local cell to find
other cells. To make your cell accessible to others, you must create an entry
for it in one of the currently supported global naming environments. Before
you do this, obtain a unique cell name from the appropriate naming authority.
(See the OSF DCE Administration Guide— ntroduction for details.)

After you configure a cell, name it, and initialize the cell hamespace, you can
use the dcecp directory show command to obtain the data you need to create
or modify the cell entry in an X.500, LDAP, or DNS server. You can use the
Idap_ addcell command to add the appropriate information for the cell to an
LDAP server. Thedatain a cell entry iswhat the GDA passes to CDS after
looking up acell name. CDS, in turn, uses the information to contact servers
in the cell. The following subsections describe how to define and maintain a
cell entry in an X.500 server (GDS), an LDAP server, or DNS server. These
sections assume a basic familiarity with X.500 and DNS; for details, see the
appropriate documentation for each global hame service.

92 Gradient DCE for Tru64 UNIX Product Guide

You can also define and maintain acell entry in the CDS namespace of
another cell. This type of definition existsin ahierarchical cell configuration.

7.4.1 Defining a Cell in the Domain Name System

Namesin DNS are associated with one or more data structures called resource
records. The resource records are stored in a data file whose name and
location are implementation specific. To create a cell entry, you must edit the
datafileand create two resourcerecordsfor each CDS server that maintainsa
replica of the cell namespace root.

Thefirst resource record, whose type can be AFSDB or M X, contains the host
name of the system where the CDS server resides. You can use MX as an
aternative to using AFSDB. The second record, of type TXT, contains the
following information about the replica of the root directory that the server
maintains:

= The UUID of the cell namespace, in hexadecimal notation

= Thetype of the replica (master or read-only)

= Theglobal CDS name of the clearinghouse where the replica resides
» The UUID of the clearinghouse, in hexadecimal notation

= The DNS name of the host where the clearinghouse resides

Thefollowing example shows a set of AFSDB resource records for acell that
is named cs.tech.edu, in which two replicas of the root directory exist. Note
that only the first resource record contains the cell name; the second, third,
and fourth records are assumed to be associated with the same cell because
they do not contain acell name. The TTL heading stands for time-to-live,
which isavalue, in seconds, after which the datais no longer considered valid
in aDNS cache. (The value shown specifies a default value of 1 week.) The
IN classindicates that the protocol is Internet, and the subtype of 2 indicates
that a name server exists on the host named in the record.

;First Replica:

;Name TTL Class Type Subtype Host
cs.tech.edu 604800 IN AFSDB 2 fox.cs.tech.edu
;Name TTL Class Type Rdata
604800 IN TXT 1 ;version
fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
Master ;Replical type
/.../cs.tech.edu/csl_ch ;ch name
£d3328c5-2a4b-11ca-af85-09002b1c89bb ;ch uuid
fox.cs.tech.edu) ;host

;Second Replica:

;host

604800 IN AFSDB 2 rox.cs.tech.edu
604800 IN TXT 1 ;version
£d3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
Read-only ;Replica2 type
/.../cs.tech.edu/cs2_ch ;ch name
fd3429c4-2a4b-11ca-af87-09002b1c89%b ;ch uuid

rox.cs.tech.edu)

You can use MX as an aternative to using AFSDB. The following example
shows a set of MX resource records for the same cell, cs.tech.edu, in which
two replicas of the root directory exist.

Chapter 7 Managing Intercell Naming 93

;First Replica:

;Name TTL Class Type Preference Exchange

cs.tech.edu. 604800 IN MX 1 fox.cs.tech.edu.

;Name TTL Class Type Rdata
604800 IN TXT ¢ ;version
fd3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
Master ;Replical type
/.../cs.tech.edu/csl _ch ;ch name
£d3328c5-2a4b-11ca-af85-09002b1c89bb ;ch uuid
fox.cs.tech.edu) ;host

;Second Replica:
604800 IN MX 2

rox.cs.tech.edu.
604800 IN TXT ¢ ;version
£d3328c4-2a4b-11ca-af85-09002b1c89bb ;ns uuid
Read-only ;Replica2 type
/.../cs.tech.edu/cs2_ch ;ch name
fd3429c4-2a4b-11ca-af87-09002b1c89bb ;ch uuid

rox.cs.tech.edu)
;host

After you configure acell, you can use the dcecp directory show command
to display the information that is required to construct resource records like
those shown in the previous example. The following is an example directory
show command that displays output for a cell named /.../cs.tech.edu.

dcecp> directory show /.../cs.tech.edu

To create anew resource record in the DNS namespace, use the information
from the directory show command and place the properly formatted data
into the DNS datafile.

7.4.2 Defining a Cell in the Global Directory Service

In GDS, cell information is contained in two attributes: CDS-Cell and
CDS-Replica. You can cause an existing GDS name to become acell entry by
adding these two attributes to the name. If the name you want to use for the
cell does not yet exist, you must create it and then add the attributes. The GDS
administration program uses numbered screens called masks to accept user
input. Use the object administration masksto create a cell entry. (See the OSF
DCE GDS Administration Guide and Reference for details.)

After you configure acell, you can use the dcecp directory show command
to obtain the data that you need to supply when you are creating the
CDS-Cell and CDS-Replica attributes. The following isan exampl e directory
show command and the resulting GDS-formatted output for acell that is
named /.../C=US/O=ABC/OU=Sales:

dcecp> directory show /.../C=US/0=ABC/0U=Sales
{RPC_ClassVersion {01 00}}
{CDS_CTS 1996-04-18-20:11:02.385764100/08-00-09-85-01-22}
{CDS_UTS 1996-08-01-18:01:37.408282100/08-00-09-85-01-22}
{CDS_ObjectUUID 68f0755c-9956-11cf-9da3-080009850122}
{CDSReplicas
{{CH_UUID 59eb61fc-9956-11cf-9da3-080009850122}
{CH_Name /.. ./c=us/o=abc/ou=sales/dcegecko_ch}
{Replica_Type Master}
{Tower {ncadg_ip_udp 15.22.50.148}}

94 Gradient DCE for Tru64 UNIX Product Guide

{Tower {ncacn_ip_tcp 15.22.50.148}}}}
{CDS_Al1UpTo 1996-08-01-14:39:36.404042100/08-00-09-85-01-22}
{CDS_Convergence medium}
{CDS_ParentPointer
{{Parent_UUID 5a824154-9956-11cf-9da3-080009850122}
{Timeout
{expiration 1996-08-02-14:01:36.251}
{extension +1-00:00:00.00010.000}}
{myname /.../c=us/o=abc/subsys}}}
{CDS_DirectoryVersion 3.0}
{CDSReplicaState on}
{CDS_ReplicaType Master}
{CDS_LastSkulk 1996-08-01-14:39:36.404042100/08-00-09-85-01-22}
{CDS_LastUpdate 1996-08-01-18:01:37.408282100/08-00-09-85-01-22}
{CDS_Epoch 68fdf042-9956-11cf-9da3-080009850122}
{CDS_ReplicaVersion 3.0}
dcecp>

To create a new resource record in GDS, use the information from the
directory show command to fill in the fields of Mask 21 (CDS-Cdll) and
Mask 22 (CDS-Replica) in the GDS administration program.

7.4.3 Defining a Cell in an LDAP Server

Theldap_addcell utility obtains and dynamically adds DCE cell information
to an LDAP server. Theldap_addcell command must be run with root
authority. The ldap_addcell command can:

= Create anew directory object with cell bindings.

= Modify an existing directory object to add the cell bindings.

» Changethe values of the cell bindings in a directory object that already
exists.

» Deletethe cell bindings from adirectory object that aready exists.

The cdll bindings that are added or retrieved from a directory object have the
same format used for an X.500 server (GDS) and are stored in 2 attributes:

= CDSCELL
= CDSREPLICAS

Authentication information such as userid and password are part of the
Idap_addcell utility invocation, because it writesto the directory service. The
DCE cell information stored in the directory service is the same whether it
was written using the X.500 registration utility or the I[dap_addcell
registration utility.

Theldap_addcell command has the following syntax:

Idap_addcell -h Idap_server -a authentication DN -p password [-0
object_class,object_class...]|[-d]

Chapter 7 Managing Intercell Naming 95

where:
-h Idap_server

-a authentication_DN

-p password

-0 object_class

The name of the LDAP server targeted to hold the cell binding.

The distinguished name (DN) specified in LDAP name syntax
that will be authenticated and used to add cell binding.

The password that is used to authenticate the distinguished name
(DN).

Value(s) of the attribute object_class for the entry (the
registration) being created or modified. Note that, if you are
listing more than one object_class value, you must separate
them with commas.

Deletes the DCE cell information attributes from the entry in the
directory. It does not remove the entire directory entry.

The command must be run with root authority and prints a message to stderr.

Thefollowing Idap_addcell examples assume the following:

= mymachine.mycity.mycompany.comis the LDAP server machine name.
= gdatest iSauser that has write access to the LDAP server.

= gdatest is aso the password of the user gdatest.

= AnorganizationalUnit is allowed to contain the auxiliary object,

dceCellInfo.

» The LDAP server does schema checking.

This example shows the normal creation of the cell bindingsin the LDAP

server.

Idap_addcell -h mymachine.mycity.mycompany.com -a
"cn=gdatest,ou=houston,o=compaq,c=us" -p "gdatest” -0
organizationalUnit,dceCelllnfo

This example shows the deletion of the CDSCELL and CDSREPLI CAS

attributes.

Idap_addcell -h mymachine.mycity.mycompany.com -a
""cn=gdatest,ou=houston,o=compaq,c=us" -p "gdatest" -d

This example shows the changing of the CDSCELL and CDSREPLI CAS
attributes in an object that already exists.

Idap_addcell -h mymachine.mycity.mycompany.com -a
"cn=gdatest,ou=houston,o=compaq,c=us" -p "gdatest

Most parameters of the Idap_addcell command have a corresponding
environment variable which is used when the corresponding parameter is not
present on the Idap_addcell command invocation. Table 7-1 lists

environment variables.

Table 7-1: Idap_addcell Parameters and Environment Variables

|dap_addcell
Parameter

Environment Variable

-h LDAP_SERVER

-a LDAP_AUTH_DN

96 Gradient DCE for Tru64 UNIX Product Guide

Table 7-1: ldap_addcell Parameters and Environment Variables

|dap_addcell _ .
Parameter Environment Variable
P LDAP_AUTH DN_PW
0 LDAP_OBJECT _CLASS

NOTE: The -d parameter does not have a corresponding environment variable.

If the cell entry is already registered, the CDSCELL and CDSREPLI CAS
attributes are replaced with new values for this cell unless the -d parameter is
specified.

CHAPTER 8

DCE Distributed File Service

8.1 Variation from OSF DFS

Gradient DCE for Tru64 UNIX includes DCE DFS from OSF DCE Release
1.2.2. Thisrelease does not contain any enhancements for DFS beyond those
that are part of OSF DFS. However, there are the following areas of
difference:

» The Episode file system is not supported.

= DFSin Gradient DCE for Trué4 UNIX does not include enhanced DFS
features such as fileset cloning.

» DFSin Gradient DCE for Tru64 UNIX alows the use of Tru64 UNIX
ACLsfor authorization purposes.

» DFSin Gradient DCE for Tru64 UNIX relies on Tru64 UNIX built-in file
system backup rather than using the backup facility provided with OSF
DFS.

For information on how to configure DFS, see the Gradient DFSfor Tru64
UNIX Configuration Guide.

Thelast section in this chapter identifies solutions to some common problems
you might encounter using DFS.

8.2 Using Tru64 UNIX ACLs

True4 UNIX supports the use of generic ACLs on its two supported
filesystems (UFS and AdvFs). The ACLsfollow the POSIX model, providing
a sequence of ACL entries, each consisting of atag (type), an identifier for
entries whose type requires it, and a set of permission bits.

Table 8-1: Tru64 UNIX ACLs

Tag Identifier Permission Bits
user uid rXw
group gid Xw
user_obj xXw
group_obj IXW
other_obj rXw

98 Gradient DCE for Tru64 UNIX Product Guide

ACL entriestagged as user or group identify persons or groups that might
attempt to perform some action on the directory or file. The Identifier isauser
id (uid) for user tags or agroup identifier (gid) for group tags. ACL entries
tagged asuser_obj, group_obj, and other _obj do not useidentifiers because
these are implicit in the metadata of the directory or file. (See Note below.)
The permissions are the standard UNIX read (r), write (w), and execute (X)
permissions.

NOTE: Because DFSin Gradient DCE for Tru64 UNIX maps uids and gids to
specific users and groups, password files must be synchronized with the DCE
Security registry. Enabling Security Integration Architecture (SIA) offers one
way to synchronize uid and gid information with the DCE cell registry.

Default ACLsfor containers and objects are created following the same
method as in the standard DCE DFS implementation.

8.2.1 Tru64 UNIX ACL Limitations

Tru64 UNIX ACLs lack the following functionality that is available with
generic DCE ACLs:

= A setof “foreign” tags supporting users, groups, and objects from foreign
cells.

» A set of “delegation” tags supporting delegation from users, groups, and
objectsin the local cell and in foreign cells.

= An unauthenticated mask controlling access for unauthenticated users.

» A cdl nameincludedin ACL identifierswhich isused for foreign cell user
authentication.

= A wider set of permission bits:

= (c) control
» (i) insert
» (d) delete

An additional limitation of Tru64 UNIX ACLsisthat the ACL identifiers are
uids or gidsinstead of full DCE UUIDs.

Gradient DCE for Tru64 UNIX handles these ACL limitations by providing
appropriate responses to administrative or user actions that involve Trué4
UNIX ACLs. People or programs that use or administer DFS proceed as
normal DCE clients. A transparent translation layer in DCE DFS intercepts
and deals with ACL operations.

8.2.2 DCE Responses to Tru64 UNIX ACL Operations

Dueto the limitations of Tru64 UNIX ACLSs, some operations involving
ACLsbehave differently or return an error. Specific responsesto Tru64 UNIX
ACL operations depend on whether the operation is unsupported, totally
supported, or partialy supported.

Chapter 8 DCE Distributed File Service 99

Unsupported operations such as adding an entry for foreign_user, or
group_delegate return an error.

Totally supported operations such as auser in the local cell requesting write
access to afile behave in the standard manner.

Some operations are partially supported. Tru64 UNIX provides appropriate
responses to certain operations even though the features for their support is
lacking from the Tru64 UNIX ACLs. For example, a user attemptsto delete a
file from DFS. Normally, DFS requires the d (delete) permission but Tru64
UNIX performs the delete operation if the user has write permission on the
file.

8.2.3 Mapping between DCE ACLs and Tru64 UNIX ACLS

The mapping is done by atrandation layer between DFS and the underlying
physical file system at the server. In other words, none of thiswork has any
bearing on the client portion of DFS.

= Thereisno space for ahome cell uuid, so the server assignsthe UUID of
the cell that it belongs to as the home cell UUID of any ACL that it deals
with.

= No“foreign” ACL entriesare possible. The client can submit them, but the
cell UUID isdropped before the mapping to auid or gid is done (the
mapping will fail in this case, since the foreign user or group UUID will
not be found in the registry of this cell).

= Themapping between principal or group UUIDs on one hand and uid/gids
on the other is done by querying the registry of the cell to which the file
server belongs. It is assumed that the password files are synchronized with
the registry or ascheme like SIA is used.

» The permission bits need to be mapped according to Table 8-2.

Table 8-2: Mapping Permission Bits

Tru64 UNIX ACL DCE ACL Bits
Bl file directory
r r r
w ow wid
X X X

» DFSsimulatesamask_obj tag to satisfy operations that require its
presence. However, the simulated mask_obj does not mask any
permissions (its permissions are rwxcid).

» Theinitial_container and initial_object ACLs behave normally.

100 Gradient DCE for Tru64 UNIX Product Guide

8.2.4 Disabling ACL Operations

You can disable the ACL support in the DFS server by setting akernel global
variable using the dbx debugger. After anew kernel that includes DFS support
has been built, specify the following:

cd /usr/sys/conf

dbx -k vmunix

patch dfs_acls_enabled = 0

quit

where conf is the name of the configuration you chose when executing
doconfig. After disabling ACL, any remote ACL operations on DFSfiles
return ENOTTY errors.

8.3 NFS-DFS Secure Gateway Server Administration

The NFS-DFS Secure Gateway server does not support the dfs_login and
dfs logout programs. For authenticated access to DFS, users of
DCE-unaware NFS clients must authenticate to DCE from the Gateway
Server machine using a dfsgw add operation. Refer to the OS- DCE DFS
Administration Guide and Reference for information about authenticating
from a Gateway Server machine.

8.4 DFS Backup

DFSin Gradient DCE for Tru64 UNIX relies on Tru64 UNIX built-in file
system backup rather than using the backup facility included with OSF DFS.
Refer to your Tru64 UNIX documentation for instructions on using the Tru64
UNIX file system backup facility.

8.5 Solutions to Common Problems with DCE DFS

Here are solutions to afew common problems that you may encounter with
DCE DFS.

8.5.1 Running Commands Requiring the setuid Feature

Commands that use the setuid feature (for example, the ps command) do not
execute properly if used from the DFS namespace. Before running the
commands, you must enable the setuid functionality on a per fileset basis by
issuing the cm setsetuid command. Issue this command on each machine that
needs to use these setuid commands after DFS has started, that is, after the
system isin multiuser mode. See cm setsetuid(8dfs) in the OSF DCE DFS
Administration Guide and Reference for more information.

8.5.2 Running cron Jobs with DCE Credentials

It is often necessary to run jobs asynchronously with DCE credentials. For
example, you might run ajob after hours that requires access to DFS. One
way to have ajob running under cron(1) or at(1) acquire DCE credentiasis

Chapter 8 DCE Distributed File Service 101

by using the -k option of the dce_login command. This option allows
dce_login to acquire credentials by reading a key from a keytab file, rather
than by getting a password interactively. Using the -k option along with the -e
option, which allows an executable command to be specified on the command
line, accomplishes the desired effect.

The solution consists of two parts:

First, decide on aprincipa with whose credentials the cron job should run.
(Create a DCE user for this, if one does not exist already.) In the following
example, the principal is designated with the placeholder princ. Then, as

cell_admin, create akeytab file with acommand similar to the following:

dcecp -c keytab create princ.keytab \
-storage /path/name/of/keytab \
-data {princ plain 1 password}

Where the password is the same password that was specified when the

princ account was created in DCE. You may need the -noprivacy option if
you do not have the privacy kit installed on the machine. The keytabfileis
created with root as the owner and 600 permissions. The ownership of the
file has to be changed to the UNIX identity of the executor of the cron job.

Next, you can add aline similar to the following to a crontab file to have
cron run ascript with the credentials of principal princ:

520 * * 1-5 dce_login princ -k /path/name/of/keytab \ -e /path/name/of/
script

to run the indicated script with the credentials of princ at 8:05 p.m.,
Monday through Friday.

You can verify that the first step above worked by issuing the following
command:

dce_login princ -k /path/name/of/keytab -e klist

and making sure that the principal listed isindeed princ.

CHAPTER 9

Compiling and Linking
Applications

9.1 Overview of the Command Format

This chapter describes the command format for compiling and linking DCE
applications on Trué4 UNIX systems.

Note that you can use either the cc compiler or the ¢89 compiler.

Every module of a DCE application program begins with the included header
file pthread.h, as shown in the following example:

#include <pthread.h>

If pthread.h isnot first in the include list for each module, the compiler can
generate warning or error messages about the prototypes for these routines. In
particular, it is best to precede those files containing call declarations for
which there are jacket routines (such as stdio.h).

When linking a DCE application, you must use the -threads option.

True4 UNIX Version 4.0x supports the updated pthread standard, POSIX
1003.1c (D10), in addition to a backward-compatibility mode for the previous
draft POSIX 1003.4a (D4).

DCE isbuilt using the POSIX 1003.4ainterfaces and the DCE documentation
on pthreads corresponds to the 1003.4a standard. Until all DCE vendors
support the new standard, we recommend that you continue to build your
applications using POSI X 1003.4ainterfaces.

To use interfaces defined in POSIX 1003.4a, compile al modules using
-DPTRHEAD_USE_D4 and link the application using the -threads optionin
the loader.

The following command format is an example of how to compile and link:
% cc -0 myprog myprog.c -DPTHREAD USE_D4 -threads

For more information on pthreads for Tru64 UNIX refer to the Guide to
DECthreads and to the reference pages on the Id command.

Note that the cc and ¢89 compilersdo not define_ STDC___ by default. If
you want to include ANSI C function prototypes in your application, you
must specify the -std1 option on the C compiler command line.

For complete information on compiling and linking applications, refer to the
OSF DCE Application Development Guide.

CHAPTER 10

RPC, IDL, ACF and IDL Compiler 1 O
Enhancements

10.1 Overview of Enhancements

This chapter describes enhancementsto RPCs, IDL, and the ACF language:

Localrpc

DTSD timing

Environment variables

Automatic binding can use host’s profile

Enumeration enhancements

The client_memory ACF attribute provides more memory control

10.2 Local RPC Protocol Sequence

Gradient DCE for Tru64 UNIX now supports a new protocol sequence
(protseq) in addition to TCP, UDP, DECnet, and OSI (ncacn_ip_tcp,
ncadg_ip_udp, ncacn_dnet_nsp, and ncach_osi_dna protocol sequence
strings, respectively). The new protocol sequence isimplemented with UNIX
domain sockets and can be used only by clients and servers that are on the
same node. The protocol sequence nameis localrpc.

By using UNIX domain sockets, the I P layer can be bypassed, giving
performance gains that vary with the nature of the RPC traffic.

Thisisnot a“transparent” implementation that switches the user
automatically to UNIX domain sockets when appropriate; rather, the user
must explicitly use the localrpc protocol sequence in either awell-known
endpoint inthe IDL file, or as called out by one of the family of
rpc_server_use protseg* () functions (where * can be any characters)
wherever a protocol sequence string can be used. String bindings can also be
used to pass localrpe binding information from server to client.

10.2.1 Using localrpe with well-known endpoints

Withinthe IDL file, the user might have previously had an endpoint section as
follows:

endpoint(*'ncadg_ip_udp:[2001]", "ncacn_ip_tcp:[2001]",
"ncacn_dnet_nsp:[my_app_server]", "ncacn_osi_dna:[2001]")

Now this section can be expanded to:

106 Gradient DCE for Tru64 UNIX Product Guide

endpoint("localrpc:[/tmp/my_app_server]",
"ncadg_ip_udp:[2001]", "ncacn_ip_tcp:[2001]",
"ncacn_dnet_nsp:[my_app_server]", "ncacn_osi_dna:[2001]")

If the corresponding server code callsrpc_server_use al_protsegs if(), a
UNIX domain socket is created at /tmp/my_app_server in addition to using
the rest of the protseqgs specified in the endpoint section. A client residing on
the same node as the server can then connect to the server using this socket to
gain some performance advantage.

