
PC-DCETM

Developer’s Notes

Software Version 5.0

Notices

PC-DCE Developer’s Notes - Software Version 5.0 - Revised March 2003

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A
LICENSE, AND MAY BE USED ONLY IN ACCORDANCE WITH THE TERMS AND CONDITIONS
OF SUCH LICENSE AND WITH THE INCLUSION OF THE COPYRIGHT NOTICE BELOW. TITLE
TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN AT ALL TIMES WITH
ENTEGRITY SOLUTIONS CORPORATION OR ITS LICENSOR.

The information contained in this document is subject to change without notice.

ENTEGRITY SOLUTIONS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL DOCUMENTATION OR SOFTWARE, INCLUDING BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Entegrity Solutions shall not be liable for errors contained herein, or for any direct or indirect, incidental,
special or consequential damages in connection with the furnishing, performance, or use of this material.

Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)
(1) (i) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Entegrity, Entegrity Solutions, and NetCrusader are registered trademarks or trademarks of Entegrity
Solutions Corporation.

Entrust is a registered trademark of Entrust Technologies Limited. All Entrust product names are
trademarks of Entrust Technologies Limited. Inprise and VisiBroker are trademarks of Inprise Corporation.
Orbix is a registered trademark, and IONA and Wonderwall are trademarks of IONA Technologies.
Kerberos is a trademark of Massachusetts Institute of Technology. Microsoft, Windows, and Windows NT
are registered trademarks of Microsoft Corporation. Netscape and Navigator are trademarks of Netscape
Communications Corporation. The Open Group is a trademark of The Open Group. VeriSign is a
trademark of VeriSign, Inc. UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company, Ltd. Other products and company names mentioned in the
document are trademarks or registered trademarks of their respective owners.

Portions of this documentation were derived from materials provided by Entrust Technologies Limited.

Copyright © 1995–2002 The Open Group

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee has been granted to Entegrity SolutionsCorporation provided that the above copyright notice
and this permission notice are prominently displayed in all copies of the software and documentation, and
that the name of The Open Group not be used in advertising or publicity pertaining to distribution of the
software without specific, prior written permission.

THIS SOFTWARE IS PROVIDED "AS IS." THE OPEN GROUP DISCLAIMS ALL WARRANTIES,
WHETHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS SOFTWARE INCLUDING,
WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY
SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN CONTRACT, TORT INCLUDING NEGLIGENCE, OR OTHER
LEGAL THEORY ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

Copyright © 1999 - 2003 Entegrity Solutions Corporation & its subsidiaries. All Rights Reserved.

Entegrity Solutions Corporation, 410 Amherst Street, Suite 150, Nashua, NH 03063, USA

Contents
Notices 2

Preface 5
Intended Audience 5
Documentation 5

PC-DCE Documentation Set 5
The Open Group Documentation 6

Obtaining Technical Support 6
Contacting Entegrity Solutions 7
Obtaining Additional Technical Information 7

Chapter 1 Overview 9

Chapter 2 Notes on Compiling and Linking 11

2.1 Linking and Compiling PC-DCE Applications 11
2.1.1 Using Non-Microsoft Compilers 11

2.2 Exception Handling 11
2.2.1 Global Unwinding 12
2.2.2 DCE Exception Handler Definitions for C++ 12
2.2.3 Runtime Library Requirement 13
2.2.4 Mapping WIN32 Exceptions to DCE Threads Exceptions 13

2.3 Using OLE 2.0 with PC-DCE 13
2.4 Generating Stubs from the IDL Command Line 13
2.5 Using the Microsoft IDE Interface 14

Chapter 3 Migration Notes 15

3.1 Migrating UNIX DCE Applications to PC-DCE 15
3.1.1 Retrieving Errors on DCE API Calls 16

3.2 Migrating Applications Developed With Compaq DCE for Windows NT 16
3.3 Migrating 16 bit Windows Applications To 32 bit Windows 17
3.4 Migrating Applications Developed Using Earlier Releases of PC-DCE 18

3.4.1 Mutexes 18

Chapter 4 Miscellaneous Notes 19

4.1 Developing C++ Applications 19
4.1.1 Typical Development Procedure 19
4.1.2 Pthread Exceptions vs. MS Visual C++ 20
4.1.3 Calling Conventions vs. MS Visual C++ 20

4.2 DCE Message Catalogs 21
4.2.1 Generating Message Catalogs from .sams Files 21

4 Gradient PC-DCE Developer’s Notes
4.2.2 NT_EVENTLOG Routing 21
4.3 Static Initialization of Constants 22
4.4 Microsoft RPC Interoperability 22
4.5 Name Service Interface Gateway 22

4.5.1 Supported nsid Protocols 22
4.5.2 How the nsid Works 22
4.5.3 How the PC Client Finds the nsid 23
4.5.4 APIs Supported by the nsid 23

4.6 DCECP Functionality 24
4.7 .DBG Files 24
4.8 Max Call Requests 25
4.9 External Time Providers 25
4.10 Controlling RPC Timeouts 25
4.11 Setting a Session-Wide Login Context 26
4.12 Converting an Exception to an Error Status Code 26
4.13 Starting PC-DCE Services from the Command Line 27
4.14 Developing Thread-Safe Code 28
4.15 Setting Thread Priority Under Windows 28
4.16 Using Per-Thread Login Contexts 28
4.17 Using DCE Pipes 29
4.18 Runtime Version Requirement 29