10.2.2 Affected RPC API calls

The following RPC API calls have been affected in some way by localrpc, or
in some cases significantly not affected.

rpc_server_use protseq()

This function can now be handed “localrpc” for the protseq parameter and
asocket in the form of /tmp/LOCAL_RPC_42670001 will be dynamically
formed, where “4267" is the hex form of the server pid, and the “0001” is
acounter to ensure a unique name. The hex version of the pid isused in
cleaning up unused sockets by dced.

rpc_server_use protseq_ep()

This function can now be handed “localrpc” for the protseq parameter and
apathname for the endpoint. The socket is created at the given endpoint.

rpc_server_use protseq_if()

This function can now be handed “localrpc” for the protseq parameter and
the endpoint from the interface specification will be used.

rpc_server _use all_protseqs()
This function does not use localrpc in the list of valid protsegs. Thisisto
prevent breaking existing programs that randomly pick a binding and
attempt endpoint operations using it. Endpoint database operations do not
accept localrpc endpaints.
rpc_server_use all_protseqgs if()
This function will now create alocalrpc binding if it has been specified
(along with any other protseqs) in the interface specification (IDL file).
rpc_ep_register()
This function will not put any localrpc binding handles into the endpoint
database. If the entire binding vector consists only of localrpc binding

handles, thenthe statusrpc_s no_bindingsisreturned. Otherwise, localrpc
bindings are skipped over and other bindings are inserted.

rpc_ep_register_no_replace()
Seerpc_ep_register() for identical restrictions.
rpc_string_binding_compose()

Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 107

This routine will now accept localrpc in addition to the other protocol
sequences aready supported. When composing a string binding that has
localrpc as its protocol sequence, it isonly necessary to providea NULL
for the hosthame as the parameter placeholder. The hostname, hostname
IP, or “localhost” would also be acceptable.

rpc_binding_from_string_binding()

For localrpc string bindings, the hostname can be omitted. See the string
binding stylein the next call, rpc_binding_to_string_binding().

rpc_binding_to_string_binding()

For localrpc bindings, the hostname is not used in the string binding
returned from this routine. Instead of localrpc:hostname:[/tmp/sockname],
it smply uses: localrpc:[/tmp/sockname]

rpc_network_ing_protseqs()
This routine does not return localrpc in the list of supported protsegs to
maintain compatibility with existing programs. Some existing programs
call thisroutine, pick abinding, and use only that one binding in
rpc_server_use protseq() and rpc_ep_register() calls. The
rpc_ep_register() call with only alocalrpc binding would fail.

rpc_network_is protseq_valid()

This routine will now return true for “localrpc,” aswell as the previously
supported protsegs.

10.2.3 Suppressing localrpc (or any other protseq)

Particular protsegs can be suppressed from RPC's consideration by listing
only the desired protsegs in the RPC_SUPPORTED_PROTSEQS
environment variable, for example:

setenv RPC_SUPPORTED PROTSEQS ncacn_ip_tcp:ncadg_ip_udp

This example effectively suppresses DECnet, OSI, and Local-RPC protocol
sequences. (Note: DECnet/OSI protocols will not be used if DECnet/OSI has
not been configured.)

10.2.4 Permissions of localrpc Socket

The UNIX permission used on the socket created will normally follow from

the user's current umask value and the permissions of the directory where the
socket is created. This can be tuned by using a*“ permission network option” in
the endpoint. For example, if the interface specification (IDL file) contained:

endpoint("localrpc: [/tmp/my_app_server,perm=666]",
"ncadg_ip_udp:[2001]", "ncacn_ip_tcp:[2001]",
"ncacn_dnet_nsp:[my_app_server]", "ncacn_osi_dna:[2001]")

The socket permission will be set to read and write for all users regardless of
the current umask value. The network option can aso be used when directly

calling rpc_server_use protseq _ep().

108 Gradient DCE for Tru64 UNIX Product Guide

10.2.5 Added dced Support

Any localrpc sockets created (dynamically) in the form of
/tmp/LOCAL_RPC_%4x%4d (e.g. /tmp/LOCAL_RPC_42670001)

by using the rpc_server_use protseq() function will be garbage-collected by
dced some time after the server process has gone away. The reaper thread that
accomplishes this will only be activated 3 times a day to keep the additional
overhead very low.

10.2.6 Compatibility Issues

L ocalrpc endpoints will not be inserted into the Endpoint Database so that
remote clients will not waste time attempting to connect to them. (See the
rpc_ep_register() and rpc_ep_register_no_replace() functionsin the above
API section.)

Localrpc entriesin the endpoint section of the interface specification are
ignored by platforms that don't support this protocol sequence.

10.3 DTSD Timing and Timeout Changes

Within RPC, the API is extended with the effect of distributing timing signals
from a different source and reducing the default TCP timeout period from 2
hoursto 10 minutes. Previously, dtsd listened for the DECnet time service
(DECdts) synchronization messages on data link interface (DLI). Now, dtsd
defaultsto RPC only.

To overturn the new default value (RPC only) and return to the former way of
accepting timing messages.

% dtsd -m

The dtsd command invokes the DTS daemon (server or clerk process). This
command is usually executed as part of the overall DCE startup script,
dcesetup.

You can enter the command manually under the following conditions:

» |f aDTS daemon failsto start automatically upon reboot
= |f youwant to restart adaemon that you shut down to perform a backup or
do diagnostic work

In normal rebooting, the rc.dce script automatically provides arguments
appropriate to the choice of configuration options.

If dtsd is started with no arguments (other than -d for debugging and -w for
serviceability determinations), then the server must be started with dcecp.
The following example configures alocal server:

dcecp> dts configure -notglobal

dcecp> dts activate

DTS runs as the host machine principal, which isusually root.

Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 109

Use dtsd interactively only when troubleshooting; use the /shin/rc3.d/
S66dce script to start the DTS daemon. On some systems the superuser is
associated with the machine principal.

10.3.1 Affected RPC API Call

Thefollowing RPC API calls has been affected by setting the default TCP
timeout from (kernel tunable) two hours to (DCE) ten minutes:

rpc_mgmt_set com_timeout()
rpc_mgmt_set server_com_timeout()

Previoudly, these functions recognized only two timeout values for TCP
connections. The two valueswere 0 or 10: rpc_c_binding_min_timeout(0) or
rpc_c-binding_infinite_timeout(10). Those same calls recognized al integer
values from 0 to 10 for UDP connections, however.

Currently, all values from 0 to 10 affect the timeout properties of each call
without regard for the protocol selected. A value of 10 corresponds to two
hours with each lower integer corresponding to a smaller period.

10.4 Using Environment Variables to Restrict Network Interfaces and

Addresses

This section describes two environment variables that are useful controls for
cluster environments and for systems with more than one network interface:

» RPC_UNSUPPORTED_NETIFS removes device(s) from RPC
consideration.

» RPC _SUPPORTED NETADDRS specifies network resources for RPC
consideration.

% setenv RPC_UNSUPPORTED_NETIFS tel

Remove the device named “tel” from RPC consideration.
% setenv RPC_UNSUPPORTED_NETIFS tel:te2

Remove the two devices named “tel”and “te2” from RPC consideration.

NOTE: To list more than one device, use a colon-separated list.

% setenv RPC_SUPPORTED_NETADDRS 16.20.16.144

Of all network addresses that are available, use only 16.20.16.144.

% setenv RPC_SUPPORTED_NETADDRS 16.20.16.144:16.20.40.139

Use two of the available addresses, “16.20.16.144”and “ 16.20.40.139".

NOTE: To list more than one network address, use a colon-separated list.

110 Gradient DCE for Tru64 UNIX Product Guide

10.5 IDL and ACF Enhancements

This section describes the following enhancements to IDL and the ACF
language:

= Automatic binding can use the host’s profile
= Enumeration enhancements
= Theclient_memory ACF attribute gives more memory control

10.5.1 Automatic Binding Enhancement

When a client uses the automatic binding method, DCE must use the name
service to obtain binding information. However, the client host must have a
starting entry from which to begin the namespace search. If the
RPC_DEFAULT_ENTRY environment variable is defined on the client
host, DCE uses the entry in that variable to obtain binding information. If
RPC_DEFAULT_ENTRY is not defined, DCE looks for binding
information from the host’s name service profile.

10.5.2 Enumeration in IDL

An IDL enumeration provides names for integers. It is specified as follows:
enum {identifier[= integer], ...}

Each identifier in an enumeration is assigned an integer, either explicitly in
the interface or automatically by the IDL compiler. If all the identifiers are
unassigned, the IDL compiler begins assigning O (zero) to thefirst identifier, 1
to the next identifier, and so on. If an unassigned identifier follows an
assigned one, the compiler restarts number assignment with the next
consecutive integer. An enumeration can have up to 32,767 identifiers.

Assignments can be made in any order, and multiple identifiers can have the
same vaue. For example:

typedef enum {

SHOVEL = 9, AX, MATTOCK = 3, PITCHFORK, SPADE = 9

} yard_tools;

/* values assigned: SHOVEL:9, AX:10, MATTOCK:3, PITCHFORK:4, SPADE:9 */

10.5.3 The client_memory ACF Attribute

While marshaling parameters, the client stub uses built-in routines to manage
memory. You can use the client_memory attribute to specify different
memory allocation and free routines. The client_memory attribute has the
following syntax in the ACF header:

[client_memory(malloc_routine, free routing)] interface idl_interface name

The routines you specify must have the same respective procedure
declarations as the system’s malloc() and free() routines.

Applications need to manage memory consistently, so if your application
needs to do other memory alocation, be sure to use the same routines you
specified with the client_memory attribute.

Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 111

You can use the client_memory attribute in conjunction with RPC stub
support API routinessuch asrpc_sm_set_client_alloc free() and
rpc_sm_swap_client_alloc free().

10.6 IDL Compiler Enhancements

This section describes the following enhancements to the IDL compiler
supported by Gradient DCE for Tru64 UNIX:

The -standar d application build options
Treatment of stub auxiliary files
Application template feature

C++ application support

10.6.1 The -standard Build Option

The -standard_type IDL compiler command option allows you to specify
portable or extended features of the OSF DCE.

The standard_type argument specifieswhich IDL featuresto enable. If you do
not specify this argument, the compiler generates warning messages for all
features that are not available in the previous version of OSF DCE.

You can specify one of the following values for the standard_type argument:

portable Allows only the language features available in OSF DCE Version 1.0.2.

dce v10 dce v103
dec_v10 All are equivalent to the portable argument.

dec v13 Allows all language features supported by the -standard dce_v10 argument,
plus a set of Compag extensions to its products based on OSF DCE V1.0.3.

dce vl Equivaent to dec_v13.

extended Allows all language features supported in the current version of the compiler.
Thisisthe default.

dce v20 Equivalent to the extended argument.

The command line in the following example compiles the IDL interface
test.idl and enables extended features of the OSF DCE:

% 1dl test.idl -standard extended

10.6.2 Stub Auxiliary Files

By default, the OSF DCE IDL compiler at V1.0.3 or later does not generate
the -caux and -saux files that V1.0.2 does. However, if you want to use build
procedures that work with the V1.0.2 IDL compiler, you can direct the V1.0.3
(or later) IDL compiler to generate empty auxiliary files. To do this, definethe
environment variable IDL_GEN_AUX_FILES asfollows:

% setenv IDL_GEN_AUX_FILES "1"

112 Gradient DCE for Tru64 UNIX Product Guide

10.6.3 Generating Application Templates Using the IDL Compiler

The IDL compiler can use your interface definition file to generate aC
language template that you can modify to create executable client and server
applications. The template feature simplifies the implementation of
distributed applications by generating a module of templates for many of the
routines that must be provided by the application programmer.

A template is a generated RPC routine that includes the function header and
an empty function body. You fill in the function body with
application-specific information and integrate the module into your
application. By using templates, you can concentrate on the functional aspects
of your application program instead of the mechanical process of writing
function definitions that match the corresponding IDL definitions.

The template feature is designed to support applications written in the C
programming language, and it supports all functions defined in IDL. The
template feature does not generate compl etely executable client and server
applications.

To use the IDL compiler to create atemplate of the manager routinesin the
server side of your distributed application, specify the template_manager
option when you compile the application interface module(filename.idl) with
IDL. You can generate a template module containing the client-side routines
for your distributed application by specifying the template _client option to
the IDL compiler.

Thetemplate_manager compiler option generates a module that contains
templates for the routines required in the manager portion of a server
application. The template_client compiler option generates a modul e that
contains templates for some of the routines used to create the client side of an
application. The following IDL compiler command options control generation
of template modules.

-template_client filename Directsthe IDL compiler to generate a C sourcefile
containing a template implementation of each routine
that must appear in the client application to use the
specified IDL interface. If you do not specify an
extension for filename, the compiler assignsthefile
extension .c.

-template_manager filename Directsthe IDL compiler to generate a C sourcefile
containing a template implementation of each routine
and operation that must appear in the manager modul e of
the server side of an application to use the specified IDL
interface. If you do not specify an extension for
filename, the compiler assigns the file extension .c.

The next tablelists every IDL construct that can be defined in atemplate
module. The table indicates whether each construct is specific to aclient
template, a manager template, or both. If your client application does not use
any of the IDL constructs (in the next table) that support client modules, then
you will not benefit from using the template feature.

Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 113

Table 10-1: IDL Constructs Supported by Template Feature

IDL Construct Template Type
Remote procedure implementations manager
Context handle rundown routines manager
[transmit_as] conversion routines client and manager
[represent_as] conversion routines client and manager
Customized binding routines client

Note that remote procedure implementations are defined as all functions
defined in IDL for the C programming language.

The template feature is for use during application devel opment, when you
might generate template modules repeatedly as you add new functionsto an
interface. However, after you create and modify the first template module,
you should specify atemporary filename for subsequent template modules.
Otherwise, you will overwrite the existing modified template module. After
creating a new template module in atemporary file, use atext editor to move
the new template module into the existing application file which includes the
modified templates.

10.6.4 Example of IDL Template Feature

Thefollowing sections illustrate how to use the IDL template feature with the
test2 example program included with your DCE software kit. (See

Chapter 13 for more information on programsin this software kit.) The
following files are discussed:

» Exampleinterface definition file (test2.idl)
» Example manager template (test2_mgr.c)

10.6.4.1 Example Interface Definition File

This section shows the test2.idl interface definition source code.

/*

**COPYRIGHT (C) 1993 BY

flal DIGITAL EQUIPMENT CORPORATION, MAYNARD
il MASSACHUSETTS. ALL RIGHTS RESERVED.

**x

** THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE

** USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF

** SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE.
** THIS SOFTWARE OR ANY OTHER COPIES THEREOF MAY NOT BE PROVIDED

** OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE

** TO AND OWNERSHIP OF THE SOFTWARE 1S HEREBY TRANSFERRED.

*%

** THE INFORMATION IN THIS SOFTWARE 1S SUBJECT TO CHANGE
** WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT
** BY DIGITAL EQUIPMENT CORPORATION.

**x

114 Gradient DCE for Tru64 UNIX Product Guide

** DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
** SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

*%

*%

** NAME

**x

ol test2.idl

**x

** FACILITY:

*%

** RPC Test Program #2

**x

** ABSTRACT:

**x

** Definitions of types/constants and procedures that make up the

** remote interface to the RPC Test Program #2.
**

*/
[
uuid(eef82780-53bb-11c9-94e0-08002b13d56d),
version(0)
1
interface test2
{
[idempotent] void test2_add
(
[in] long a,
[in] long b,
[out] long *C
);
}

10.6.4.2 Example Manager Template

Thefollowing IDL command creates a manager template for the server side
of the test2 application interface. The IDL file for the server side of the
application is shown in Section 10.6.4.1 on page 113.

% idl test2.idl -template_manager test2_mgr.c

As aresult of this command, the compiler generates the test2_mgr.c source
code template for the test2.idl interface definition, shown next. The template
begins with comment lines that indicate the version of the IDL compiler that
generated the template and the name of the IDL interface for which the
template was generated. These comment lines are followed by an include
statement for the interface header file and the template routines.

Chapter 10 RPC, IDL, ACF, and IDL Compiler Enhancements 115

The generated template modules provide the function definition under
conditional compilation in both the ANSI-C form and in the older form of the
C language. The template module contains both forms of IDL functions so
you can use the generated templates on systems on which the C compiler does
not yet support the ANSI-C standard.

Thefollowing isthetest2 mgr.c source code template generated by IDL.

/* Generated by IDL compiler version DEC DCE T1.0.3-A6 */

/*

** Support routines and Remote Procedure Implementations for interface test2
*/

#include "test2.h"

/*
** Implementation of Remote Procedures for test2
*/

void test2 add
#ifdef IDL_PROTOTYPES

(
/* [in] */ idl_long_int a,
/* [in] */ idl_long_int b,
/*

[out] */ idl_long_int *c

)

#else

(a, b, ©)

#endif

#ifndef IDL_PROTOTYPES
idl_long_int a;
idl_long_int b;
idl_long_int *c;

#endif

{

}

10.6.4.3 Creating the Executable Manager Program

From the manager template module, you can create the compl ete, executable
server by including the application-specific implementation of the manager
routine, as follows:

{

*c=a+b;

}

10.6.,5 C+—+ Application Support

Theidl compiler has several options that support the use of C++ language
syntax features. The options -lang and -no_cxxmgr are described in the
Gradient DCE for Tru64 UNIX Reference Guide.

CHAPTER 11

Application Debugging with the
RPC Event Logger

11.1 Overview of Debugging Support

The RPC IDL compiler in Gradient DCE for Tru64 UNIX includes enhanced
application debugging support beyond the support provided with OSF DCE.
The IDL compiler includes the RPC Event Logger — a software utility that
records information about operations relating to the execution of an
application. Operationa information about the program state at a specific
point during processing, called an event, isrecorded in afile, called an event
log. You have the option of directing event logging information to the
terminal screen, rather than to afile. In this guide, the terms event log and log
are used interchangeably to refer to the stream of logging output captured in
the event log file or displayed on the screen.

Event logging provides a detailed, low-level view of the execution of your
RPC application. If development of your RPC application is proceeding well,
thislevel of detail may not be necessary. However, when you are in the
debugging phase of application development, the continuous execution
information provided by the Event Logger and the ability to change the type
and timing of logging can be valuable.

11.2 Introduction to the RPC Event Logging Facility

When event logging is enabled, the Event Logger creates one log for each
client and server process. To enable the RPC Event Logger, you specify an
IDL compiler option that traces events (described in “ Enabling Event
Logging”).

Enabling event logging when compiling allows you the option of generating
logs at runtime without rebuilding the application. Once logging is enabled,
you can use environment variables and the RPC Log Manager (rpclm) to
control logging operations. The Log Manager provides a command interface
for changing logging operations during application execution.

The RPC Event Logger records events about application calls, context
handles, errors, miscellaneous events, and logging operations. These are
called event types. Typical RPC events include the following:

= call_start — A client application made a call to a server.

= call_failure — A client stub terminated abnormally either through an
exception or failing status.

118 Gradient DCE for Tru64 UNIX Product Guide

= exception — An exception was detected in the server stub, and the
exception caused the call to terminate.

= context_rundown — A context handle on a server was freed by the context
rundown procedure.

For application calls, the Event Logger generates eventsthat signal call
activation, the call start and end, attempts to rebind to a server, and
termination of a server thread.

For context handles, the Event Logger generates events that signal context
handle creation and deletion by the client and server, and context handle
modification, removal, and rundown.

For errors, the Event Logger generates events that signal call and receive
failure from the client, exceptions, server failure, and call transmission failure
from the server.

The miscellaneous events provide information about the application manager
routine, and input and output argument processing events.

The logging operation itself generates events that display the logging output
device, and that signal modification of logging parameters, and event log start
and stop.

Asaresult of using the -trace option in the IDL compile command, idl, RPC
events are generated by code in the client and server stub modul es created by
the compiler. Note that some events are generated at selected pointsin the
RPC runtime library. For this reason, certain events, such as those relating to
the logging operation, are aways generated into the application codein
addition to the event types you specify.

The events generated in each of these areas are shown in Table 11-1. Thefirst
column lists events that can be generated, and the second column indicates
whether the client or server, or both, can generate the event. See Section 11.7
on page 133 for a complete description of each event.

Table 11-1: Event Types

Event Name Origin
Call Events
activate server
call_end client
call_start client
rebind client
terminate server

Context Handle Events

client_ctx_created client

client_ctx_deleted client

client_ctx_destroyed | client

context_created server

Chapter 11 Application Debugging with the RPC Event Logger 119

Table 11-1: Event Types (Continued)
context_deleted server
context_modified server
context_rundown server

Error Events
cal_failure client
exception server
receive fault client
status fail server
transmit_fault server

Miscellaneous Events
await_reply client
manager_call server
manager_return server
receive client

Logging Events

internal_error client, server
listening client, server
log_events client, server
log_file client, server
log_start client, server
log_stop client, server

In the event log, each event is described on asingle line divided into five
fields. Thefive fields are defined in the table below.

Table 11-2: Event Log Fields

Field Field Description
Event Time The system clock at the time of the event.
Events are listed chronologically in the log.
Thread Identity The hostname, process ID, and thread ID.

Operation Name

The interface and operation name (if
available).

Event Name

Name of the event.

Event Data

Datarelated to the event. Thisfield contains
either specific information about logging
operations or astring binding that uniquely
identifies the client process, server process,
or Log Manager process.

120 Gradient DCE for Tru64 UNIX Product Guide

Thefollowing is an example of an event log generated for an RPC client. The
log contains five columns. To improve readability, columns four and five are
shown below the first three columns. In addition, the field names have been
added to identify the events; the names do not appear in an actual event log.
(In subsequent event log examples, the field names are occasionally used
instead of actual datato improve readability where necessary.)

EVENT TIME THREAD IDENTITY OPERATION NAME

1994-02-07:11:48:18.31.160-5:0010.121 ifdef:8710/1 binopwk .binopwk_add
1994-02-07:11:48:18.32.170-5:0010.121 ifdef:8710/1 binopwk .binopwk_add
1994-02-07:11:48:18.65.180-5:0010.121 ifdef:8710/1 binopwk .binopwk_add

EVENT NAME EVENT DATA

log_start all

call_start ncacn_ip_tcp:16.31.48.109[1821]
call_end

This small event log indicates that the following events occurred:

1 The log_start event indicates that logging started on February 7, 1994, at
11:48 a.m. on the host named ifdef, in process number 8710, and in thread
number 1. Event logging was enabled when the binopwk interface was
compiled with the IDL -trace option. The RPC call to the binopwk_add
operation in the binopwk interface caused logging to begin and is the first
event logged. The Event Data field indicates that all events are being
logged.

2 Thecall_start event indicates an attempt to execute a call to a server. The
string binding in the Event Data field shows that the call was made over
the TCP/IP transport to host 16.31.48.109 with endpoint 1821. This string
binding identifies the server being contacted.

3 Thecall_end event indicates that the RPC call is completed, and control
has returned to the caller of binopwk_add.

Thislog indicates that the RPC call to the binopwk _add interface was
successful because no error events occurred.

11.3 Generating RPC Event Logs

In general, to create an event log you must follow these four basic steps:

1 Specify the -trace option in your idl command line to enable event
logging.

2 Compile and link the application.

3 Assign the event log to afilename or to the screen.

4 Execute the application.

Chapter 11 Application Debugging with the RPC Event Logger 121

The next sections describe how to use the -trace option.

11.3.1 Enabling Event Logging

To enable event logging, specify the -trace option when you use theidl
command to compile an interface. The syntax of the idl command with the
-trace option is as follows:

% idl filename -trace value

Event types are specified asavalue of -trace. Valid values and the event types
they denote are listed in the table below.

Table 11-3: Event Values and Types

Value Event Type
al Log dl events
none Dis_able all previously specified trace

options

cals Log eventsrelating to all RPC calls
context Log events relating to context handles
errors Log errors
misc Log all miscellaneous events
log_manager Enable command interface

For more information on the -trace option, see Section 11.3.2 on page 121.

11.3.2 Using the -trace Option

Once you have used the Event Logger, you will find that it generates alarge
volume of information to be analyzed. Discard any unneeded | og files because
the Event Logger will continue to record information in the files, enlarging
them until the disk is full.

To help reduce the generation of unwanted information, you can use the
-trace options to enable event logging on only a subset of events. That is,
rather than specifying the all option, specify only calls or only
context_handles. The subset you specify will depend on the part of your
application you are debugging. Although the -trace option provides logging
control on a per-compilation basis, the interface must be rebuilt to enable or
disable logging of different event types. The -tr ace options offer the ability to
select different event types for the various IDL interfaces that might make up
asingle application.

You can use the -trace option to request logging of a single type of event,
such as errors, with acommand similar to the following:

% idl binopwk.idl -trace errors

You can also use the -trace option to request logging of multiple event types,
such as errorsand calls as shown below:

122 Gradient DCE for Tru64 UNIX Product Guide

% idl binopwk.idl -trace errors -trace calls

This command enables the Event Logger, specifying error and call event
logging.

To enable event logging to trace the execution of RPC calls within a process,
perform the following steps:

1 Enable event logging by specifying the -trace option in the idl command
you use to compile each interface definition. This example specifies the
-trace all option:

% idl binopwk.idl -trace all
2 Build and link the client and server portions of the application.

3 Usetheenvironment variable RPC_LOG_FILE to direct the log output for
both the server and client processes. To store Event Logger output in afile,
assign the environment variables to afilename. To direct Event L ogger
output to the standard terminal output for the process (stdout), assign the
environment variable to double quotation marks (""). This guide refers to
standard terminal output as the screen.

In the window from which the server portion of the application will be
executed, direct logging for the server to afile with the following syntax:

% setenv RPC_LOG_FILE "server.log"
Or, to direct logging for the server to the screen, use the following syntax:
% setenv RPC_LOG_FILE "*

4 In the window from which the client portion of the application will be
executed, direct logging for the client to afile using the following syntax:

% setenv RPC_LOG_FILE "client.log"
Or, to direct logging for the client to the screen, use the following syntax:
% setenv RPC_LOG_FILE "

Now you can invoke the client and server processes. The event log will be

recorded in the specified file or displayed on your screen when you execute
the application.

11.3.3 Combining Event Logs
Although event logs are generated locally for each process, you can combine
event log files to provide a broader view of application execution.

Note that this section does not give examples of each step in the application
development process.

The syntax of asort command is asfollows:

% sort -m server-filename.log client-filename.log >
client_and_server-filename.log

The -m option is specified, which indicates that the files are already sorted
and prevents reordering of eventsthat occurred at the same time.

Chapter 11 Application Debugging with the RPC Event Logger 123

If two events have the same timestamp, you receive awarning message after
the sort is completed.

The following exampleillustrates how to combine logs from two different
systems.

1 The server process command sequence is as follows:

% idl fpe_server.idl -trace calls -trace errors
% setenv RPC_LOG_FILE "'server.log"
% server

2 Theclient process command sequenceis as follows:

% idl fpe_server.idl -trace calls -trace errors
% setenv RPC_LOG_FILE "client.log"
% server

These command sequences result in two log files: server.log and
client.log, shown below. (Note that, in the following example log files, the
Event Datafield is not shown.)

Thisisfile server.log:

1994-03-03:20:37:03.170-5:0010.121 murp:17924/15 fpe.setup log_start
1994-03-03:20:37:03.170-5:0010.121 murp:17924/15 RPC Log Mgr listening
1994-03-03:20:37:03.180-5:0010.121 murp:17924/15 fpe.setup activate
1994-03-03:20:37:03.180-5:0010.121 murp:17924/15 fpe.setup terminate
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 fpe.float
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15

transmit_fault

1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 fpe.float terminate

Thisisfile client.log:

1994-03-03:20:37:02.850-5:0010.121 ifdef:28168/1 fpe.stup log_start
1994-03-03:20:37:02.880-5:0010.121 ifdef:28168/1 fpe.stup call_start
1994-03-03:20:37:03.190-5:0010.121 ifdef:28168/1 fpe.stup call_end
1994-03-03:20:37:03.190-5:0010.121 ifdef:28168/1 fpe.flt call_start
1994-03-03:20:37:03.210-5:0010.121 ifdef:28168/1 receive_fault
1994-03-03:20:37:03.210-5:0010.121 ifdef:28168/1 call_failure

3 Next, thetwo log files are combined and sorted with the sort command.
% sort -m client.log server_log > client_and_server.log
Theresulting file client_and_server.log isasfollows:

1994-03-03:20:37:02.850-5:0010.121 ifdef:28168/1 fpe.setup log_start
1994-03-03:20:37:02.880-5:0010.121 ifdef:28168/1 fpe.setup call_start
1994-03-03:20:37:03.170-5:0010.121 murp:17924/15 fpe.setup log_start
1994-03-03:20:37:03.170-5:0010.121 murp:17924/15 RPC Log Mgr listening

1994-03-03:20:37:03.180-5:0010.121 murp:17924/15 fpe.setup terminate
1994-03-03:20:37:03.190-5:0010.121 ifdef:28168/1 fpe.setup call_end

1994-03-03:20:37:03.190-5:0010.121 ifdef:28168/1 fpe.float call_start
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 fpe.float activate
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 fpe.float exception

124 Gradient DCE for Tru64 UNIX Product Guide

1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 transmit_fault
1994-03-03:20:37:03.200-5:0010.121 murp:17924/15 fpe.float terminate
1994-03-03:20:37:03.210-5:0010.121 ifdef:28168/1 receive_fault
1994-03-03:20:37:03.210-5:0010.121 ifdef:28168/1 call_failure

For the combined output to be accurate, the system clocks on all hosts on
which event logs are generated must be closely synchronized. The Distributed
Time Service (DTS) component of Gradient DCE for Tru64 UNIX provides
such aservice. Once the clocks are synchronized, the ordering of eventsin a
combined log fileisvalid only if the difference between timestamps made on
different machinesis greater than the inaccuracy field in those timestamps.
(See the DTS documentation in the OSF DCE Administration Guide — Core
Components for more information about timestamps.)

In the preceding client_and_server.log file example, consider the event with
the timestamp 1994-03-03:20:37:03.180-5:0010.121 and the event that
followsit (these two event lines are separated from the rest of the log by a
blank line on either side). Note that the timestamps indicate that the terminate
event precedes the call_end event. However, you cannot determine this
sequence of events by comparing timestamps because the inaccuracy value at
the end of the timestamp is greater than the difference between the
timestamps. That is, the difference in time between these eventsis only 10
milliseconds (the difference between 180 and 190 milliseconds). However,
the inaccuracy in the timestamps is 121 milliseconds (10.121). Therefore, the
log is not adefinitive indicator of which event occurred first. Because of the
simplicity of the example and the single thread of control, you can assume
that the terminate event preceded the call_end event.

11.3.4 Disabling Event Logging

To disable event logging, simply compile your interface without specifying
the -trace option. For example:

% idl binopwk.idl

11.4 Using Environment Variables and the Log Manager to Control
Logging Information

In addition to the -trace options, the Event Logger offers two other methods
for controlling information in the event log. Each facility is advantageousin
different circumstances, depending on the type of processes with which you
are working and the type of events you need to log. The two methods are as
follows:

= Controlling Logged Events with Environment Variables. Select a subset of
event types specified previously with the -trace option by creating the
environment variable RPC_EVENTS. You assign the environment
variable to the required event types before executing the process. This
method allows you to use event logging without rebuilding the interface;
however, you must first stop the process or assign the environment
variable before starting it. This method is also useful in cases where you

Chapter 11 Application Debugging with the RPC Event Logger 125

specified al-inclusive event logging (such as with the -trace all option)
but you determine while the application is executing that you need only a
subset of events.

= Controlling Logged Events with the RPC Log Manager: Select a subset of
event types specified previously with the -trace option by using the RPC
Log Manager command interface. This method allows you to modify
event logging parameters for an executing image — there is no need to
rebuild the interface or to stop and restart the process. In addition, you can
usethe Log Manager to modify event types specified with the environment
variable RPC_EVENTS.

The following sections provide detailed descriptions of how to use each of
these methods to control the type of events logged.

11.4.1 Controlling Logged Events with Environment Variables

One way to control the type of events logged is by assigning the environment
variable RPC_EVENTS. Thismethod isideal for an application that contains
asingle RPC interface because environment variables provide control at the
process level, rather than at the interface-by-interface level. However, to
enabl e the environment variable you must first stop the client or server
process.

To use environment variables to control event logging, first use the IDL
-trace option in your idl compile command and then assign the log file with
RPC_LOG_FILE. You can then use the environment variable
RPC_EVENT Sto reduce the number of events currently being logged. That
is, if you used the -trace error s option to request error event logging, you can
subsequently use only the environment variable to request logging of errors
or none. You cannot use the environment variable to increase the number of
event typesto be logged. To do this, you must recompile the interface with the
required -trace options.

Thevalue of RPC_EVENTSisalist of event types separated by commas.
Thelist identifies the event types to be monitored. Valid values are the same
asthose for -trace (except log_manager). These values are all, none, calls,
context, errors, and misc.

An example command line follows:

% setenv RPC_EVENTS "calls,errors"

If the environment variable RPC_EVENT Swas hot assigned, then by default
all of the events specified with the -trace option are written into the event log.

11.4.2 Controlling Logged Events with the RPC Log Manager

During application development, certain problems occur only after a server
has executed some number of calls. Other problems may require more
information than anticipated to debug. These problems can be addressed by
enabling the RPC Log Manager in your application image. The Log Manager
offers acommand line interface (rpclm) for manipulating logging operations

126 Gradient DCE for Tru64 UNIX Product Guide

during application execution. When you use the rpclm command line
interface, you need not rebuild your interface or stop and restart your server or
client process to manipulate logging operations.

The rpclm commands are shown in Table 11-4.

Table 11-4: Command Interface to rpcim

Command Description

inquire Inquire about the currently logged events and
determine the name of the active log file.

log Specify additional eventsto log. Valid values are
all, none, calls, context, errors, and misc.

unlog Disable logging of the specified event types. Valid
vauesare all, none, calls, context, errors, and
misc.

file Change the output device or file to which events
are logged.

quit Terminate the r pclm session.

help Display a description of rpclm commands.

Follow these stepsto enable the RPC Log Manager to control event logging:
1 Usethe-tracelog_manager option in your idl compile command.

2 Createthe RPC_LOG_FILE environment variable and assign it to a
filename or to screen output.

3 Executethe client or server process, or both.

4 Whenthefirst cal is made to an interface compiled with the -tr ace option,
alistening event will be generated into the event log. Invoke the rpclm
command interface (as specified in step 4 below) by specifying the string
binding from the listening event.

NOTE: Only string bindings from a listening event can be used to invoke
rpcim.

Therpclm command interface allows you to control event logging
parameters from your keyboard. You can use the command interface to reduce
the events currently being logged aswell as to manipul ate logging operations.
You can enable or disable logging of different event types (within the set
selected with the -tr ace option), store event logging in afile or display it on
the screen, inquire about the current event types being logged, and display the
name of the current log file.

The following procedure illustrates how to use the Log Manager:

1 When you compile your interface with the idl compile option, include the
-tracelog_manager option. For example:

% idl binopwk.idl -trace all -trace log_manager

Chapter 11 Application Debugging with the RPC Event Logger 127

2 Assignthe RPC_LOG_FILE environment variableto a filename. For
example:

% setenv RPC_LOG_FILE "client.log"
3 Executethe client or server process, or both.

4 Upon the first remote procedure call to an interface compiled with the
-trace log_manager option, a listening event will be generated into the
log. Examine the Event Data field of the listening event in the log to
determine the Log Manager string binding. (The RPC Event Logger is
itself aclient/server application: the Log Manager is a server process, and
rpcim isitsclient. The rpclm client uses the string binding of the
listening event to communicate with the Log Manager server.) Invoke
rpclm and specify the Log Manager string binding. For example, consider
the following event:

murp:17868/15 RPC Log Mgr listening ncacn_ip_tcp:16.31.48.144[3820]

The listening event indicates that the RPC Log Manager iswaiting for
commands from rpclm. (Note that, in the example, the Time field is not
shown.) To invoke rpclm, enter the listening event string binding for this
server process from the Event Data field as follows:

% rpclm "ncacn_ip_tcp:16.31.48.144[3820]"

NOTE: You must enclose the string binding in double quotation marks ("").

5 Asyou execute rpclm commands, the Log Manager displays current
logging parametersthat indicate the changes made to event logging for this
process. For example:

rpcim> >unlog all

Event types:

Events logged to terminal
rpcIm> log calls

Event types: calls

Events logged to terminal

Thelog for this server process will have corresponding events logged as
follows:

<time> murp:17868/15 RPC Log Mgr log_events none
<time> murp:17868/15 RPC Log Mgr log_events calls

Thefollowing exampleillustrates a command dial og between the user and
rpclm. The dialog begins when the user specifies a string binding from a
listening event to rpcim.

% rpclm "ncacn_ip_tcp:cltdce[1821]"

rpcl m> help

rpcl m Conmands:

inquire - Display | ogged events and log fil enane

| og - Specify additional events to | og
unl og - Specify events that should no | onger be | ogged
file - Change file into which events are | ogged

qui t - Exit | og manager

128 Gradient DCE for Tru64 UNIX Product Guide

rpcl m> inquire

Event Types: calls

Events | ogged to term nal

rpcl m> log errors

Event Types: calls errors

Events | ogged to term nal

rpcl m> file server.log

Event Types: calls errors

Events |l ogged to file ’server.log
rpcl me quit

In this dialog, the user enters the help command to display the rpclm
commands and command descriptions.

The user then entersthe inquire command to display thetypes of eventsbeing
logged and the log filename. In this example, errors are being logged to the
screen.

The user entersthelog calls command to specify that the Log Manager should
start logging all eventsrelating to calls, in addition to error events.

The user then enters the file command and specifies afilename. This
command requests that rpclm change its output device from the terminal
screen to afile named server.log.

The user then enters the quit command to terminate the rpclm session.

11.5 Using the -trace Option, Environment Variables, and the Log Manager

Together

This section describes a few different ways to use the -trace options,
environment variables, and the Log Manager together. When you are learning
to use the Event Logger, one possible approach isto specify al-inclusive
event logging with the -trace all IDL compilation option, and then examine
the event log to get an understanding of typical output. You can then use the
environment variable RPC_EVENTSto log only those events needed, such
ascallsorerrors.

In the case of a running process that you do not want to terminate, use a
different method. First enable the Event L ogger, specifying logging of all
events, and enable the Log Manager also, as follows:

% idl filename -trace all -trace log_manager

Set the event log to display on the screen, as follows:
% setenv RPC_LOG_FILE "

Then, assign the RPC_EVENTS environment variable so it will not log any
event types, asfollows:

% setenv RPC_EVENTS "none"

With these parameters set, the only event that will be displayed is the
listening event oncethefirst call is madeto aserver interface compiled with
the-tracelog_manager option. You can then obtain the string binding for the
process and use it later, if needed. Once you start the process, if an error
occurs, use the string binding to invoke the rpclm command interface and log
the needed events. Any rpclm commands issued at this point will modify the

Chapter 11 Application Debugging with the RPC Event Logger 129

RPC_EVENT S environment variable assignment. For example, if you assign
the environment variable RPC_EVENT S to calls and then issue a command
torpcimtologerrors, errorsaswell as calls will be logged.

Onceyou are familiar with Event Logger output, consider regularly using the
command interface to enable or disable subsets of event types as heeded.

This section provides an example of common tasks you may need to perform
during event logging. In this particular example, a distributed server process
provides amathematical calculation service. The client process passes datato
be calculated to the server process. Thistype of processing often generates
exception events such as those in the example event log. That is, some
operations are interrupted by floating point overflow and integer division by
zero exceptions, aswell as others. This example usesrpclm to control logging
of aserver process; however, rpclm can aso be used to control event logging
for aclient process.

The following processes are shown in three windows: a server process
window, a client process window, and an rpclm window.

1 Server Window: The user first enables the RPC Event Logger by
specifying the -trace all and -trace log_manager optionsin theidl
command line:

% idl server.calc -trace all -trace log_manager

2 Server Window: The user starts the server process. The server receives a
client call and initializes the RPC Log Manager. The environment
variables were assigned to enable event logging with no event types
selected, so only Log Manager events are output, as shown. Note that the
endpoint displayed for thel i st eni ng event isthe endpoint of the Log
Manager. (The timefield is not shown.)

% setenv RPC_LOG FILE
% setenv RPC_EVENTS "none"
% server ncacn_ip_tcp

murp:17868/15 fpe.setup log_start none
murp:17868/15 RPC Log Mgr listening ncacn_ip_tcp:16.31.48.144[3820]

3 Client Window: The user invokes the client process. The specified string
binding is used to find the server. The client process displays the output
PASS 1 upon completion.

% Client ncacn_ip_tcp 16.31.48.86 [3123]
PASS 1

4 rpclm Window: The user invokes rpclm and specifies the string binding
displayed in the listening event output by the server process, shown in
step 2. The string binding must be enclosed in double quotation marks ("").
The user issues the inquire command, and the event logging parameters
for the server process are displayed. The Log Manager reply indicates that
no event types are enabled and that the event log is being displayed on the
screen from which the server process was started. The user issues the log
errors command to enable logging of error events for the server process.

% rpclm "ncacn_ip_tcp:16.31.48.144[3820]"

130 Gradient DCE for Tru64 UNIX Product Guide

10

rpcIm> inquire

Event types:

Events logged to terminal
rpclm> log errors

Event types: errors
Events logged to terminal

Client Window: The user invokes the client process a second time. The
error events that occur during server execution are logged to the server
window. The client process displays the output PASS 2 upon completion.

% Client ncacn_ip_tcp 16.31.48.86 [3123]
PASS 2

Server Window: The server process receives the command from rpcim to
start logging errors. Any errors that occur in the server process are logged.
(Thetimefield is not shown.)

murp:17868/15 RPC Log Mgr log_events errors
murp:17868/15 fpe.flt overflw exception Floating point

overflow (dce/thd)
murp:17868/15 transmit_fault rpc_s_fault_fp_overflow
murp:17868/15 fpe.flt_underflw exception Floating point

underflow (dce/thd)
murp:17868/15 transmit_fault rpc_s_fault_fp_underflow
murp:17868/15 fpe.flt_divbyzer exception Floating point/decimal

divide by zero (dce/thd)

murp:17868/15 transmit_fault rpc_s_fault_fp_div_by zero
murp:17868/15 fpe.dble_overflw exception Floating point

overflow (dce/thd)
murp:17868/15 transmit_fault rpc_s_fault_fp_overflow
murp:17868/15 fpe.dble_underflw exception Floating point

underflow (dce/thd)
murp:17868/15 transmit_fault rpc_s_fault_fp_underflow
murp:17868/15 fpe.dble_divbyzer exception Floating point/decimal

divide by zero (dce/thd)
murp:17868/15 transmit_fault rpc_s_fault_fp_div_by zero

rpclm Window: The user issuesthe unlog all command to disable logging
of al previously specified event types.

rpcim> unlog all
Event types:
Events logged to terminal

Server Window: The event log how contains an entry that indicates the
Event Logger will stop logging previoudly specified events.

<time> murp:17868/15 RPC Log Mgr log_events none

rpclm Window: The user issues alog calls command to enable logging of
call events.

rpcIm> log calls
Event types: calls
Events logged to terminal

Server Window: The newest event log entry indicates that the Event
Logger will start logging call events.

<time> murp:17868/15 RPC Log Mgr log_events calls

Chapter 11 Application Debugging with the RPC Event Logger 131

1

12

13

14

15

16

rpclm Window: Because logging output will increase now that call events
are being logged, the user issues an r pclm command to redirect logging
output to afile named server_calc.log. When the application terminates
and logging is complete, the user can use atext editor to view and search
for entriesin thelog. Thislog file will contain only those call events from
the server process.

rpcIm> file server_calc.log
Event types: calls
Events logged to file ’server_calc.log”

Server Window: The newest event log entry indicates that the logger will
start redirecting logging information to file server _calc.log.

<time> murp:17868/15 RPC Log Mgr log_file server_calc.log

ClientWindow: The user invokes the client process athird time. The call
events that occur during server execution are logged to file
server_calc.log. The client process displays the output PASS 3 upon
completion.

% Clientncacn_ip_tcp 16.31.48.86 [3123]
PASS 3

Server Log: Thisislog file server_calc.log (the timefield is not shown):

% more server_calc.log

murp:17868/15 RPC Log Mgr log_start server_calc.log
murp:17868/15 fpe.setup activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.setup terminate ncacn_ip_tcp:16.31.48.109[2905]

murp:17868/15 fpe.flt_overflw activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.flt overflw terminate
murp:17868/15 fpe.flt_underflw activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.flt_underflw terminate
murp:17868/15 fpe.flt_divbyzer activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.flt_divbyzer terminate
murp:17868/15 fpe.dble_overflw activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.dble_overflw terminate
murp:17868/15 fpe.dble_underflw activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.dble_underflw terminate
murp:17868/15 fpe.dble_divbyzer activate ncacn_ip_tcp:16.31.48.109[2905]
murp:17868/15 fpe.dble_divbyzer terminate

rpclm Window: The user issues afile command to redirect event logging
output from server_calc.log to the terminal screen. To do this, pressthe
Return key without specifying a filename when the Log Manager prompts
for one.

rpclm> file

New File Name: <Return>
Event types: calls
Events logged to terminal
rpcim>

Server Window: Thefinal event in the server_calc.log fileisalog_file
event, which indicates that event logging output is being redirected, in this
caseto theterminal screen. Therefore, no filenameis displayed to theright
of the event name.

132 Gradient DCE for Tru64 UNIX Product Guide

<time> murp:17868/15 RPC Log Mgr log_file

11.6 Using Event Logs to Debug Your Application

The RPC Event Logger is designed to help you debug your distributed
application and is an enhancement over the basic diagnostics in the RPC
product. The diagnostics alone provide minimal information. For example,
the sample program called test2, which is provided with the Gradient DCE for
Tru64 UNIX, generates the rpc_x_no_more_bindings exception when the client

fails to contact the server. Without the aid of RPC event logging, thisis the
only diagnostic information available.

The following exampl e shows the basic RPC diagnostic information that an
application displays when an error occurs.

% test2

*** nable to obtain server binding information

Make sure environment variable RPC_DEFAULT_ENTRY = .:/test2_server
Exception: no more bindings (dce / rpc)

10T trap (core dumped)

If you enable RPC event logging by defining the environment variable
RPC_LOG_FILE, then the details of client execution can be captured in afile.
From the event log, you can determine which serversthe client tried to contact
and the reason each attempt failed.

In the following event log example, the Event Data field on the rebind events
indicates that the interface is not registered in the endpoint map and that a
communications failure occurred. This information indicates that the server
either is not running or it failed to register properly with the endpoint mapper.

Thefina event, call_failure, indicates that the call was terminated with the
no more bindings status. This event indicates that the client tried all available
servers but failed to communicate with any of them. (Note that in the first
column the word time represents the actual value for time.)

% test2

time ko:11436/1 test2.test2_add log start all
time ko:11436/1 test2.test2_add call_start ncacn_ip_tcp:16.20.16.27[]

time ko:11436/1 test2.test2_add rebind not registered in endpoint
map(dce/rpc)

time ko:11436/1 test2.test2_add call_start ncacn_dnet_nsp:4.262[]

time ko:11436/1 test2.test2_add rebind not registered in endpoint
map(dce/rpc)

time ko:11436/1 test2.test2_add call_start ncadg_ip_udp:16.20.16.27[]

time ko:11436/1 test2.test2_add rebind comm failure (dce/rpc)

time ko:11436/1 call_failure no more bindings (dce/rpc)

*** Unable to obtain server binding information

Make sure environment variable RPC _DEFAULT ENTRY = .:/test2_server
Exception: no more bindings (dce / rpc)

10T trap (core dumped)

Chapter 11 Application Debugging with the RPC Event Logger 133

11.7 Event Names and Descriptions

This section lists and describes RPC events. See thetable in Section 11.2 on
page 117 for alist of events by type (calls, context handles, errors,
miscellaneous, and logging) and their origin (client or server).

activate A thread was assigned to process an RPC call on a server, and the
server stub has started processing input arguments. The Event Data
field of the event log contains the string binding of the client
application making the call.

await_reply The transmission of input argumentsin acall from aclient
application to aserver is completed. The event is generated by the
client stub. The client application is waiting for output arguments
from the server.

cal_end A cal from aclient application is complete and the client stub is
returning to the caller.

call_failure A client stub terminated abnormally because either an exception
occurred or afailing status was returned. The Event Datafield of
the event log contains the error text associated with the exception
or RPC status code.

call_start A client application attempted to make a call to a server. The event
is generated by the stub within the client application. The Event
Datafield of the event log displays the string binding of the server
being contacted.

client_ctx_created A client application has allocated a context handle on a particular
server. The Event Datafield of the event log contains the following
information about this event:

= The address representing the context handle in the client
address space (an opague pointer)

= The UUID which can be used to identify the corresponding
context handle on the server

= Thestring binding of the server on which the actual context
resided

client_ctx_deleted The client application representation of a context handleis being
deleted to reflect the deletion of the context handle on the server.
The Event Datafield of the event log contains the following
information about this event:

= The address representing the context handle in the client
address space (an opague pointer)

= The UUID which can be used to identify the corresponding
context handle on the server

= Thestring binding of the server on which the actual context
resided

client_ctx_destroyed A client application has destroyed the client representation of a
context handle through the rpc_ss _destroy_client_context()
routine. The Event Datafield of the event log contains the
following information about this event:

= The address representing the context handle in the client
address space (an opague pointer)

= The UUID which can be used to identify the corresponding
context handle on the server

= Thestring binding of the server on which the actual context
resided

134 Gradient DCE for Tru64 UNIX Product Guide

context_created

context_deleted

context_modified

context_rundown

exception

internal_error

listening

log_events

log_file

log_start

log_stop

manager_call

manager_return

rebind

A new context handle was created on a server and returned from
the application manager routine. The Event Datafield of the event
log contains both the application value of the context handle and
the UUID assigned to represent this context handle.

A context handle on a server has been deleted by the application
manager routine. The Event Data field of the event log contains
both the application value of the context handle and the UUID
assigned to represent this context handle.

A context handle on a server was returned from the application
manager routine with avalue that is different from its previous
value. The Event Datafield of the event log contains both the
application value of the context handle and the UUID assigned to
represent this context handle.

A context handle on a server was freed by the context rundown
procedure. The Event Datafield of the event log contains both the
application value of the context handle and the UUID assigned to
represent this context handle.

An exception was detected in the server stub, and the exception
caused the call to terminate. The Event Datafield of the event log
contains atext description of the exception.

A failure occurred in the support routines that manage the Event
Logger. Check the Event Datafield of the event log for a
description of the cause of the event. If the error does not seem to
indicate atransient network problem or an environmenta failure,
report the failure in a Software Performance Report (SPR).

The RPC Log Manager has started to listen for rpclm commands.
The listening event is generated by the portion of the RPC Log
Manager built into your application by the RPC runtime when you
specify the -trace log_manager option on your IDL compilation.
The RPC Log Manager services the requests generated by the
rpclm command. You use one of the string bindings from a
listening event to invoke the rpclm command interface.

Event logging was modified through the Log Manager command
interface rpclm. The Event Datafield of the event log containsthe
new set of events being logged.

Event logging was modified through the Log Manager command
interface rpclm. The Event Datafield of the event log containsthe
new filename for the event log. If no filename is displayed, events
are being logged to the screen.

A new event log was created or event logging was resumed after
being suspended by a user command to the Log Manager
command interface rpclm. The Event Datafield in the event log
contains alist of event types being logged.

Event logging was stopped through the Log Manager command
interface rpcim.

The server stub is about to call the application manager routine.

Control has just returned from the application manager routine to
the server stub.

A cal from aclient application to a server failed. The Event Data
field in the event log shows the reason for the failure to contact the
server. The event is generated by the stub within the client
application. The cal failed on an auto_handle operation and the
client is attempting to rebind to the next server.

Chapter 11 Application Debugging with the RPC Event Logger 135

11.8 Summary

receive Following the transmission of input arguments from a client
application call to a server, the client received areply and has
started processing output arguments.

receive fault The client received afault indicating a failure on the server. The
Event Datafield of the event log contains the RPC status that
identifies the failure. All failures have fault codes which you can
find inthefilencastat.idl. If the fault codein the ncastat.idl fileis
too general (such asunspecified fault), examine the server
event log for precise failure information.

status fail A failure status was encountered in the server stub. The Event Data
field of the event log describes the failure.

terminate The server thread has completed processing the call and has
terminated.

transmit_fault The server runtimeis sending fault information to the client

application. The Event Datafield of the event log indicates the
name of the fault being sent. The fault information in thisfield is
listed inthe ncastat.idl file. The fault information in this field may
be less descriptive than the information logged about the actual
error. (Seetheexception or status_fail eventsintheevent
log to obtain precise failure information.)

The RPC Event Logger is adeveoper’s aid for debugging DCE RPC
applications. The RPC Event Logger allows you to modify IDL-generated
stub routinesin order to generate event logs of runtime execution of RPC calls
on the screen or in afile. In addition, the RPC Log Manager command
interface (rpclm) provides command line access to event logging parameters,
allowing you to enable and disable debugging support of clients and servers
as they execute.

The DCE RPC application development environment is designed to create
applicationsthat are portable to other DCE platforms and that can interoperate
with other DCE applications. Use of Gradient DCE for Tru64 UNIX RPC
Event Logger does not affect code portability or interoperability. Because the
Event Logger does not modify the application, you can take advantage of
event logging without affecting application portability to other hardware or
software platforms.

In addition, use of Gradient DCE for Tru64 UNIX RPC Event Logger does
not limit interoperability with other DCE implementations. Because event
logs are generated only in the local application, communication protocols are
not modified. You can, for example, use the event logging facility with any
server process running under Gradient DCE for Tru64 UNIX or with any
client process communicating with an RPC server on any hardware or
software platform.

CHAPTER 12

Developing Distributed
Applications with FORTRAN

12.1 Overview of Applications with FORTRAN

This chapter explains how to use DIGITAL FORTRAN® in the development
of distributed applications that make remote procedure calls.

This chapter provides the following information:

= Interoperability and portability issues as they relate to applications written
in DIGITAL FORTRAN

= A comprehensive example that introduces and illustrates several concepts

» General reference information about DIGITAL FORTRAN and remote
procedure calls, including a discussion about restrictions

12.2 Interoperability and Portability

In general, an application you create in the Gradient DCE for Tru64 UNIX
RPC environment will interoperate with other DCE RPC applications and will
port to other DCE platformsif it complies with the appropriate programming
language standards. More specifically:

= Any client that you have correctly created in a Gradient DCE for Tru64
UNIX RPC environment to use a DCE interface expressed in an IDL file
will interoperate with any DCE RPC server that supports the interface.

= Any server that you have correctly created in a Gradient DCE for Trué4
UNIX RPC environment to use a DCE interface expressed in an IDL file
will interoperate with any DCE RPC client that makes calls on the
interface.

Typically, applications created in the DCE RPC environment are writtenin
the C programming language. However, if you use the DIGITAL FORTRAN
support in Gradient DCE for Tru64 UNIX, the application will be subject to
the following portability constraint:

» Gradient DCE for Tru64 UNIX RPC applications that contain code written
in DIGITAL FORTRAN inaTru64 UNIX environment and that use a
DCE interface expressed in an IDL file will interoperate with any
corresponding DCE server or DCE client. However, you can port these
applications only to other Gradient DCE for Tru64 UNIX environments.

138 Gradient DCE for Tru64 UNIX Product Guide

12.3 Remote Procedure Calls Using FORTRAN — Example

The Gradient DCE for Tru64 UNIX IDL compiler provides similar support
for applications written in DIGITAL FORTRAN as that provided for
applicationswritten in C. That is, you can write an RPC client in DIGITAL
FORTRAN or you can write one or more manager routines in the server side
of the application in DIGITAL FORTRAN. If you are unfamiliar with the
tasks involved in devel oping an RPC application, see the chapter about
application building in the OSF DCE Application Development Guide.

The DIGITAL FORTRAN support consists of stubsthat use DIGITAL
FORTRAN linkage conventions and afilethat contains DIGITAL FORTRAN
definitions of the constants and types declared in an interface definition.
(These conventions and definitions are explained in Remote Procedure Calls
Using FORTRAN — Example.)

The following sections present a comprehensive example that demonstrates
how you can create the various parts of asimple, distributed payroll
application using DIGITAL FORTRAN.

The important features of this example are as follows:

» The example client application reads time-card information, passesit to a
server that calculates wages, and prints the results.

= Both the client and the portion of the server that calculates gross pay (the
manager routine) are written in DIGITAL FORTRAN.

» Theinitialization portion of the server application iswritten in C.

12.3.1 Where to Obtain the Example Application Files

All of the example application files referenced in this chapter are located in
the following directory in your Kit:

/usr/examples/dce/r pc/payroall

The next table lists application files that normally would be created by the
programmer for an application. To demonstrate application building, these
application files are provided for you in the software kit. The second table in
Compiling the Interface with the IDL Compiler liststhe files generated by the
IDL compiler for the example application.

Before you execute any of the example compilations, builds, or run
commands in this chapter, copy all of the fileslisted in thefirst table to an
empty directory. Entegrity recommends that you read the file named
README in the same subdirectory. Then build and run the examples.

Chapter 12 Developing Distributed Applications with FORTRAN 139

Table 12-1: Example Files Created by the Programmer

Filename File Description

payroll.idl The interface definition file that
contains the application programming
interface (API) to the remote procedure
call calculate_pay().

print_pay.for The FORTRAN sourcefilefor the client
side of the application.

server.c The FORTRAN sourcefilethat contains
theinitialization code for the server side
of the application.

manager.for The FORTRAN source file for the
server side of the application.

M akefile.unix The description file that builds the
example application.

payroll.dat The datainput file for the example
application.

The programs, procedures, and data files in the payroll example should be the
same in this chapter and in the specified subdirectory that came with your
Gradient DCE for Tru64 UNIX software kit. For example, file payroll.idl as
it appearsin The Interface File and Data File (payroll.idl and payroll.dat)
should beidentical to the following file:

/usr/examples/dce/r pc/payroll/payroll.idl

For al of the examplefiles, if there is a difference between the file as shown
in this chapter and the file in the subdirectory, assume that the file in the
subdirectory isthe correct one.

12.3.2 The Interface File and Data File (payroll.idl and payroll.dat)

Thefollowing interface, named payroll.idl, is part of the exampl e application.
The name of the remote procedurein the interface is calculate_pay(). The
interface does not indicate that this procedure is written in DIGITAL
FORTRAN.

/*

** Copyright (c) 1993 by

** Digital Equipment Corporation, Maynard, Mass.

**

*/

[
uuid(d1b14181-6543-11ca-ball-08002b17908e),
version(1.0)

]

interface payroll

{

const long string_data_len = 7;

140 Gradient DCE for Tru64 UNIX Product Guide

typedef struct {
[string] char grade[string_data_len + 1];
/*Storage for string must include space for null terminator*/
short regular_hours;
short overtime_hours;
} timecard;

void calculate_pay(
[in] timecard cards[1..7],
[out] long *pay

}

The next part of the example isthe data file payroll.dat, which the client side
of the application reads. The facts about each employee appear in 8 records.
Thefirst record contains the employee’s name (40 characters) and grade (7
characters). Records 2 to 8 contain the number of regular hours and overtime
hours worked on Monday to Sunday.

NOTE: The timecard structure defined in payroll.idl does not specify the
employee’s name in the data going to the remote procedure.

Jerry Harrison FOREMAN

Tony Hardiman WORKER

Mar

r
1
1
2
2
1
4
0
y
0
0
0
2
0
4
0
y Flynn WORKER
1

1

2

0

1

4

0

e
8
8
8
8
8
0
0
o]
8
8
8
8
8
0
0
a
8
8
8
8
8
0
0

12.3.3 Compiling the Interface with the IDL Compiler

To compile an RPC interface, you must use the idl command to invoke the
IDL compiler. To compile an RPC interface for aDIGITAL FORTRAN
application, you must select the following IDL options:

= Option-langfortran. Thisoption specifies FORTRAN asthe source code
language.

Chapter 12 Developing Distributed Applicationswith FORTRAN 141

Option -standard extended. This option enables features beyond those
availablein OSF DCE Version 1.0.3.

The following example command illustrates how to invoke the IDL compiler
to compile the sample DIGITAL FORTRAN application interface:

% idl payroll._idl -lang fortran -standard extended

Asaresult of thiscommand, the IDL compiler generates thefileslisted in the
next table.

Table 12-2: Example Files Created by IDL

Filename File Description

payroll_cstub.o The stub file generated by the IDL
compiler for the client side of the
application.

payroll_sstub.o The stub file generated by the IDL
compiler for the server side of the
application.

payroll.for An include file that emulates the C

language header file (.h) and that
documents the valid syntax for
subroutine calls that are used in the
FORTRAN sourcefiles. Thisfilewill
be called out in M akefile.unix and
linked with the other application files
because it refers to constants and types
defined in the interface definition.

payroll.for_h A file generated by the IDL compiler
that is used to build the stub files.

File payrall.for, as generated by the IDL compiler, is next.

C

C
C
C

C
C
C

Generated by IDL compiler version DEC DCE Vn.n.n-n

The following statements must appear in application code
INCLUDE “NBASE.FOR”

INTEGER*4 STRING_DATA_LEN
PARAMETER (STRING_DATA_LEN=7)

STRUCTURE /TIMECARD/
CHARACTER*8 GRADE
INTEGER*2 REGULAR_HOURS
INTEGER*2 OVERTIME_HOURS

END STRUCTURE

SUBROUTINE CALCULATE_PAY(CARDS, PAY)
RECORD /TIMECARD/ CARDS(7)
INTEGER*4 PAY

Asyou read this chapter, it isimportant to remember that the interface defined
in file payroll.idl appears as DIGITAL FORTRAN statementsin file
payroll.for. Asaspecific instance, consider the overtime hoursfield. Its

142 Gradient DCE for Tru64 UNIX Product Guide

definition appearsin payroll.idl asthe statement short overtime_hours, and in
payroll.for asthe statement INTEGER*2 OVERTIME_HOURS. The overtime hours
datain file payroll.dat is read into a dataitem of thistype.

12.3.4 The Client Application Code for the Interface (print_pay.for)

Suppose that the directory in which the interface was compiled also contains
file print_pay.for. Thisisthe sourcefile for the client side of the distributed
application. Its contents follow.

CThis is the client side of a payroll application that
C uses remote procedure calls.
C
PROGRAM PRINT_PAY
INCLUDE ”PAYROLL.FOR” I Created by the IDL compiler from
! file PAYROLL.IDL.
CCOPYRIGHT (C) 1993 BY DIGITAL EQUIPMENT CORP., MAYNARD MASS.
C The structure of a time card is described in the included file.
RECORD /TIMECARD/ CARDS(7)
CHARACTER*40 NAME
CHARACTER*8 GRADE
INTEGER*4 PAY
INTEGER*4 |
C
CRead eight records for the current employee.
10 READ (4, 9000, END=100) NAME, GRADE ! First record
9000 FORMAT (A40, A8)
DO 20 I =1, 7 ! Second through eighth records
READ (4,9010) CARDS(I)-REGULAR_HOURS, CARDS(I).OVERTIME_HOURS

9010 FORMAT (12, 12)
CARDS(I) .GRADE = GRADE
20 CONTINUE
C

CCall remote procedure CALCULATE_PAY to calculate the gross pay.
CALL CALCULATE_PAY (CARDS, PAY)

CDisplay the current employee’s name and gross pay.-
WRITE (6, 9020) NAME, PAY

9020 FORMAT (1X, Ad0, 11X, 14)
GO TO 10
C
100 STOP
C
END

To compile and link the client program print_pay.for, which at runtime
makes remote procedure callsto a server that supports the payroll interface,
use the following commands.

% fortran -c print_pay.for
% Id -0 print_pay print_pay.o payroll_cstub.o

-Ifor -lutil -1Ufor -Im -lots -ldce -Ipthreads -Imach -lc_r -Im

Chapter 12 Developing Distributed Applications with FORTRAN 143

Instead of using these two commands directly to build the client part of the
application, you can use make to build the entire application using the
supplied Makefile, called M akefile.unix. See Section 12.3.8 on page 146 and
Section 12.3.9 on page 148 for information about building and running this
example.

This program reads its data from DIGITAL FORTRAN logical unit 4. A
command in M akefile.unix defines the logical unit.

12.3.5 The Server Initialization File (server.c)

Because all programming interfaces to the RPC runtime are specified in C,
you must write the code that sets up the server in C. In this example, the
server setup code (also called the initialization code) isin file server.c, shown
next.

/* This is program SERVER.C that sets up the server for
the application code whose origin is FORTRAN

subroutine CALCULATE PAY. */
/*
** Copyright (c) 1993 by
faled Digital Equipment Corporation, Maynard, Mass.
**
*/

#include <stdio.h>

#include <file.h>

#include <dce/dce_error.h>

#include "payroll_for_h" /* The IDL compiler created this file from
file PAYROLL.IDL. */

static char error_buf[dce_c_error_string_len+1];
static char *error_text(st)
error_status_t st;

¢ error_status_t rst;
dce_error_ing_text(st, error_buf, &rst);
return error_buf;

}

main()

{

error_status_t st;
rpc_binding_vector_p_t bvec;

/* Register all supported protocol sequences with the runtime. */
rpc_server_use_all_protseqs(
rpc_c_protseq_max_calls_default,
&st
):
if (st != error_status_ok)

{

fprintf(stderr, "Can’t use protocol sequence - %s\n",error_text(st));

144 Gradient DCE for Tru64 UNIX Product Guide

}

exit(1);
/* Register the server interface with the runtime. */
rpc_server_register_if(
payroll_vl 0 s ifspec, /* From the IDL compiler; */
/* "v1 0" comes from the statement */
/* "version(1.0)" in file PAYROLL.IDL.*/
NULL,
NULL,
&st
);
if (st != error_status_ok)
{
printf("Can’t register interface - %s\n", error_text(st));
exit(1);
}

/* Get the address of a vector of server binding handles. The
call to routine rpc_server_use_all_protseqs() directed the
runtime to create the binding handles. */

rpc_server_ing_bindings(&bvec, é&st);

if (st != error_status_ok)

{

printf(**Can’t inquire bindings - %s\n", error_text(st));
exit(1);

/*Place server address information into the local endpoint map.*/
rpc_ep_register(

payroll_vl 0_s_ifspec,

bvec,

NULL,

(idl_char*)"FORTRAN Payroll Test Server",

&st
)
i

f (st != error_status_ok)

{
printf("Can’t register ep - %s\n", error_text(st));
}

/* Place server address information into the name service database. */
rpc_ns_binding_export(

rpc_c_ns_syntax_default,

(idl_char*)"_:/FORTRAN_payroll_mynode™,

payroll_vl1 0 s ifspec,

bvec,

NULL,

&st
)
i

f (st != error_status_ok)

-~

Chapter 12 Developing Distributed Applications with FORTRAN 145

printf(""Can’t export to name service - %s\n", error_text(st));

/* Tell the runtime to listen for remote procedure calls.

Also, FORTRAN cannot support multiple threads of execution. */
rpc_server_listen((int)l, &st);
if (st != error_status_ok)

fprintf(stderr, "Error listening: %s\n", error_text(st));

}

12.3.6 The Server Application Code for the Interface (manager.for)

The server application code, written in DIGITAL FORTRAN, isdeclared in
file payroll.idl as calculate pay(). File manager.for contains subroutine
calculate pay asfollows:

SUBROUTINE CALCULATE_PAY(CARDS, PAY)
INCLUDE ”PAYROLL.FOR” I Created by the IDL compiler from
I file PAYROLL.IDL.

C

CCOPYRIGHT (C) 1993 BY DIGITAL EQUIPMENT CORP., MAYNARD MASS.
C The structure of a time card is described in included
C file PAYROLL.FOR.

RECORD /TIMECARD/ CARDS(7)
INTEGER*4 PAY
INTEGER*4 1

PAY = 0
Dol =1,7
C The basic hourly wage is $6.00.
PAY = PAY + 6 * CARDS(I).REGULAR_HOURS
C The following comparison does not include last character
C of GRADE, because it arrives as a null terminator.
IF (CARDS(I).GRADE(1:STRING_DATA_LEN) .EQ. “FOREMAN”) THEN
C The overtime hourly wage for a foreman is $12.00.
PAY = PAY + 12 * CARDS(I).OVERTIME_HOURS
ELSE
C The overtime hourly wage for a worker is $9.00.
PAY = PAY + 9 * CARDS(I).OVERTIME_HOURS
END IF
10 CONTINUE

RETURN
END

To create the file ser ver, which at runtime responds to remote procedure calls
from aclient that supports the payroll interface, use the following commands.

% cc -c server.c

% fortran -c manager.for

% Id -0 server server.o manager.o payroll_sstub.o

-Ifor -lutil -1Ufor -Im -lots -ldce -Ipthreads -Imach -lc_r -Im

146 Gradient DCE for Tru64 UNIX Product Guide

Instead of using these commands directly to build the server part of the
application, you can use make to build the entire application (see
Section 12.3.8 on page 146).

12.3.7 Client and Server Bindings

In order to make remote procedure calls, client applications must be bound to
server applications. Thisisillustrated in the client program print_pay.for
shown in Section 12.3.4 on page 142. The source code in the client program
uses the default [auto_handle] binding, which is enabled by the following
source code:

CCall remote procedure CALCULATE_PAY to
C calculate the gross pay.

CALL CALCULATE_PAY (CARDS, PAY)

When you run make (described in Building the Example (M akefile.unix)) or
manually compile the application, amessage is displayed about assuming
[auto_handl€].

For more information about client and server bindings, see the chapter on
basic DCE RPC runtime operations in the OSF DCE Application
Development Guide.

12.3.8 Building the Example (Makefile.unix)

You can build the payroll example with make by using file M akefile.unix.
Since the supplied Makefile has a .unix filename extension, you must use the
-f option to the make command, as follows:

% make -f Makefile.unix
The contents of M akefile.unix follow.
COPYRIGHT (C) 1993 BY

DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

H oH H HH

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE

INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY

OTHER COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE
TO ANY OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE

IS HEREBY TRANSFERRED.

#

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT

NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL

EQUIPMENT CORPORATION.

#

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

#

Chapter 12 Developing Distributed Applications with FORTRAN

147

DCELIBS = $(LIBLOC) -ldce -Ipthreads -Imach -lc_r -Im
FFLAGS = -c

FLIBS = -Ifor -lutil -IUfor -Im -lots
FORTRAN = 77

118NLIB =

IDL = idl

IDLFLAGS = -trace all -lang fortran -standard extended
LINKFLAGS =

Default target - build client and server
all : print_pay server
@- cp /dev/null build.timestamp

Target to build "local™ (non-RPC) application in single image
local : local_print_pay
@- cp /dev/null buildl._timestamp

Target to run local application
run_local :
FORT4=payroll.dat; export FORT4; local_print_pay

Target to clean up non-source files

clean :

@- rm server server.o manager.o payroll_sstub.o
@- rm print_pay print_pay.o payroll_cstub.o

@- rm payroll.for payroll.for_h

@- rm build.timestamp

@- rm buildl.timestamp local_print_pay

@- rm server.log

server : server.o manager.o payroll_sstub.o
$(CC) $(LINKFLAGS) -0 $@ server.o manager.o payroll_sstub.o \
$(FLIBS) $(DCELIBS)

print_pay : print_pay.o payroll_cstub.o
$(FORTRAN) $(LINKFLAGS) -0 $@ print_pay.o payroll_cstub.o \
$(FLIBS) $(DCELIBS)

print_pay.o : print_pay.for payroll.for
$(FORTRAN) $(FFLAGS) -0 $@ print_pay.for

payroll.for : payroll.idl
$(IDL) $(IDLFLAGS) payroll.idl

payroll_cstub.o : payroll.idl
$(IDL) $(IDLFLAGS) payroll.idl

server.o : server.c payroll.for_h
$(CC) $(CFLAGS) -0 $@ server.c

148 Gradient DCE for Tru64 UNIX Product Guide

payroll.for_h : payroll.idl
$(IDL) $(IDLFLAGS) payroll.idl

manager.o : manager.for payroll_for
$(FORTRAN) $(FFLAGS) -0 $@ manager.for

payroll_sstub.obj : payroll.idl
$(IDL) $(IDLFLAGS) payroll.idl

local_print_pay : print_pay.o manager.o
$(FORTRAN) $(LINKFLAGS) -0 $@ print_pay.o manager.o $(FLIBS) $(118NLIB)

12.3.9 Running the Example

To run the sample application, perform the following steps.
1 Start the server process and run it as a background job:

% setenv RPC_DEFAULT_ENTRY
'"_:/FORTRAN_payroll_mynode"
% server &

2 Runtheclient:

% setenv FORT4 payroll.dat
% print_pay

The program displays the following output:

Jerry Harrison 372
Tony Hardiman 294

Mary Flynn 321
FORTRAN STOP

Deleting server process...

End of sample application

3 Bring the server process to the foreground and terminate it:

% fg
% CTRL/C

The output from building this application includes files client and ser ver.
You can use these executable programs in separate client and server
Processes.

12.4 Remote Procedure Calls Using FORTRAN — Reference

Remote Procedure Cdls Using FORTRAN — Example contains a
comprehensive exampl e that introduces creating distributed applications with
DIGITAL FORTRAN program units. This section goes beyond the example
to provide reference information and explain general concepts about creating
these distributed applications.

Chapter 12 Developing Distributed Applications with FORTRAN 149

12.4.1 The FORTRAN Compiler Option

If you are generating stubs and include files for application code written in
DIGITAL FORTRAN, you must specify it as the language of choice when
you compile the application’s IDL file. To specify the DIGITAL FORTRAN
language, specify -lang fortran; the default value is -lang c.

In the remainder of this chapter, the phrase “FORTRAN option” refersto the
IDL command that specifies DIGITAL FORTRAN. Examples of the IDL
command and specification are presented in Compiling the Interface with the
IDL Compiler.

Any client or server stub filesthat the FORTRAN option generates use the
DIGITAL FORTRAN linkage conventions. Thismeansthat all parametersare
passed by reference (see Section 12.4.5.1 on page 153 for more information).
In addition, all identifiers are converted to uppercase.

The FORTRAN option generates the file filename.for, which includes
DIGITAL FORTRAN declarations of the constants and types declared in the
IDL file. The .for file alsoincludes, for each operation declared in the IDL
file, aset of comments that describes the signature of the operation in
DIGITAL FORTRAN terms.

In addition, the FORTRAN option generates the file filename.for _h. Thisfile
is used for generating the client and server stubs. It is also needed for
generating DIGITAL FORTRAN stubs for any interface that imports this
interface.

Consider the header option whose syntax is -header. If you specify both the
FORTRAN option and the header option to the IDL compiler, the following
rules govern the compiler's placement of the files filename.for and
filename.for_h.

» |f you specify adirectory namein the header option, the compiler places
thefilesin that directory. Otherwise, it placesthefilesin the current
default directory.

» If you specify a filename without an extension in the header option, the
compiler uses that filename with the extensions .for and .for_h.

» |f you specify afilename with an extension in the header option, the
compiler uses that file extension instead of .for_h; however, the compiler
does not change the extension of the .for file.

12.4.2 Restrictions on the Use of FORTRAN

This section discusses restrictions on distributed applications written in
DIGITAL FORTRAN that make remote procedure calls. These restrictions
are on interfaces and stubs, and on runtime operations.

» [If aninterface contains any arrays that have more than seven dimensions,
the IDL compiler cannot produce output that is compatible with DIGITAL
FORTRAN.

» If aninterface contains two identifiers that differ only in the case of their
characters, the IDL compiler might not be able to build stubs.

150 Gradient DCE for Tru64 UNIX Product Guide

» Thestubs generated for DIGITAL FORTRAN cannot call operations that
use pipes.

» |f thetransmit_asor represent_as attributes have been applied to a
character array type used to define the parameters of an operation, then
DIGITAL FORTRAN cannot call that operation.

» If thetransmit_asor represent_as attributes have been applied to an
array type that, in turn, is the base type of an array type used to define the
parameters of an operation, then DIGITAL FORTRAN cannot call that
operation.

» |f thevl array attribute has been applied to any parameter of an
operation, then DIGITAL FORTRAN cannot call that operation.

= DIGITAL FORTRAN does not allow the concurrent execution of two or
more threads. In particular, if aserver implements remote operationsin
DIGITAL FORTRAN, it must restrict the number of threads of server
execution to 1. The following statement in file server.c (shownin
Section 12.3.5 on page 143) specifiesthisrestriction:

rpc_server_listen((int)l, &st);

12.4.3 IDL Constant Declarations

A constant declaration either gives a name to an integer or string constant or
gives a second name to a constant that has already been given a name.
Examples of these declarations follow:

const long array_size = 100;

const char jsb = "Johann \"Sebastian” Bach";
const long a_size = array_size;

const boolean untruth = FALSE;

For al IDL constant declarations, equivalent PARAMETER statements are
generated in the corresponding file filename.for. For example:

INTEGER*4 ARRAY_SIZE
PARAMETER (ARRAY_SIZE=100)

CHARACTER*(*) JSB
PARAMETER (JSB="Johann "Sebastian”’ Bach”)

INTEGER*4 A_SIZE
PARAMETER (A_SIZE=ARRAY_SIZE)

LOGICAL*1 UNTRUTH
PARAMETER (UNTRUTH=.FALSE.)

All integer constants are declared as INTEGER* 4.
All void * constants are ignored.

A nonprinting character that appears within a character or string constant is
replaced by a question mark (?).

Chapter 12 Developing Distributed Applicationswith FORTRAN 151

12.4.4 Type Mapping

An IDL typethat is asynonym for another type is presented to DIGITAL
FORTRAN as the type for which the synonym is defined. For example,
suppose that the IDL file contains the following statement:

typedef foo bar;

Then, al instances of IDL type bar are presented to DIGITAL FORTRAN as

of type foo.

The next table describes the mappings from IDL typesto DIGITAL

FORTRAN types.

Table 12-3: Mappings for IDL Types

IDL Data Type FORTRAN Data Type Comments
arrays See notes 8 and 9
boolean LOGICAL*1
byte BYTE
char CHARACTER
context handle INTEGER*4
double REAL*8 Seenote 3
enum INTEGER*4
error_status t INTEGER*4 Seenote 4
float REAL*4
handle_t HANDLE_T See Section 12.4.7 on page 154
hyper IDL_HYPER_INT See Section 12.4.7 on page 154
ISO_MULTI_LINGUAL | ISO_MULTI_LINGUAL | See Section 12.4.7 on page 154
1SO_UCS 1SO_UCS See Section 12.4.7 on page 154
long INTEGER*4
pipe No mapping
pointer INTEGER*4 See note 10
short INTEGER*2
small INTEGER*2 Seenote 1
struct STRUCTURE Seenotes5and 6
union UNION See note 7
unsigned hyper IDL_UHYPER_INT See Section 12.4.7 on page 154
unsigned long INTEGER*4 See note 2
unsigned short INTEGER*4 Seenote 1
unsigned small INTEGER*2 See note 1

152 Gradient DCE for Tru64 UNIX Product Guide

Notes

1

10

12.4.5 Operations

For these IDL datatypes, the DIGITAL FORTRAN datatype is chosen
because it can represent all possible values of the IDL type. Notethat, in
each case, there are values of the DIGITAL FORTRAN type, which cannot
be represented in the IDL type. You must hot attempt to pass such values
in parameters. The RPC runtime code does not perform range checking.

Because some values that can be represented in an IDL data type cannot be
represented correctly in the DIGITAL FORTRAN datatype, the IDL
compiler issues awarning.

You must compile DIGITAL FORTRAN code that uses this data type and
specify the cc-cmd 'command_line’ compiler option.

Status code mapping will occur where necessary.

For any structure typein the IDL file that is not defined through a typedef
statement, the IDL compiler generates the name of the DIGITAL
FORTRAN structure. To determine what name was generated, |ook at
filename.for.

The semantics of conformant structures cannot be represented in
DIGITAL FORTRAN. Inthedefinition of such astructurein filename.for,
aplaceholder for the conformant array field is specified asa
one-dimensional array with one element. If the first lower bound of the
conformant array isfixed, thisvalueis used as the lower and upper bounds
of the placeholder. If thefirst lower bound of the array is not fixed and if
the first upper bound of the conformant array is fixed, the upper bound is
used as the lower and upper bounds of the placeholder. Otherwise, the
lower and upper bounds of the placeholder are zero.

Note that IDL encapsulated union types and nonencapsulated union types
arerepresented as DIGITAL FORTRAN structures containing unions.

IDL array types are converted to arrays of anonarray base type.

Arrays that do not have a specified lower bound have alower bound of
zero. Consider the following two statementsin an IDL file:

double d[10][20];
short e[2..4][3..6];

The statements map into the following DIGITAL FORTRAN constructs.

REAL*8 D(0:9,0:19)
INTEGER*2 E(2:4,3:6)

The size of the pointer depends on the platform. It isINTEGER* 8 for
True4 UNIX systems.

Operations can pass parameters and return function results. This section
explains these two topics.

Chapter 12 Developing Distributed Applicationswith FORTRAN 153

12.45.1 Parameter Passing by Reference

The following rules explain the mapping between IDL parameters and
DIGITAL FORTRAN parameters.

» [f the DL parameter contains an asterisk (*) and does not have a[ptr] or
[unique] attribute, this signifies a parameter of the indicated type passed
by reference. The DIGITAL FORTRAN parameter is of the same type.

» |f the DL parameter contains an asterisk and does have a[ptr] or
[unique] attribute, the DIGITAL FORTRAN parameter is a pointer.

» Ifthe|DL parameter isan array and hasthe [ptr] or [unique] attribute, the
DIGITAL FORTRAN parameter is a pointer.

= |f none of the preceding casesistrue, then the DIGITAL FORTRAN
parameter is of the same type asthe IDL parameter.

12.4.5.2 Function Results

The only possible function result typesin DIGITAL FORTRAN are scaars
and CHARACTER*n. The mappings from IDL to DIGITAL FORTRAN
never produce CHARACTER* n, where nis greater than 1.

IDL hyper integers are not scalars in terms of function results, but IDL
pointers are treated as scalars because they are mapped to INTEGER* 8.

For an operation that has a result type that is not allowed by DIGITAL
FORTRAN, the stubs treat the operation result as an extra [out] parameter
added to the end of the parameter list.

If the type of an operation is not void, you must state the type of the function
result in DIGITAL FORTRAN.

12.4.6 Include Files

Usually, aDIGITAL FORTRAN routine that is part of an RPC client or
manager for the interface defined in filename.idl must include the following
files:

» filenamefor

= nbasefor

= The .for filesfor any imported interfaces

Program units print_pay.for and manager.for (containing subroutine
subprogram CALCULATE_PAY) in the example of a distributed payroll
application do not include nbase.for because the units contain none of the
IDL datatypes. Otherwise, the program units would include nbase.for.
Furthermore, these units could safely include nbase.for even thoughiit is
unnecessary in the example.

154 Gradient DCE for Tru64 UNIX Product Guide

12.4.7 The nbase.for File

Thefile/usr/include/dce/nbase.for declares standard datatypes used in
mapping IDL to DIGITAL FORTRAN. The declarations are shown in

Table 12-4.

Table 12-4; Standard Declarations

IDL Data Type

FORTRAN Declaration

hyper

STRUCTURE /IDL_HYPER_INT/
INTEGER*4 LOW
INTEGER*4 HIGH
END STRUCTURE

unsigned hyper

STRUCTURE /IDL_UHYPER_INT/
INTEGER*4 LOW
INTEGER*4 HIGH
END STRUCTURE

handle _t

STRUCTURE /HANDLE_T/
INTEGER*4 OPAQUE_HANDLE
END STRUCTURE

1ISO_MULTI_LINGUAL

STRUCTURE/
1SO_MULTI_LINGUAL/
BYTE ROW

BYTE COLUMN

END STRUCTURE

1SO_UCS

STRUCTURE /ISO_UCY
BYTE GROUP

BYTE PLANE

BYTE ROW
BYTE_COLUMN

END STRUCTURE

NOTE: For IDL datatype handle_t, the size of pointers is platform specific: on
OpenVMS systems, pointers are INTEGER* 4 and on Tru64 UNIX systems,
pointers are INTEGER* 8.

12.4.8 DL Attributes

This section describes IDL attributes that apply to RPC applications
containing DIGITAL FORTRAN modules.

12.4.8.1 Binding Handle Callout

The Binding Handle Callout feature lets you specify aroutine that is
automatically called from an IDL-generated client stub routine, in order to
modify the binding handle.

You can typically use this feature to augment the binding handle with security
context, for example, so that authenticated RPC calls are used between client

and server.

Chapter 12 Developing Distributed Applications with FORTRAN 155

12.4.8.2 ACF file

Thisfeatureis particularly targeted at clients which use automatic binding via
the auto_handle ACF attribute. For automatic binding, it isthe client stub
rather than the client application code which obtains a server binding handle.
The binding callout feature lets you modify binding handles obtained by the
client stub. Without this feature, you cannot modify the binding handles
before the client stub attempts to initiate a remote procedure call to the
selected server.

To select the binding handle callout feature, create an ACF file for the
interface (if necessary) and place the binding_callout attribute on the
interface. An example follows.

[auto_handle, binding_callout(my_bh_callout)] interface bindcall

{
}

The binding_callout attribute has the following genera form:
[binding_callout(identifier)]

You can specify the binding_callout only once per interface; it appliesto all
operationsin that interface.

12.4.8.3 Generated header file

The IDL-generated header file for the interface contains a function prototype
for the binding callout routine. In the previous example, bindcall.h contains a
declaration similar to the following declaration:

void my_bh_callout(
rpc_binding_handle_t *p_binding,
rpc_if_handle_t interface_handle,
error_status_t *p_st

);

12.4.8.4 Generated client stub

Each client stub routine in the IDL-generated client stub module calls the
binding callout routine just before initiating the remote procedure call to the
server. In the previous example, each client stub routine contains a call to
my_bh_callout and passes the three arguments that are described in the
following section.

12.4.8.5 Binding callout routine

The arguments to the binding callout routine are:
= |nput/Output
rpc_binding_handle_t *p_binding

A pointer to a server binding handle for the remote procedure call.
Generally, the binding callout routine will augment this binding handle
with additional context, such as for security.

n |npUt

156 Gradient DCE for Tru64 UNIX Product Guide

rpc_if_handle_t interface_handle

The interface handle used to resolve a partia binding or for the binding
callout routine to distinguish interfaces.

= Output
error_status_t *p_st

An error status code returned by the binding callout routine.

12.4.8.6 Error handling

A binding callout routine returns error_status ok when it successfully
modifiesthe binding handle or decidesthat no action is necessary. This causes
the client stub to initiate the remote procedure call.

When the binding callout routine returns an error status, the client stub will
not initiate aremote procedure call. If auto_handleis being used, the client
stub will attempt to locate another server of the interface and once again call
the binding callout routine. Otherwise, it will execute its normal error
handling logic.

A binding callout routine for a client using auto_handle can return

rpc_s no_more_hindings to prevent the client stub from trying to locate
another server. The client stub will then execute its normal error handling
logic.

By default, a client stub handles an error condition by raising an exception. If
abinding callout routine returnsan rpc_s_ status code, the client stub raises
the matching rpc_x_ exception. If abinding callout routine returns any other
error status, it is usually raised as an “unknown status’ exception.

For an operation containing acomm_status parameter, the client stub handles
an error condition by returning the error status value in the [comm_status]
parameter. A binding callout routine can return any error status value to the
client application code if the IDL operations are specified with comm_status
parameters.

A binding callout routine can raise a user-defined exception rather than return
astatus codeif it prefersto report application-specific error conditions back to
the client application code via exceptions.

12.4.8.7 Predefined binding callout routine

Thereis one predefined binding callout routine in the DCE library which may
be suitable for some applications. To select this routine, specify a
binding_callout(rpc_ss bind_authn_client) ACF attribute.

rpc_ss bind_authn_client matches the function prototype in the previous
section, Generated Header File. It authenticates the client identity to the
server, thereby allowing for one-way authentication. In other words, the client
does not care which server principal receives the remote procedure call
request, but the server verifies that the client is who the client claims to be.

rpc_ss bind authn_client does the following:

Chapter 12 Developing Distributed Applicationswith FORTRAN 157

» Callsrpc_ep_resolve binding() to resolve the binding handleif it is not
fully bound (For example, for auto_handle).

» Calsrpc_mgmt_ing_server_princ_name() to obtain the server identity
(principal name).

» Cdlsrpc_binding_set auth info() with all default values except the
server principal hame obtained in the previous call.

» |If any of these calls returns an error status, places the error statusin the
*p_st argument and rpc_ss bind_authn_client returns.

12.4.8.8 The transmit_as Attribute

The presented type must be expressiblein DIGITAL FORTRAN. Because
addresses are involved, the routines used for data conversion cannot be
written in DIGITAL FORTRAN.

12.4.8.9 The string Attribute

A DIGITAL FORTRAN dataitem corresponding to an IDL string contains
the number of characters specified for the IDL string. Because IDL strings are
usually terminated with anull byte, the following transmission rules apply:

» |f aDIGITAL FORTRAN routine contains data for transmission, and a
null byte appears before the last character of the DIGITAL FORTRAN
dataitem, then the characters up to and including the null byte are
transmitted.

» |f aDIGITAL FORTRAN routine contains data for transmission, and a
null byte does not appear before the last character of the DIGITAL
FORTRAN dataitem, then all the characters of the data item except the
last are transmitted, followed by anull character.

s [If dataistransmitted to aDIGITAL FORTRAN routine, thenthe DIGITAL
FORTRAN dataitem receives a null terminated string. If the DIGITAL
FORTRAN dataitem contains more characters than the string, then the
additional characters are not affected.

An IDL operation can have a conformant string parameter. Such a parameter
is presented to DIGITAL FORTRAN as type CHARACTER* (*). If the base
type of the string consists of w bytes and the string consists of n characters,
then the parameter size is n*w. The maximum parameter size supported is
65535.

A conformant string field of a structure will have type CHARACTER*w,
where w is the number of bytes in the base type of the string.

In al other cases where a string is not the target of a pointer, the IDL file
specifiesthe string. Such a string is presented to DIGITAL FORTRAN as
CHARACTER*s, where sisthe product of the string length and the number
of bytesin the base type of the string. Furthermore, s must be between 1 and
65535 inclusive.

158 Gradient DCE for Tru64 UNIX Product Guide

12.4.8.10 The context_handle Attribute

A context handle rundown routine cannot be written in DIGITAL FORTRAN
because the routine must handle address information.

12.4.8.11 The Array Attributes on [ref] Pointer Parameters

A [ref] pointer parameter that has array attributes attached to it is presented to
DIGITAL FORTRAN asthe equivalent array.

12.4.9 ACF Attributes

Thefollowing items can occur in an Attribute Configuration File (ACF). They
require special consideration when you are using DIGITAL FORTRAN.

12.4.9.1 The implicit_handle ACF Attribute

You must supply a COMMON block whose name is the name given in the
implicit handle clause. This COMMON block must contain the binding
handle asits only dataitem.

For example, suppose an ACF contains the following interface attribute:
[implicit_handle(handle_t i_h)]

Then, any DIGITAL FORTRAN routinethat calls an operation which usesthe
implicit binding must include statements with the following form:

RECORD /HANDLE_T/ BINDING_HANDLE
COMMON /1_H/ BINDING_HANDLE

12.49.2 The represent_as ACF Attribute

Thelocal type must be expressible in DIGITAL FORTRAN.

Because addresses areinvolved, you cannot write the data conversion routines
in DIGITAL FORTRAN.

A type namein arepresent_as attribute that does not occur in the interface
definition and isnot an IDL basetypeis assumed to be a STRUCTURE type.

Suppose that the represent_astypeisnot an IDL base type or a type defined
in your IDL source. Then, you must supply a.h file whose unextended name
isgiven in an include statement in the ACF. (An unextended nameisa
filename without the file extension that follows the final dot (.) in the name.
For example, the unextended filename for file example.h is example.) This
file must include a definition of the local type in C syntax. You will need a
filename.for file containing a DIGITAL FORTRAN definition of the local
type. Entegrity recommends that you assign this file the same unextended
name.

CHAPTER 13

Example Programs

13.1 Overview of Remote Procedure Call Programs

Several example programs are supplied with the Application Developer’s Kit
subset. These programs are located in directories under /usr/examples/dce.
This chapter provides information about the example programs provided with
Gradient DCE for Tru64 UNIX. Each example program also has an online
README file located in the same directory as the program. The next table
shows the different features of each example program.

Table 13-1: Features of Example Programs

Example Program

Description

RPC Test Program #1

Server does not register endpoints; binding information not
exported to namespace.

RPC Test Program #2 Server registers endpoints; binding information exported to
namespace; USeS Security.

RPC Test Program #3 Server registers endpoints; binding information not
exported to namespace.

Book Program Server registers endpoints; binding information is exported

to namespace; uses mutex locks and security.

Time Operations Program

Uses al DCE services, including serviceability, security
and threads.

Phonebook Program

Uses RPC and the name service.

Echo Program

Demonstrates how a distributed application can secure
itself using the GSSAPI security interface.

Time Provider Programs

Illustrate how to structure and use programs for external
time providers.

Serviceability Program

Demonstrates the use of the serviceability API.

Generic Application

Demonstrates ACL management, serviceability code,
security setup, and signal handling.

Object Oriented Programs

Demonstrate the use of C++ idl extensions.

Copy the example files to another area before you attempt to build them. You
also may want to open two separate windows for the client and server

jprocesses.

The following sections describe the example programs.

160 Gradient DCE for Tru64 UNIX Product Guide

13.2 RPC Test Program #£1

RPC Test Program #1 is a simple client/server program that makes minimal
use of the DCE services. The server does hot register transport endpoints with
the DCE daemon, and no binding information is exported to the directory
service. The server binding information has to be transferred to the client
manually by the user.

To build this example program, enter the following commands:

% cp /usr/examples/dce/rpc/testl/* .
% make -f makefile.testl

After the build is completed, start the server with the following command
syntax:

% testld [protseq]

The server reports binding information for each of the various protocol
sequences that are available and both displays the information on the terminal
screen and writes it to afile called binding.dat. This binding information
consists of three elements: a protocol sequence, a network address, and a
transport endpoint. For example, the server might report the following
binding information:

ncacn_ip_tcp 66.0.0.7 4344

If you want the server to use a specific protocol sequence, you can include
that as an argument in the server startup command. For example:

% testld ncacn_ip_tcp

This command causes the server to use that protocol sequence only. The
protocol sequences currently supported include ncacn_ip_tcp (connection
protocol) and ncadg_ip_udp (datagram protocol).

Once the server is running, you can run the client on the same host or on any
other host in the network. To run the client, you must provide the server
binding information reported by the server. For example, you can run the
client with the following command syntax:

% testl protseq networkaddr endpoint [number of passes] [calls per pass]

For example:

% testl ncacn_ip_tcp 66.0.0.7 4344
% testl ncacn_ip_tcp hostname 4344

The client makes a number of remote procedure calls, each of which causesa
simple arithmetic function to execute. After making a sequence of calls, the
client reports the average elapsed time for the calls to complete. By default,
the client makes 10 passes with 100 calls per pass. You can specify the
number of passes and the number of calls per pass by adding two additional
arguments to the client startup command. For example, the following
command instructs the client to make 5 passes, with 1000 calls per pass:

% testl ncacn_ip_tcp 66.0.0.7 4344 5 1000

Because of the granularity of the clock on most systems, the average time per
call will not be very accurate unless you set the number of calls per passto a
relatively high number (at least 1000).

Chapter 13 Example Programs 161

The client can be run as many times as desired, as long as the server is till
running. If you want to clean up the directory for thistest so that you can build
it again, enter the following command:

% make - makefile.testl clean

13.3 RPC Test Program #2

RPC Test Program #2 is a simple client/server program that makes more use
of the DCE services than RPC Test Program #1. In this program, the server
registers transport endpoints with the DCE daemon and exports binding
information to the directory service. The client uses the auto-handle
mechanism to import server binding information.

To build this example program, enter the following commands:
% cp /usr/examples/dce/rpc/test2/* .
% make -f makefile.test2

Because this program exports and imports an entry to the global hamespace
(.2), you must perform a dce_login operation as cell_admin or some other
privileged principal before you start the server process. Start the server with
the following command:

% test2d

Once the server is running, you can run the client on the same host or on any
other host in the network that is configured to run in the same cell asthe
server host. Before running the client, you must define an environment
variable on the client system that can be used to locate the server binding
information in the namespace during the auto-handle process:

% setenv RPC_DEFAULT ENTRY /.:/test2 server

After you define the environment variable, run the client with the following
command syntax:

% test2 [passes][calls per pass]

The client imports server binding information from the namespace. It makes a
number of remote procedure calls, each of which causes a simple arithmetic
function to execute. After making a sequence of calls, the client reports the
average elapsed timefor the callsto complete. By default, the client makes 10
passes with 100 calls per pass. You can specify the number of passes and the
number of calls per pass by adding two argumentsto the client startup
command. For example, the following command instructs the client to make 5
passes, with 1000 calls per pass:

% test2 5 1000

Because of the granularity of the clock on most systems, the average time per
call will not be very accurate unless you set the number of calls per pass
relatively high (at least 1000).

The client can be run as many times as desired, aslong as the server is still
running. If you want to clean up the directory for thistest so that you can build
it again, enter the following command:

% make - makefile.test2 clean

162 Gradient DCE for Tru64 UNIX Product Guide

13.4 RPC Test Program #£3

RPC Test Program #3 is a simple client/server program that makes minimal
use of the DCE services. The server registers transport endpoints with the
DCE daemon, but no binding information is exported to the directory service.

To build this example program, enter the following commands:
% cp /usr/examples/dce/rpc/test3/* .
% make T makefile.test3

After the build is completed, ensure that dced is running, and then start the
server with the following command:

% test3d [protseq]

The server reports binding information for each of the various protocol
sequences that are available and both displays the information on the terminal
screen and writes it to afile called binding.dat. This binding information
consists of two elements. a protocol sequence and a network address. For
example, the server might report the following binding information:

ncacn_ip_tcp 66.0.0.7

If you want the server to use some specific protocol sequence, you can include
that as an argument in the server startup command. For example:

% test3d ncacn_ip_tcp

This command causes the server to use that protocol sequence only. The
protocol sequences currently supported include ncacn_ip_tcp (connection
protocol) and ncadg_ip_udp (datagram protocol).

Once the server isrunning, you can run the client on the same host, or on any
other host in the network. To run the client, you must provide the server
binding information reported by the server. For example, you can run the
client with the following command syntax:

% test3 protseq hostaddr [passes] [calls per pass]
For example:

% test3 ncacn_ip_tcp 66.0.0.7

or

% test3 ncacn_ip_tcp hostname

The client makes a number of remate procedure calls, each of which causes a
simple arithmetic function to execute. After making a sequence of calls, the
client reports the average elapsed time for the calls to complete. By defaullt,
the client makes 10 passes with 100 calls per pass. You can specify the
number of passes and the number of calls per pass by adding two additional
arguments to the client startup command. For example, the following
command instructs the client to make 5 passes, with 1000 calls per pass:

% test3 ncacn_ip_tcp 66.0.0.7 5 1000

Because of the granularity of the clock on most systems, the average time per
call will not be very accurate unless you set the number of calls per passto a
relatively high number (at |east 1000).

Chapter 13 Example Programs 163

The client can be run as many times as desired, as long as the server is till
running. If you want to clean up the directory for thistest so that you can build
it again, enter the following command:

% make _f makefile.test3 clean

13.5 Book Distributed Calendar Program

The Book distributed calendar program (book) is afairly sophisticated client/
server application that uses of a number of DCE services. The program
registers transport endpoints with the DCE daemon and exports server
binding information to the directory service. It also demonstrates some
minimal use of mutex locks to protect resources on the server from access by
multiple call threads.

To build this example program, enter the following commands:
% cp /usr/examples/dce/rpc/book/* .

% make -f makefile.book

After the build is completed, log in asroot, perform adce login operation,
and start the server with the following command:

% bookd [-d][-v][bookname]

The server calls a useful set of initialization routines from the DCE library.
Thefirst call, rpc_server_init(), forks a process to run the server and
initializes the RPC runtime with the appropriate parameters. The program
doesthis before any other calls are made by the server to the RPC runtime and
before any other threads calls are made (because thread context is not
guaranteed to be preserved across afork). After performing other
initialization functions (this program initializes a global mutex), the program
makes a second call torpc_server_detach(). Thiscall releases the terminal
associated with the parent process, after which the parent processis free to
exit. The server then starts listening for client requests.

The server takes three optional command arguments that affect the
initialization sequence, as shown in Table 13-2.

Table 13-2: Options for Starting the Book Distributed Calendar Program

Argument Description

-d (Debug mode) Do not fork achild process (run the server in the
parent). Default: No Debug mode.

-V (Verbose mode) Display informational messages during
initidization. Default: No Verbose mode.

bookname Calendar name to be used. Default: login_name.book.

Once the server is running, you can run the client on the same host, or on any
other host in the network that is configured to run in the same cell asthe
server host. Start the client with the following command:

% book [bookname]

164 Gradient DCE for Tru64 UNIX Product Guide

The client imports server binding information from the directory service, and
causes the server to update the calendar file for the account in which the client
isrunning. The client has a help facility that lists the commands that you can
execute to modify the calendar database on the server.

You can execute the client as many times as desired, aslong as the server is
il running. To clean up the directory for this application so you can build it
again, enter this command:

% make -f makefile.book clean

13.6 The Time Operations Sample Application

13.6.1 Overview

Thetimop_svc program exercises the basic DCE technol ogies. threads, RPC,
security, directory, time and serviceability. Its detailed description isin the
README file the /usr /examples/dce/svc/timop_svc directory.

The two parts of timop are aclient and a server, implemented by the
timop_svc _client and timop_svc_server processes. The server manages a
single operation, getting the span of time used in calculating the factorial of a
random number specified by the client. The client spawns several threads that
make parallel RPC service calls to designated servers. The client prints the
name, invocation order, and time span that each server reports, and the
number for which the server calculated the factorial. It also prints out a total
time span that encompasses all the job events at the servers and the sum of the
random numbers.

The transport provider is UDP. Authentication and integrity-secure RPC
ensure data communication. Named-based authorization (not ACLS) is
employed. Clients and servers use different physical clocksthat arein
agreement with one another because they are synchronized by thetime
service. All times and time calculations arein UTC, not local civil time;
permitting clients and servers to operate in different time zones.

Because timop uses the security service, the timop clients and servers must
run as security principals, but with only minimum use of security. The
timop_client runs as a principal named /.../mycell/tclient and timop_server
as aprincipal named /.../mycell/tserver. These names can be changed to suit
your environment by modifying timop_svc_aux.h file.

Additional information on serviceability can be found in the OSF DCE
Application Development Guide - Core Components volume. See also the
log.8dce reference page (about the dcecp log object, through which the DCE
components' serviceahility routes and settings are managed) in the OSF DCE
Command Reference.

13.6.2 Building timop_svc

Before building timop_svc, make sure that the DCE Application
Development Environment (which includes the IDL compiler) isinstalled.
Next, read the comments of the Makefile, and remove comment flags and
options as appropriate to your platform.

Chapter 13 Example Programs 165

To build timop_svc, enter the following command.

% make -f Makefile.timop_svc

13.6.3 Setting Up to Run timop_svc

Before you can run timop_svc, you must first set up your DCE cell with the
security registry and namespace information necessary for the program and
for its client and server principal entities. You must also set up an
authentication key table file on each machine on which you intend to run the
server. To do so, follow these steps:

1 Add the client and server principals to the Security registry.
2 Create akeyfileto be used by the server.

3 Create aCDS namespace entry, to which the server exportsits binding
information, and from which the clientsimport it.

4 Set up the correct permissions on the namespace entry so that the server
can writeto it correctly.

Included with the example'sfiles are apair of dcecp scriptsthat automatically
perform (or undo) al of the above steps, except the second step (creating the
keytab file). Each script also logsin to the cell ascell_admin asits first
operation. The login operation uses the default cell password (-dce-).

The following examples show how to run the setup script:
% ./timop_svc_setup.dcecp /.:/ts_entry

principal create {tsserver tsclient}

group add none -member tsserver

group add none -member tsclient

organization add none -member tsserver

organization add none -member tsclient

account create tsserver -group none -organization none \
-password qwerty -mypwd -dce-

account create tsclient -group none -organization none \
-password xyzzy -mypwd -dce-

Adding CDS entries.

Once the setup script has been run, you should log in as the Cell
Administrator using dce_login and run rgy_edit to set up the server’s keyfile:

% dce_login cell_admin -dce-

% rgy_edit

Current site is: registry server at /.../your_cell/subsys/dce/sec/master
rgy_edit=> ktadd -p tsserver -pw qwerty -f /tmp/tskeyfile

rgy_edit=> quit

bye.

You have now finished the timop_svc setup.

For more information about rgy_edit, see the OSF DCE Administration
Guide - Core Components and the OSF DCE Command Reference.

The name of the server’s keyfile, /tmp/tskeyfile, is specified by the value of
the KEY FILE constant in thetimop_svc_server.h file; the name you give to
the ktadd subcommand must be identical to the value of this constant.

166 Gradient DCE for Tru64 UNIX Product Guide

To undo the setup, run the unsetup script, as follows:

% ./timop_svc_unsetup.dcecp /.:/ts_entry
principal delete {tsserver}

principal delete {tsclient}

account delete tsserver

Registry object not found

account delete tsclient

Registry object not found

Deleting CDS entries.

13.6.4 timop_svc Message Catalog

The DCE Serviceahility APl uses X PG4 message catal ogs to store and
retrieve message text. The catalogs are generated by the DCE sams utility.
The catalogs should be installed in their correct platform-specific location.
For example:

/usr/lib/nls/msg/LANG

However, if the serviceability routines cannot find a catal og there, they
default to their respective current working directory. If they cannot find the
catalogs there either, they retrieve messages from the in-memory table, if one
has been defined by the application. See the Serviceability chapter in the OSF
DCE Application Development Guide for details. Thus you should be ableto
run timop_svc successfully without doing any extra message catalog
installation.

13.6.5 Running the timop_svc Server

To run timop_svc, you must first start the server and invoke one or more
clients to perform the timop_svc operation. An example of how to do this
follows.

On the machine on which you want to run the server, enter this command:

% ./timop_svc_server -el /.:/ts_entry

NOTE: You should start the server in the background, in awindow different
from the one in which you intend to run the client, or on a separate terminal.

The/../ts_entry isthe server’s name in the namespace. It is the name of the
CDS entry towhich it exportsits bindings, and therefore isthe name by which
it is known to clients. The entry was set up when you ran the dcecp setup
script earlier; it can have any name you choose.

The -el specifies the object UUID that the server should export and register
its bindings with. Two object UUIDs are available, specified to the server as
-el or -e2. Having two UUIDs allows you to have two servers running at the
same time (and even on the same machine). Clients can bind to the server they
choose simply by specifying the correct object number in the client command
line (as will be seen below). Even when two timop_svc servers export to
different name entries, if the servers are active at the same time, their exported

Chapter 13 Example Programs 167

partial bindings will be identical if they are running on the same machine;
requiring that the bindings be exported and imported with an object UUID
specified prevents different server instances from getting mixed up.

The server displays a series of messages, most of them output through the
Serviceability API. For more information about these messages and how to
control them, see the sample output inthe README file. At the end of al this
preliminary activity, the server displays a“ready” message.

13.6.6 Running the timop_svc Client

After you have invoked the server, wait until you get amessage similar to this
one:
1994-05-26-19:36:32.915+00:001----- ./timop_svc_server NOTICE tsv server

Ox7aff3f20
Server /.:/ts_entry (object 1) ready...

(Thisisthe serviceability form of the “ Server ready” message displayed by
the timop server.)

You can now invoke the client (either in the same window, if you ran the
server in the background, or in a different window). To get rid of your
tsserver identity when invoking the client from the same window, enter:

% exit

Next, log in asthe tsclient principal and then start the timop_svc_client
program. Enter:

% dce_login tsclient xyzzy
% timop_svc_client -ol /.:/ts_entry

The -0l specifies that the client is to import the bindings registered with
object UUID 1, which isthe object the server exported to. If the server had
specified -2, then the client would have had to specify -02. If two servers
were active and each had exported to a different object, clients could specify
either object (or both) to import.

If al has gone well, the timop_svc client now begins printing out results
continuously until you stop it. (See Section 13.6.8 on page 168 for details on
how to do this.)

On multiple machinesin the same cell, you can try something like the
following:

% timop_svc_server -el /.:/ts_entry # on machine A
% timop_svc_server -e2 /.:/xs_entry # on machine B
% timop_svc_client /.:/ts entry /.:/xs_entry /.:/ys_entry # on machine D
% timop_svc_client /.:/ys entry /.:/xs_entry /.:/ts_entry # on machine E

To do this, you must first set up xs_entry and ys _entry namesin CDS by
specifying these additional names to the timop_svc_setup.dcecp script.

13.6.7 Sample Server Qutput

Following is an example of the kind of server output you can expect to see if
you invoke the timop_svc server with full debugging enabled, and with
serviceability NOTICE type messages routed to standard error.

168 Gradient DCE for Tru64 UNIX Product Guide

In general, the first groups of messages are output as a result of
straightforward test calls to various routines; the later messages contain
authentic information being output via the serviceability interface. As
explained above, once this message appears, the server waits, and the client
(or clients) can then be started.

1994-05-26-19:36:32.915+00:001----- ./timop_svc_server NOTICE tsv server
0x7aff3f20
Server /.:/ts_entry (object 1) ready...

Once aclient is started, the server resumes its messaging activity; the amount
of activity is determined by the debug level you specify (the default is no
debug messaging) and the routing you have set. In the preceding example, the
“Server ... ready” message is about the 16th from the last; the subsequent
messages represent a sample of what happens once a client has become active.

See the timop_svc source code (which is fully commented) for details of
which serviceability routines are called.

Refer to Section 13.6.9 on page 168 and Section 13.6.10 on page 169 for
more information on how to specify various aspects of timop_svc's behavior.

For more information on Serviceability functionality, see the serviceability
chapter in the OSF DCE Application Devel opment Guide - Core Components
volume.

See the README file for examples of server and client output.

13.6.8 Stopping timop_svc
You must kill clients and servers by hand, either by using the interrupt key or
with a combination of the psand kill commands. Doing so leaves server
binding information in the endpoint map and namespace, which is normal for

persistent servers. Theinformation can be removed afterwards by running the
timop_svc_unsetup.dcecp script.

13.6.9 timop_svc Server Options

Thetimop_svc server isinvoked as follows:

timop_svc_server [-wsvc_route [-wsvc_route ...]] \
[-d"dbg_route" [-d"dbg_route"™ ... 1] \
[-D"dbg_level" [-D"dbg_level™ ... 11 \

[-f] -enr entry_name

where:

-wsvc_route (optional, one or more) Specifies a serviceability routing.
-d"dbg_route" (optional, oneor more) Specifies a serviceability debug routing.
-D"dbg_level™ (optional, oneor more) Specifies a serviceability debug level.

-f (optiona) Causes the serviceability filter to be installed.

-elor -e2 Specifies the object entry this server instanceis
using for export.

entry_name Specifies the name of the entry to which this
server instance should export.

Chapter 13 Example Programs 169

For more information on Serviceability functionality, see the serviceability
chapter in the OSF DCE Application Development Guide - Core Components

volume.

13.6.10 timop_svc Client Options

Thetimop_svc client isinvoked as follows:

timop_svc client _onr [-onr ...]\
server_entry [server_entry ...]\
[-D"dbg_level" [-D" dbg_level" ... 1]\

[-d" dbg_route" [-d" dbg_route" ...]]\
[-wsvc_route]-wsvc route ...]] [I] [-C] [-R] [-f]

or:

timop_svc _client -onr -b" string_binding" \
[-D"dbg_level" [-D" dbg_level" ... 1]\

[-d" dbg_route" [-d" dbg_route" ...]]\
[-wsvc_route]-wsve route ...]] [-] [-C] [-R] [-f]

where:

-0l or -02

server_entry

string_binding

9 D" dbg_level"
(optional, one or
more)

-d" dbg_route"
(optional, one or
more)

-wsvc_route
(optional, one or
more)

Specifiesthe server object to bind to. You can specify up to 2 objects.
[NOTE: Thislimit, and the values of the object UUIDs, are defined
intimop_svc_aux.h. You can increase the number of objects allowed
by altering the contents of this file and rebuilding timop_svc.]

Specifies the name of the server entry to bind to; You can specify up
to 10 server_entrys. If you specify multiple servers and objects, the
list of serversand thelist of objects must ordinally match. [NOTE:
This limit is specified in timop_svc_client.h.]

Specifies a complete binding to use to make direct contact with the
server. Multiple servers cannot be specified with this option, and
specifying aserver_entry with it is an error.

Specifies a serviceahility debug level. For example:

-D"tsv:tsv_s server.5tsv_s refmon.9"

or:

-D"tsv:*.9"

See Section 13.6.12 on page 170 for the significance of the various
available levelsfor timop_svc.

Specifies a serviceability debug routing. For example:
-d"tsv:tsv_s_server.5: TEXTFILE:pathname"

or:

-d"tsv:*.8:STDERR:"

Specifies aremote serviceability routing.

Specifies that the serviceability subcomponents be listed.
Specifies that all registered serviceability components be listed.
Specifies that the serviceability routings be listed.

Specifies that the remote serviceability filter routine be toggled.

170 Gradient DCE for Tru64 UNIX Product Guide

For more information on Serviceability functionality, see the OSF DCE
Application Development Guide - Core Components.

13.6.11 timop_svc Principal And Keytab Names

tsserver Server principal name [defined in timop_svc_aux.h]
tsclient Client principal name [defined in timop_svc_aux.h]
/tmpltskeyfile keytab pathname [defined in timop_svc_aux.h and

timop_svc_server.h]

13.6.12 timop_svc Debug Message Levels

You can set to nine different debug levels (by means of the D switch in the
server or client command line; see Section 13.6.10 on page 169). Table 13-3
shows the debug level significanceintimop_svc:

Table 13-3: timeop_sve Debug Message Levels

Level Meaning

Used for test messagesin “server” subcomponent.

Used for test messagesin “server” subcomponent.

Used for test messagesin “server” subcomponent.

Used for test messagesin “server” subcomponent.

a | bW IN |

In“server”, “manager”, and “refmon” subcomponents,enables messages that are
written at each DCE library call.

In “manager” and “refmon”, also enables messages whenever local subroutines
are entered or exited.

In “refmon”, also enables messages describing values about to be returned by

local subroutines.

6 Used for test messagesin “server” subcomponent.

7 In “remote” subcomponent, enables messages that are written whenever aremote
serviceability routineis entered, aswell as messages that are written at each DCE
library call.

8 Used for test messagesin “server” subcomponent.

9 Used for test messagesin “server” subcomponent.

For more information on Serviceability functionality, see the OSF DCE
Application Development Guide - Core Components.

13.7 Microsoft RPC Phonebook Program

This section describes how to build and run a phonebook application called
phnbk. Company employees use the phnbk client program to look up
employee contact information that resides with the phnbk server.

Chapter 13 Example Programs 171

The phnbk application is included with Gradient DCE for Tru64 UNIX.
Because the phnbk source code is portable, you can build and run the phnbk
server on aTru64 UNIX system that has Gradient DCE for Tru64 UNIX
installed, aswell as on other DCE machines.

The sample phnbk client/server program demonstrates several aspects of
cross-environment applications:

Basic connectivity between a Microsoft RPC client and a DCE server.

Client use of automatic binding in which the client gets the server binding
information from the DCE Cell Directory Service. Alternatively, users
enter aserver’s binding information as part of the command to start the
client. Use the manua method to bypass the DCE Cell Directory Service
or to select a specific server for use when several are available.

The use of a portability file (dosport.h) that resolves differences between
Microsoft RPC and DCE RPC.

The use of portable server and client code. The server code builds and
executes on Trué4 UNIX, Windows NT, and OpenVMS systems. The
client code builds and executes on personal computers running the
MS-DOS operating system, the Microsoft Windows NT operating system,
and on Tru64 UNIX and OpenVMS systems.

13.7.1 Source Files for the phnbk Example

To run the example programs, copy the example source files to the Microsoft
RPC and DCE platforms. The following list identifies the source files you
need to build an executable client and server program for Gradient DCE for
Tru64 UNIX.

README file - describes how to build and run the example program
phnbk.idl - Interface definition file

phnbk.acf - Attribute configuration file

client.c - Client program

server.c - Server initiaization code

manager.c - Remote procedures

phnbk.txt - phnbk database

phnbk.unix - Makefile for UNIX client and server
dosport.h - Microsoft RPC client portability file
phnbk.dos - Makefile for MS-DOS client
phnbk.nt - Makefile for Windows NT client

phnbk.com - Command file to build client and server on OpenVMS
systems\

172 Gradient DCE for Tru64 UNIX Product Guide

13.7.2 Building the Tru64 UNIX phnbk Client and Server Programs

To build the phnbk client and server programs on a Tru64 UNIX system that
has Gradient DCE for Tru64 UNIX installed, use make to build the
executable client and server programs:

% make -f phnbk.unix ALPHA=_stdl alpha

This command creates a server program called phnbkd and a client program
called phnbk.

13.7.3 Starting and Stopping the phnbk Server

To start the server phnbkd, enter the following command:
% phnbkd&

The server displays the binding information for each protocol sequenceitis
using. Three elements make up a server’s binding information: a protocol
sequence, a hetwork address, and a transport endpoint. For example, a server
might report the following binding information:

% phnbkd&
[1] 23789
ncacn_ip_udp:16.20.16.134_[1229]
ncacn_ip_tcp:16.20.15.134_[1474]

When you are done using the server program, stop it using the kill command.

13.7.4 Starting and Stopping the phnbk Client Program

To start the phnbk client (phnbk), use one of the following binding methods:

= Automatic binding. The client gets server binding information from the
DCE Directory Service. The server must be running in the same DCE céll
as the client. The following command starts the client using automatic
binding.
% phnbk
Resolving binding through name server

Server returned from name server is: ncacn_ip_tcp:16.20.16.134[]
Valid commands are:

(b)rowse - List next entry

(r)eset - Reset to beginning of file
(f)ind <string> - Find a substring

(f)ind - Find next occurrence of <string>
(q)uit - Exit program

= Manua binding. If the directory service is not available or you want to use
a specific server, you can include the server’s binding information as part
of the command to start the client. You can use a complete or a partial
binding. A partial binding consists of a protocol sequence and a network
address, but does not include the server endpoint. If you do not include the
endpoint, the client obtains it from the server host’s endpoint map.

The following command starts the client and uses a complete binding.

Chapter 13 Example Programs 173

% phnbk ncan_ip_tcp:16.20.16.134\[1474\]
Valid commands are:

(b)rowse - List next entry

(r)eset - Reset to beginning of file
(f)ind <string> - Find a substring

(f)ind - Find next occurrence of <string>
(q)uit - Exit program

The following command starts the client and uses a partial binding.

% phnbk ncacn_ip_tcp:16.20.16.134
Valid commands are:

(b)rowse - List next entry

(r)eset - Reset to beginning of file
(f)ind <string> - Find a substring

(f)ind - Find next occurrence of <string>
(q)uit - Exit program

The phnbk client displays a menu of available commands that you enter to
interact with the server. To stop the client, use the (q)uit command from
the client menu.

13.8 The Echo Example Program

The Echo example program* (echo) demonstrates how a distributed
application can secure itself using the GSSAPI security interface.

The echo example consists of a server program (echo_server) and aclient
program (echo_client). When echo_server isrunning, it waits for
echo_client to attempt to connect over TCP/IP. Once a connection is
established, user input from echo_client is transmitted across the network to
the server and echoed back to the client.

When a user enters the -s switch, echo_client uses GSSAPI to authenticate
itself to the server and to protect messages that flow from client to server.
Messages in the reverse direction are not protected.

The echo example demonstrates how a distributed application:
» Creates GSSAPI server credentials with the gss_acquire _cred() cal

» Authenticatesitself and creates a security context with the
gss init_sec_context() and gss_accept_sec_context() calls

» Protectsindividual messages cryptographically and verifiesthem using the
gss seal() and gss_unseal() calls
To build the echo example, copy the files in /etc/examples/dce/gssapi into a

directory, edit M akefile.echo to match your environment (if necessary), and
issue the following command:

% make -f Makefile.echo

You need to establish the echo server and client as DCE principals having
principal names, accounts, and group and organization membership.

% dcecp
dcecp> principal create {echo_server echo_client}
dcecp> group add none -member echo_server

174 Gradient DCE for Tru64 UNIX Product Guide

dcecp> group add none -member echo_client

dcecp> organization add none -member echo_server

dcecp> organization add none -member echo_client

dcecp> account create echo_server -group none -organization none \
> -password qwerty -mypwd -dce-

dcecp> account create echo_client -group none -organization none \
> -password xyzzy -mypwd -dce-

You must also create a keytable for managing the server authentication keys.
% rgy_edit
Current site is: registry server at /.../snafu_cell/subsys/dce/sec/master

rgy_edit=> ktadd -p echo_server -pw qwerty -f /tmp/echo_keyfile
rgy_edit=> quit
bye.

%

You can run the example from a single system or move echo_client and
echo_server to two different systems. On the server, start echo_server using
the following command syntax:

% echo_server [-p port] [-s server_name] [-T keytable_file]

The command arguments for the server are described in the next table.

Table 13-4: Server Options for the echo_server Command

Option Description

-p port Specifies the name or number of the TCP port on which the server
listens for connection requests from clients. If you omit the -p switch,
port 6000 is used.

-S server-name Specifies a DCE principa name that the server uses to accept
incoming connection requests that use GSSAPI authentication. The
server needs access to akey corresponding to this principal name.

-f keytable-file Specifies the pathname for the key table containing the principal’s
key. If you omit the -f switch, the DCE default key tableisused. (You
must run the server as root to use the default DCE key table).

You can try using another port if the server failsto start and produces an error
like:

server: Can’t bind local address

You can perform authenticated or unauthenticated client operations. To
perform authenticated client operations, you must acquire DCE credentials
with integrated login on an SIA-enabled system or by running the dce login
program. To perform unauthenticated operations, do not use the -s option to
the echo_client command.

On the client, start echo_client using the following command syntax:

% echo_client [-h host] [-p port] [-s server-name]

The command arguments for the server are described in the next table.

Chapter 13 Example Programs 175

Table 13-5: Client Options for the echo_server Command

Option Description
-h host Specifies the host name or |P address of the server machine. If you
omit the -h switch, the client attempts to contact a server on the local
system.
-p port Specifies the name or number of the TCP port on which the server is

listening. Specify the same port you specified to the server. If you
omit the -p switch, the client attempts to contact a server on port
6000.

-S server-name Specifies the DCE principa name of the server. Specify the same
principal name you used when you started the server. If you omit the
-sswitch, GSSAPI is not used and the application operates as a
simple, unsecured echo program. Specifying -s causes the client to
authenticate itself to the server and to attach a cryptographically
protected checksum to each message the client sends. The server
validates the checksum before echoing the message.

Once the connection is open, each line you type to echo_client is sent across
the network to the server and echoed back to the client. Press <Ctrl/D> to
stop the client.

13.9 Time Provider Example Programs

The directory /usr/examples/dce/dts contains many example programs for
various types of external time providers. These examples contain extensive
information about how to build and use them. For additional information
about the time provider interface, see the OSF DCE Application Devel opment
Guide.

13.10 The Serviceability API Sample Program

The hello_svc program provides a simple demonstration of the DCE
Serviceability API. When executed, it writes a“Hello world” messageto
standard error viathe serviceability interface.

The program was devel oped during the writing of the OSF DCE Application
Development Guide chapter on serviceability, and isincluded with the DCE
software as avery simple demonstration of the interface.

13.10.1 Building the Program

To build the example, copy the files from /usr/examples/dce/svc into a
writeable directory and issue this command:

% make T Makefile.hello_svc

Once you have built hello_svc, execute it by typing this command with no
arguments:

% hello_svc

You should see two messages similar to these:

176 Gradient DCE for Tru64 UNIX Product Guide

1994-06-10-13:07:33.628+00:001----- ./hello_svc NOTICE hel main Oxad448c444
Hello world
1994-06-10-13:07:33.628+00:001----- ./hello_svc NOTICE hel main Oxa448c444
Hello world

The message is printed twice because it is routed to standard error twice: once
viaacal to dce_svc routing() within the program, and again by the
“attributes’ field in the message definition in the hel .samsfile.

For more information on Serviceability functionality, the OS- DCE
Application Devel opment Guide - Core Components. See also the log.8dce
reference page (about the dcecp log object, through which the DCE
components serviceability routes and settings are managed) in the OSF DCE
Command Reference.

13.11 The Generic Sample Application

The generic sample DCE client/server application includes extensive
examples of ACL management, serviceability code, security setup, and signal
handling. It also has the necessary initialization and cleanup code. The
manager code (sample_manager.c) consists of one generic remote call that
does no actual work, but which does make use of the ACL manager and the
serviceability code.

13.11.1 Building the Sample Application

To build the sample application program, copy the source files from /usr/
examples/dce/generic_app/*. Use the following command to build the
application:

make _f Makefile.generic_app

13.11.2 Installing the Sample Application

Before you can run the sample application, you must install sample client
and sample_server on the machines you want to use. Thisinstallation
involves these steps.

1 Adding the client and server principals and server group to the Security
registry.
2 Creating a keyfile to be used by the server.

3 Creating a CDS namespace entry for the server to export its binding
information to (and for the clients to import binding information from).

4 Setting up the correct permissions on the namespace entry to allow the
server to useit (that is, to write to it) correctly.

Assuming that the server’s principal name is sample_server and that the
client’s principa name is sample_client, you should perform these steps as
follows:

1 Loginasthecell administrator:

$ dce_login cell_admin -dce-

Chapter 13 Example Programs 177

You must first login as the cell administrator to be able to execute the
registry operationsin step 2.

NOTE: The password at your siteis probably different from that given
above (asthe last parameter). For further information about the use of
dce_login, see the OSF DCE Administration Guide.

Add the server and client principals to the registry, and set up the server’s
keyfile:

% dcecp

dcecp> group create sample_servers

dcecp> user create sample_server -g sample_servers -org none
> -pass server_password -mypwd -dce-

dcecp> user create sample_client -g none -org none

> -pass client_password -mypwd -dce-

dcecp> keytab create /.:/hosts/mccann/config/keytab/sample_keytab
> -storage /tmp/sample_keytab

> -data {sample_server plain 1 server_password}

> -noprivacy -local

dcecp>

NOTE: server_password and client_password are the passwords that you
assign to the server and client, respectively. You can substitute any other
values but be sure to remember these values: you need to use them to
perform adce_login operation before executing the client and server
programs. For further information about dcecp, see the OSF DCE
Administration Guide - Core Components and the OSF DCE Command
Reference.

The name of the server’s keyfile, /tmp/sample_keytab, is specified by the
value of the KEY TAB constant in the sample_server.c file; the name you
give to the keytab subcommand must be identical to the value of this
constant.

Create the CDS entry to be used to hold the server’s binding information.
For example:

% dcecp -c create directory /.:/sample
% dcecp -c rpcentry create /.:/sample/sample_server_entry

You can substitute any legal CDS name for sample.

Set up the ACL on the entry to allow access to the server:

% dcecp

dcecp> acl modify /.:/sample/sample_server_entry -entry \
> add {user sample_server rwdtc}

dcecp> exit

178

Gradient DCE for Tru64 UNIX Product Guide

NOTE: sample_server isthe principal name used in the previous steps and
must be identical to the value of the principal_name argument you specify
on the command line to sample_server.

You have now installed the sampl e application.

13.11.3 Running the Sample Application

This section describes how to run the server and client.

Before you run the server you must create in thelocal directory, asubdirectory
called db_sample_acl. This directory is where the sample application’s
backing store database files will be created. The pathname to these filesis
determined by the value of the ACL_DB_PATH constant at the top of the
sample server.c file; you can change this value if you want to.

Invoke the server asfollows:

sample_server principal_name CDS_dir_name/

NOTE: Thereisa/(slash) after the directory name.

where:

principal_name Theserver'sprincipal name. An account must be in the registry for this
principal for the program to run successfully. Note that this nameis not
specified in the program source; it is determined solely by the user, who
must make sure that the name he or she specifies here isthe same asthe
one set up in the registry.

CDS dir_name Thefull name (terminated by a/ (slash)) of the CDS directory in which
the server’s namespace entry is to be located; the bindings are exported
to thisdirectory. Note that this argument is NOT the name of the server
entry which is determined by the value of the constant DEFNAME,
defined in sample_server.c: the server entry is created in the
CDS dir_name directory.

For example (with setup done as described in first section):
./sample_server sample_server /.:/sample/

At present, the server’s serviceability messages are routed by default values
coded at the top of the sample_server.c file. The default behavior sets full
debugging and routes everything to stderr. If you compile the server asis,
you see lots of messages appearing on your screen when you run it (For an
example, see the end of the README file.) To change this behavior, you
must change the hard-coded defaults, because currently thereis no way to
change routing via the command line.

Chapter 13 Example Programs 179

13.11.3.1 Running the Client

Before running the client you must first set the environment variable
RPC DEFAULT_ENTRY to the value of the full name of the server’s CDS
name entry. For example (with setup done as described in first section):

setenv RPC_DEFAULT_ENTRY /.:/sample/sample_server_entry

You must belogged in viadce login asthe sample_client principal to
properly allow the client to do what it needsto do. Thisis because the only
principal who is given any meaningful permissions on the objects managed by
the application is the owner who is defined at the top of server_sample.cto
be sample client.

The client isinvoked as follows:

sample_client object_name | kill

object name The name of the object you want the client to bind to. Note that thisis not
the entry name of some exported entity; it is some object managed by the
server and held in abacking store. Specify the simple object name, the
client will try to bind through the RPC_DEFAULT_ENTRY value.

kill A keyword that specifies the server bekilled via a call through the remote
management interface.

You can try any of three command forms (because at present there are only
two objects set up by the server).

To bind viathe junction to the mgmt object and view its contents, enter:
./sample_client sample_object
To bind to the sample object and view its contents, enter:

./sample_client server_mgmt

To kill the server via the remote management interface, enter:

./sample_client kill

13.11.4 What the Sample Application Does

You can run the client in either of two modes: you can specify that the server
be killed or you can specify a single object to bind to. The object nameis
specified by a namespace pathname, but neither of the two possible objectsis
a namespace entry. Instead, the sample application implements a “junction”
located at its server entry in the namespace, and clients bind to objects
through this junction.

When the client tries to bind to the overqualified CDS entry formed by
concatenating the specified object name to the server entry name it obtains a
partial binding to the server. The client then makes a call to the remote bind
operation with that binding, ostensibly to get the object UUID of the object
whose name was specified (to bind to) when the client was invoked. These
objects reside in a backing store database. The remote call makesits way by
the familiar procedure to the server; the application’s name _to_object()

180 Gradient DCE for Tru64 UNIX Product Guide

routine (defined in sample_bind.c) then simply looks up the desired object
UUID by accessing the name-indexed backing store. When the remote call
completes, the client has afull binding and the desired object UUID.

13.11.5 Viewing the Server ACL

With the sample_server running, you can also access the server’'s ACL
managers using dcecp. For example, to get alist of the contents of the
ACL, enter:

dcecp -c acl show /.:/sample/sample_server_entry/sample_object

This command produces the following output:

{user sample_client rwdctx}

The same commands can be used to bind to and list the contents of the
server_mgmt ACL.

The README file contains sample output from the Generic Application.

For further information the acl object in dcecp, see the OS- DCE Command
Reference.

13.11.6 Notes

A detailed explanation of the operation of the ACL management codeisinthe
OSF DCE Application Development Guide - Introduction and Syle Guide.

The sample application does not use the OSF DCE dced facilities, by which a
DCE application can be registered (either viacallsto the dced_server
routines or viadcecp by a system administrator) with dced, and then, by
means of callsto the dce_server_routines, to have dced do amost all of its
namespace and security initialization for it. For more information on the
dced_server _and dce_server_routines and their use, see the OSF DCE
Application Devel opment Guide - Introduction and Syle Guide and the OSF
DCE Application Development Guide - Core Components.

13.12 Object Oriented idl Programs

This section describes how to build and run four example programs that
demonstrate the use of C++ idl extensions. The four programs are

The account example program
The accountc example program
The card example program
The stack example program

13.12.1 Preparing to Run the Example Programs

The C++ exampl e programs require C++ software to be installed and
configured on the client and server machines.

Chapter 13 Example Programs 181

Establish your environment for building and running the example programs as
follows:

1 Copy the four example programsinto a directory tree with a root name of
Jidlexx.

% cp _R /usr/examples/dce/rpc/idlexx/* .

The ./idlcxx directory has the following files and subdirectories

README A file containing instructions relevant to all example programs
account A directory with the account example program sources
accountc A directory with the accountc example program sources

card A directory with the card example program sources

idlexx_setup A shell script that creates a CDS directory and sets some ACLs

stack A directory with the stack example program sources

2 Logintothe DCE céll ascell_admin and run the idlcxx_setup shell
script. This creates atest directory in the Cell Directory Service and
establishes necessary ACL entries.

% dce_login

Enter Principal Name: cell_admin
Enter Password:

% idlcxx_setup

%

Once a server has been built and is executing, you can start and stop client
programs as many times as desired. You can remove the executable client and
server programs from a directory using the command:

% make clean

13.12.2 The account Example Program

The account example program tests inheritance, binding to an object using
another interface, binding to an object with an unsupported interface, and the
reflexive, symmetrixc, and transitive relation properties of the bind() API. A
Savings interface is derived from an Account interface. A now/Account
implementation classis derived from the Savings and Checking interfaces. A
oldAccount implementation classis derived from the Savings but not the
checking classwhich impliesthat an oldA ccount does not support a Checking
interface.

This example program requires C++ software to be installed and configured
on the client and server machines.

Build this example program by entering the command:

% make

Start the server by entering the command:

% ./server &

182 Gradient DCE for Tru64 UNIX Product Guide

Once the server isrunning, you can run the client on the same host, or on any
other host in the network that is configured to run in the same cell asthe
server host. Before running the client, you must define an environment
variable on the client system that can be used to locate the server binding
information in the namespace during the auto-handle process.

% setenv RPC_DEFAULT_ENTRY /.:/subsys/DEC/examples/account_server
After you define the environment variable, run the client with the command:

% client

The client binds to an object, uses different interfaces, and binds to dynamic
interfaces. It also exercises bind relation properties.

13.12.3 The accountc Example Program

The accountc example program tests the same properties as the account
program (see Section 13.12.1 on page 180), but uses the C interfaces for all
the APIs.

This example program requires C++ software to beinstalled and configured
on the client and server machines.

Build this example program by entering the command:
% make

Start the server by entering the command:

% ./server &

Once the server isrunning, you can run the client on the same host, or on any
other host in the network that is configured to run in the same cell asthe
server host. Before running the client, you must define an environment
variable on the client system that can be used to locate the server binding
information in the namespace during the auto-handle process.

% setenv RPC_DEFAULT_ENTRY /.:/subsys/DEC/examples/accountc_server
After you define the environment variable, run the client with the command:

% client

13.12.4 The card Example Program

The card example program tests the passing of C++ objects as parameters
using the [cxx_delegate] attribute and the polymorphism property of the base
class. A Player implementation classis a generic sports card class. Derived
from Player are a BaseballPlayer class and a BasketballPlayer class. The
application interfaces with the Player classto invoke virtual operationsin the
derived class.

This example program requires C++ software to beinstalled and configured
on the client and server machines.

Build this example program by entering the command:

% make

Start the server by entering the command:

Chapter 13 Example Programs 183

% ./server &

Once the server isrunning, you can run the client on the same host, or on any
other host in the network that is configured to run in the same cell asthe
server host. Before running the client, you must define an environment
variable on the client system that can be used to locate the server binding
information in the namespace during the auto-handle process.

% setenv RPC_DEFAULT_ENTRY /.:/subsys/DEC/examples/card_server
After you define the environment variable, run the client with the command:

% client

13.12.5 The stack Example Program

The stack example program tests the passing of C++ objects as parameters
using the [cxx_delegate] attribute and a user defined Stack class. This test
implements a reverse Polish notation algorithm where the binary arithmetic
operations are performed on the server.

This example program requires C++ software to beinstalled and configured
on the client and server machines.

Build this example program by entering the command:
% make
Start the server by entering the command:

% ./server &

Once the server isrunning, you can run the client on the same host, or on any
other host in the network that is configured to run in the same cell asthe
server host. Before running the client, you must define an environment
variable on the client system that can be used to locate the server binding
information in the namespace during the auto-handle process.

% setenv RPC_DEFAULT_ENTRY /.:/subsys/DEC/examples/stack_server
After you define the environment variable, run the client with the command:

% client

Index

Symbols

“FORTRAN 153, 154, 158
“IDL 139, 140, 150, 151, 153, 154

A

ACEF (Attribute Configuration File)
attributes (FORTRAN) 158
enhancements 110
ACLs
disablingin DFS 100
mapping between DCE and Tru64 UNIX 99
restrictionsin Trué4 UNIX 98
supported by Tru64 UNIX 97
unsupported operations 99
Administration Manual Pages
subset 18
administrative tools 17
ANSI C function prototypes 103
Application Developer's Kit (ADK) subset 18
applications
compiling and linking 103
applications (distributed) with FORTRAN 137,
158
attributes (FORTRAN)
ACF 158
IDL 154
auditd 16
auto_handle binding 146

B

Browser 17, 68
icons 68
using the Filtersmenu 69
building FORTRAN distributed application 146

C

CDSs 31
enhancements 65
preferencing 70

CDSBrowser 17, 68

CDS Server subset 17

chpass command 24, 40
clearinghouse
preferencing 70
client 16
client application code for FORTRAN distributed
application 142
client_memory ACF attribute 110
compatibility
between CDS and DECdns 31
with other DCE systems 31
compilers
¢89 compiler 103
cc compiler 103
compiling and linking
ANSI C function prototypes 103
applications 103
command formats for 103
including pthread.h 103
Tru64 UNIX 103
Contacting Gradient information 13
control programs 17

D

datafilefor FORTRAN distributed application 140
datatype mapping 151
databases

resolving inconsistencies 37
DCEclient 16
DCE credentials, acquiring 100
DCEDTS
interaction with DECnet/OS| DECdts 32

debugging 132

DECdns 31
DECnet
stopping and starting 32
DECnet/OSI 31
Phase |V compatibility mode 31
DECnet/OS| DECdts
benefits of using in a DCE environment 32
disadvantages of using in a DCE environment
32
interaction with DCE DTS 32
DFS 23
DIGITAL FORTRAN
developing applicationswith 137
portability constraint 137

186 NetCrusader/DCE Product Guide

Diskless support
removed 23
distributed applications with FORTRAN 137, 158
Distributed File Service (DFS)
ACLs 99
authenticated access 100
disabling ACLs 100
file system backup 100
restrictions 23
subset 18
troubleshooting 100
unsupported ACL operations 98
variations from OSF DFS 97
Documentation 14
DTS
show command 33

E

enabling event logging 121
Enhanced Browser 21
enhancements 65
event descriptions 133
event logging
combining logs 122
environment variables 124, 125, 128
event names 119, 133
event types 119, 121
generating log 120
log fields 120
Log Manager 124, 125, 128
rpclm command interface 117, 126
traceoption 121
Example programs 159
Book Distributed Calendar Program 163
Microsoft RPC Phonebook Program 170
Object Oriented idl Programs 180
Preparing to Run the Example Programs 180
RPC Test Program #1 160
RPC Test Program #2 161
RPC Test Program #3 162
The Echo Example Program 173
The Generic Sample Application 176
The Serviceability APl Sample Program 175
The Time Operations Sample Application 164
Time Provider Example Programs 175
examples
FORTRAN 138, 148
Payroll 138

F

features

using the DCE for Tru64 UNIX kit 21
Filters menu

using 69
FORTRAN

compiler option 149

mapping from IDL types 151

with distributed applications 137

G

GDA

and LDAP 86
Global Directory Agent (GDA) 17
Glaobal Directory Service

X.500 17

H

host profile 110

IDL

enhancements to the IDL compiler 115
IDL command options 111

standard 111
IDL compiler

lang fortran flag 149
IDL options

event logging 121

templates 112
IDL stub compiler 18,21, 111
interoperability of distributed applications with

FORTRAN 137

L

lang fortran flag for IDL compiler 149
LDAP (Lightweight Directory Access Protocol)
and GDA 86
and NSl 85
CDS name trandation 76
configuration file 73
NSl configuration 73
objects and attributes 79
overview 71

Index 187

relative names 85
schema 78
syntax 72

linking DCE applications 103

M

manpages 18

mapping
IDL typeto FORTRAN type 151
structure 154
type 151

multithreaded applications 150

N

naming options
Cell Directory Service (CDS) 16
nbase.for file 153, 154
NIDL_TO_IDL Converter Tool 18
NSI
and LDAP 85
cals 74
CDS-to-LDAP name translation 76
using 85
nsid 16

0

Obtaining Additional Documentation statement 14
Online Manual Pages subset 18

P

Payroll example program 138
PC
interoperating with 19
Phase |V compatibility mode 31
pipesrestriction 150
portability of distributed applications with FOR-
TRAN 137
Preparing to Run the Example Programs 180
pthread.h 103
Pthreads 20

R

reference pages
accessing 18

manpages 18
using 18
Related documentation list 12
remote procedure calls
in distributed applications 137, 158
using FORTRAN - example 138, 148
using FORTRAN - reference 148, 158
represent_as attribute 150
restrictions
using DCE on Tru64 UNIX 23
RPC daemon 16
RPC Event Logger 16, 117
RPC_DEFAULT_ENTRY 110
rpcd 16
rpclm 16
command interface 117, 126
running FORTRAN distributed application 148
Runtime Services subset 16

S

sec create db 18
sec_salvage db 18
secd 17
Security Integration Architecture (SIA) 35
security server 17
Security Server subset 17
server application code for FORTRAN distributed
application 145
server code for FORTRAN distributed application
143
setuid command
using with DFS 100
SIA
about 35
enabling and disabling 36
SIACFG
about 37
structure mapping 154
su command 38
subsets
Application Developer'sKit 18
CDS Server 17
DFSKernel Binary Subset 19
DFS Online Manual Pages 19
DFS Runtime Services Subset 18
DFS Utilities Subset 19
Runtime Services 16
Security Server 17
Support 13

188 NetCrusader/DCE Product Guide

I

Technical support 13
Template option 112
threads 20

traceoption 121
transmit_as attribute 150

type mapping 151

UUID generator 17

Vv

vl array attribute 150

X

X.500 17
restrictions 24

	Notices
	Preface
	Intended Audience
	Overview of this Guide
	Conventions
	Related Documentation
	Contacting Entegrity Solutions
	Obtaining Technical Support
	Obtaining Additional Technical Information
	Obtaining Additional Documentation

	Gradient DCE for Tru64 UNIX
	1.1 Overview of the Software
	1.2 Kit Contents
	1.2.1 Runtime Services (RTS) Subset
	1.2.2 Cell Directory Server Subset
	1.2.3 Security Server Subset
	1.2.4 Application Developer’s Kit Subset
	1.2.5 Online Manual Pages Subset
	1.2.6 Distributed File Service Runtime Services Subset
	1.2.7 DFS Kernel Binary Subset
	1.2.8 DFS Utilities Subset
	1.2.9 DFS Online Manual Pages
	1.2.10 NFS-DFS Secure Gateway Server

	1.3 Platforms and Networks Supported by Gradient DCE for Tru64 UNIX
	1.3.1 Interoperating with PCs
	1.3.2 Network Support

	1.4 Threads
	1.5 Enhancements to OSF DCE
	1.5.1 CDS Enhanced Browser
	1.5.2 IDL Compiler Enhancements
	1.5.3 The RPC Event Logger Utility
	1.5.4 Name Service Interface Daemon for Microsoft RPC
	1.5.5 Security Integration Architecture
	1.5.6 RPC Support of DECnet/OSI (Phase V)
	1.5.7 DTS Support of DECnet/OSI (Phase V)
	1.5.8 CDS Cache Clerk Enhanced Memory Management
	1.5.9 CDS Preferencing
	1.5.10 DTS Support for DLI (Data Link Interface) and RPC
	1.5.11 LDAP Directory Service
	1.5.12 New localrpc Protocol Sequence
	1.5.13 Kerberos 5-Compliant Utilities
	1.5.14 DCE in a Tru64 UNIX TruCluster Application Server Environment

	1.6 Diskless Support Removed from OSF DCE
	1.7 Restrictions Using Gradient DCE for Tru64 UNIX
	1.7.1 DCE DFS Restrictions and Limitations
	1.7.2 Utility Restriction
	1.7.3 DIGITAL X.500 Restrictions

	Interoperability and Compatibility
	2.1 Overview of Compatibility with Other DCE Systems
	2.2 Overview of Interoperability with Other DCE Systems
	2.3 DCE DFS Interoperability and Compatibility
	2.4 CDS and DECnet/OSI DECdns Compatibility
	2.5 Interoperability with DECnet Phase IV and DECnet/OSI
	2.6 Interaction Between DCE DTS and DECnet/OSI DECdts
	2.6.1 Changing the Default for DCE DTS to RPC

	Security Integration Architecture
	3.1 Overview of SIA
	3.2 Benefits of SIA
	3.3 Using SIA
	3.4 Using the SIA Configuration Program
	3.5 How DCE Security Affects the Security-Sensitive Commands and Routines
	3.5.1 Login-Related Commands

	3.5.1.1 login Command
	3.5.1.2 The su Command
	Table 3-1: User Combinations�
	3.5.2 Registry Information Change Commands
	3.5.3 Registry Information Inquiry Routines

	3.6 Using DCE SIA With the Tru64 UNIX Enhanced Security Option
	Table 3-2: Benefits of Using SIA with BSD Security or Enhanced Security�

	3.7 Performance Considerations for DCE SIA
	3.7.1 Performance of getpwent(�) and getgrent(�) Functions
	3.7.2 The Impact of DCE SIA on Login Performance
	3.7.3 UID Management
	3.7.4 Executables in /sbin
	3.7.5 rlogin
	3.7.6 Changing root Password
	3.7.7 Credentials Obtained for Intercell Login are Poorly Protected

	3.8 Performance Considerations for Registry Replication
	3.9 Group Override and the group_override File
	3.9.1 Use of /opt/dcelocal/etc/group_override
	3.9.2 Effect of Local Override on Group Data

	3.10 Additional Information

	Introduction to the DCE Directory Service
	4.1 Overview of DCE Directory Service
	4.2 How the DCE Components Use the DCE Directory Service
	4.3 How to Use DCE Directory Services
	4.4 Directory Services and the Cell Environment
	4.5 How Cells Determine Naming Environments
	4.5.1 Global Names
	4.5.2 Hierarchical Cell Names

	4.6 Alias Cell Names
	4.7 Cell-Relative Naming in a Standalone Cell
	4.8 Cell-Relative Naming in a Hierarchy of Cells
	4.8.1 Local Filenames
	4.8.2 An In-Depth Analysis of DCE Names

	4.9 CDS Names
	4.9.1 Names
	4.9.2 LDAP Names
	4.9.3 DNS Names
	4.9.4 Names Outside of the DCE Directory Service

	Cell Directory Service Enhancements
	5.1 Overview of CDS Directory and Clearinghouse Operations
	5.1.1 Reorganizing Existing CDS Directory Replicas
	Table 5-1: Reorganizing Existing CDS Directory Replicas�

	5.1.2 Creating Additional CDS Directory Replicas
	Table 5-2: Creating Additional CDS Directory Replicas�

	5.2 Enhanced Browser
	5.2.1 Displaying the Namespace
	5.2.2 Filtering the Namespace Display

	5.3 CDS Enhanced Cache Memory Control
	5.4 CDS Clearinghouse Preferences

	LDAP Capabilities
	6.1 Overview of LDAP
	6.2 How NSI Works
	6.2.1 LDAP Syntax
	6.2.2 NSI Configuration
	6.2.3 Configuration File Format and Syntax
	Table 6-1: LDAP NSI Configuration Options and Values�

	6.2.4 NSI Call Categorization
	6.2.5 Name Service Selection
	6.2.6 Name Translation from CDS to LDAP

	6.3 Using NSI
	6.3.1 Modifying Runtime Configuration Options
	6.3.2 Application Programming
	6.3.3 NSI Known Limitations

	6.3.3.1 Security
	6.3.3.2 Schema
	6.3.3.3 Schema for Storing RPC Entries in a Directory Service
	Table 6-2: Entry Types and Object Groups�
	6.3.4 Objects and Attributes

	6.3.4.1 Notation
	6.3.4.2 Object Naming
	6.3.4.3 Object Definitions
	6.3.4.4 RPC Entry
	6.3.4.5 RPC Group
	6.3.4.6 RPC Profile
	6.3.4.7 RPC Server
	6.3.4.8 Attribute Definitions
	6.3.4.9 The rpcNsObjectID
	6.3.4.10 The rpcNsGroup
	6.3.4.11 The rpcNsPriority
	6.3.4.12 The rpcNsProfileEntry
	6.3.4.13 The rpcNsInterfaceID
	6.3.4.14 The rpcNsAnnotation
	6.3.4.15 The rpcNsCodeset
	6.3.4.16 The rpcNsBindings
	6.3.4.17 The rpcNsTransferSyntax
	6.3.5 Usage Model

	6.3.5.1 Relative Names
	6.4 How GDA Works
	6.4.1 Cell Naming
	6.4.2 Security
	6.4.3 Registration Utility

	Managing Intercell Naming
	7.1 Overview of Intercell Naming
	7.2 How the Global Directory Agent Works
	7.3 Managing the Global Directory Agent
	7.4 Enabling Other Cells to Find Your Cell
	7.4.1 Defining a Cell in the Domain Name System
	7.4.2 Defining a Cell in the Global Directory Service
	7.4.3 Defining a Cell in an LDAP Server
	Table 7-1: ldap_addcell Parameters and Environment Variables

	DCE Distributed File Service
	8.1 Variation from OSF DFS
	8.2 Using Tru64 UNIX ACLs
	Table 8-1: Tru64 UNIX ACLs�
	8.2.1 Tru64 UNIX ACL Limitations
	8.2.2 DCE Responses to Tru64 UNIX ACL Operations
	8.2.3 Mapping between DCE ACLs and Tru64 UNIX ACLs
	Table 8-2: Mapping Permission Bits�

	8.2.4 Disabling ACL Operations

	8.3 NFS-DFS Secure Gateway Server Administration
	8.4 DFS Backup
	8.5 Solutions to Common Problems with DCE DFS
	8.5.1 Running Commands Requiring the setuid Feature
	8.5.2 Running cron Jobs with DCE Credentials

	Compiling and Linking Applications
	9.1 Overview of the Command Format

	RPC, IDL, ACF, and IDL Compiler Enhancements
	10.1 Overview of Enhancements
	10.2 Local RPC Protocol Sequence
	10.2.1 Using localrpc with well-known endpoints
	10.2.2 Affected RPC API calls
	10.2.3 Suppressing localrpc (or any other protseq)
	10.2.4 Permissions of localrpc Socket
	10.2.5 Added dced Support
	10.2.6 Compatibility Issues

	10.3 DTSD Timing and Timeout Changes
	10.3.1 Affected RPC API Call

	10.4 Using Environment Variables to Restrict Network Interfaces and Addresses
	10.5 IDL and ACF Enhancements
	10.5.1 Automatic Binding Enhancement
	10.5.2 Enumeration in IDL
	10.5.3 The client_memory ACF Attribute

	10.6 IDL Compiler Enhancements
	10.6.1 The �standard Build Option
	10.6.2 Stub Auxiliary Files
	10.6.3 Generating Application Templates Using the IDL Compiler
	Table 10-1: IDL Constructs Supported by Template Feature�

	10.6.4 Example of IDL Template Feature

	10.6.4.1 Example Interface Definition File
	10.6.4.2 Example Manager Template
	10.6.4.3 Creating the Executable Manager Program
	10.6.5 C++ Application Support

	Application Debugging with the RPC Event Logger
	11.1 Overview of Debugging Support
	11.2 Introduction to the RPC Event Logging Facility
	Table 11-1: Event Types�
	Table 11-2: Event Log Fields�

	11.3 Generating RPC Event Logs
	11.3.1 Enabling Event Logging
	Table 11-3: Event Values and Types�

	11.3.2 Using the �trace Option
	11.3.3 Combining Event Logs
	11.3.4 Disabling Event Logging

	11.4 Using Environment Variables and the Log Manager to Control Logging Information
	11.4.1 Controlling Logged Events with Environment Variables
	11.4.2 Controlling Logged Events with the RPC Log Manager
	Table 11-4: Command Interface to rpclm�

	11.5 Using the �trace Option, Environment Variables, and the Log Manager Together
	11.6 Using Event Logs to Debug Your Application
	11.7 Event Names and Descriptions
	11.8 Summary

	Developing Distributed Applications with FORTRAN
	12.1 Overview of Applications with FORTRAN
	12.2 Interoperability and Portability
	12.3 Remote Procedure Calls Using FORTRAN — Example
	12.3.1 Where to Obtain the Example Application Files
	Table 12-1: Example Files Created by the Programmer�

	12.3.2 The Interface File and Data File (payroll.idl and payroll.dat)
	12.3.3 Compiling the Interface with the IDL Compiler
	Table 12-2: Example Files Created by IDL�

	12.3.4 The Client Application Code for the Interface (print_pay.for)
	12.3.5 The Server Initialization File (server.c)
	12.3.6 The Server Application Code for the Interface (manager.for)
	12.3.7 Client and Server Bindings
	12.3.8 Building the Example (Makefile.unix)
	12.3.9 Running the Example

	12.4 Remote Procedure Calls Using FORTRAN — Reference
	12.4.1 The FORTRAN Compiler Option
	12.4.2 Restrictions on the Use of FORTRAN
	12.4.3 IDL Constant Declarations
	12.4.4 Type Mapping
	Table 12-3: Mappings for IDL Types�

	12.4.5 Operations

	12.4.5.1 Parameter Passing by Reference
	12.4.5.2 Function Results
	12.4.6 Include Files
	12.4.7 The nbase.for File
	Table 12-4: Standard Declarations�

	12.4.8 IDL Attributes

	12.4.8.1 Binding Handle Callout
	12.4.8.2 ACF file
	12.4.8.3 Generated header file
	12.4.8.4 Generated client stub
	12.4.8.5 Binding callout routine
	12.4.8.6 Error handling
	12.4.8.7 Predefined binding callout routine
	12.4.8.8 The transmit_as Attribute
	12.4.8.9 The string Attribute
	12.4.8.10 The context_handle Attribute
	12.4.8.11 The Array Attributes on [ref] Pointer Parameters
	12.4.9 ACF Attributes

	12.4.9.1 The implicit_handle ACF Attribute
	12.4.9.2 The represent_as ACF Attribute

	Example Programs
	13.1 Overview of Remote Procedure Call Programs
	Table 13-1: Features of Example Programs�

	13.2 RPC Test Program #1
	13.3 RPC Test Program #2
	13.4 RPC Test Program #3
	13.5 Book Distributed Calendar Program
	Table 13-2: Options for Starting the Book Distributed Calendar Program�

	13.6 The Time Operations Sample Application
	13.6.1 Overview
	13.6.2 Building timop_svc
	13.6.3 Setting Up to Run timop_svc
	13.6.4 timop_svc Message Catalog
	13.6.5 Running the timop_svc Server
	13.6.6 Running the timop_svc Client
	13.6.7 Sample Server Output
	13.6.8 Stopping timop_svc
	13.6.9 timop_svc Server Options
	13.6.10 timop_svc Client Options
	13.6.11 timop_svc Principal And Keytab Names
	13.6.12 timop_svc Debug Message Levels
	Table 13-3: timeop_svc Debug Message Levels�

	13.7 Microsoft RPC Phonebook Program
	13.7.1 Source Files for the phnbk Example
	13.7.2 Building the Tru64 UNIX phnbk Client and Server Programs
	13.7.3 Starting and Stopping the phnbk Server
	13.7.4 Starting and Stopping the phnbk Client Program

	13.8 The Echo Example Program
	Table 13-4: Server Options for the echo_server Command
	Table 13-5: Client Options for the echo_server Command

	13.9 Time Provider Example Programs
	13.10 The Serviceability API Sample Program
	13.10.1 Building the Program

	13.11 The Generic Sample Application
	13.11.1 Building the Sample Application
	13.11.2 Installing the Sample Application
	13.11.3 Running the Sample Application

	13.11.3.1 Running the Client
	13.11.4 What the Sample Application Does
	13.11.5 Viewing the Server ACL
	13.11.6 Notes

	13.12 Object Oriented idl Programs
	13.12.1 Preparing to Run the Example Programs
	13.12.2 The account Example Program
	13.12.3 The accountc Example Program
	13.12.4 The card Example Program
	13.12.5 The stack Example Program

	Index