Chapter 5 Entegrity API Extensions 31

5.1 sec_login_set_default_context() 32
5.2 sec_login_setup_win32_context() 33
5.3 sec_login_set_thread_context() 34
5.4 sec_login_unset_thread_context() 35
5.5 sec_login_get_default_context() 36

Chapter 6 Samples 37

6.1 Using the Sample Applications 37
6.2 Greet Application 37

6.2.1 The Greet Client 38
6.2.2 The Greet Server 38
6.2.3 Running the Greet Sample Programs 38

6.3 Grade Application 40
6.3.1 Setting Up the Grade Server Application 40

6.3.1.1 Security Setup 41
6.3.1.2 CDS Setup 42

6.3.2 Running the Grade Server Sample Programs 42
6.3.2.1 Running the Grade Server Program 42
6.3.2.2 Running the Grade Client Program 43

Index 45

Preface
Intended Audience
This guide is for programmers who are developing distributed applications for
the Entegrity® DCE implementation for Windows® called PC-DCE™. This
guide assumes a general knowledge of DCE (Distributed Computing
Environment).

Documentation
This section describes the documentation that Entegrity provides with
PC-DCE on both the product CD and on the Entegrity web site
(www.entegrity.com) under the Support link:

■ Entegrity PC-DCE Documentation Set
■ The Open Group Documentation

Documentation on other Entegrity products, such as NetCrusader/Web, is also
available on the Entegrity web site.

We are always trying to improve our documentation. If you notice any
inaccuracies or cannot find information, please send email to
docs@entegrity.com. We welcome any comments or suggestions.

PC-DCE Documentation Set
The following documents are provided with PC-DCE:

■ PC-DCE Installation and Release Notes
■ PC-DCE Overview Guide
■ PC-DCE Administrator’s Guide
■ PC-DCE Developer’s Notes (this file)
■ PC-DCE Guide to CAS

PC-DCE also provides online help with the following programs:

■ PC-DCE Service Panel
■ PC-DCE Configuration Panel
■ DCE Director
■ Visual DCE ACL Editor
■ DCEsetup

Entegrity also provides OSF DCE Version 1.2.2 documentation on the
product CD and the Entegrity Support web site.

6 PC-DCE Developer’s Notes
The Open Group Documentation
The PC-DCE product CD and the Entegrity Support web site also provide The
Open Group (formerly OSF) DCE Version 1.2.2 documentation, including the
following guides:

■ OSF DCE Administration Guide — Core Components
■ OSF DCE Administration Guide — Introduction
■ OSF DCE Application Development Guide — Core Components
■ OSF DCE Application Development Guide — Directory Services
■ OSF DCE Application Development Guide — Introduction and Style

Guide
■ OSF DCE Application Development Reference
■ OSF DCE Command Reference
■ Introduction to OSF DCE
■ OSF DCE Problem Determination Guide
■ OSF DCE/File-Access Administration Guide and Reference
■ OSF DCE/File-Access Users’ Guide
■ OSF DFS Administration Guide and Reference
■ OSF GDS Administration Guide and Reference

Obtaining Technical Support
If you purchased PC-DCE directly from Entegrity Solutions or Gradient
Technologies, you are entitled to 30 days of limited technical support
beginning on the day the product is expected to arrive.

You may also purchase a support plan that entitles you to additional services.
You must register prior to receiving this support. For details, refer to the
customer support information package that accompanied your shipment or
refer to http://support.entegrity.com. The web site also contains online
forms for easy registration.

If you purchased PC-DCE from a reseller, please contact the reseller for
information on obtaining technical support.

Preface 7
Contacting Entegrity Solutions

For a complete listing of Entegrity Solutions Corporation sales, research and
development, and solutions centers worldwide, please see the Entegrity web
site at http://www.entegrity.com.

Obtaining Additional Technical Information

Contact Address Phone/Fax/Email

DCE Product and Sales
Information

Entegrity Solutions Corporation
410 Amherst Street, Suite 150
Nashua, NH 03063 USA

Email: DCESales@entegrity.com
Web: www.entegrity.com

Tel: +1-603-882-1306 ext.2700
Toll Free (US): 1-800-525-4343 ext. 2700
Fax: +1-603-882-6092

All Other Product and Sales
Information Requests

Entegrity Solutions Corporation
2001 Gateway Place, Suite 420W
San Jose, CA 95110 USA

Email: info@entegrity.com
Web: www.entegrity.com

Tel: +1-408-487-8600 ext. 123
Fax: +1-408-487-8610

Technical Support Entegrity Solutions Corporation
410 Amherst Street, Suite 150
Nashua, NH 03063 USA

Email: support@entegrity.com
Web: support.entegrity.com

Tel: +1-603-882-1306 ext. 2702
Toll Free (US): 1-888-368-3555 ext. 2702
Fax: +1-603-882-6092

Documentation Comments
and Suggestions

Email: docs@entegrity.com

Other Inquiries Entegrity Solutions Corporation
2001 Gateway Place, Suite 420W
San Jose, CA 95110 USA

Email: info@entegrity.com
Web: www.entegrity.com

Tel: +1-408-487-8600
Fax: +1-408-487-8610

Contact Address Phone/Fax/Email

The Open Group™
Developer of DCE (Distributed
Computing Architecture)
software and standards.

The Open Group
29B Montvale Ave.
Woburn
MA 01801
U. S. A.

Tel: +1 781-376-8200
Fax: +1 781-376-935811

http://www.opengroup.org

1

C H A PT E R 1

Overview
The PC-DCE Developer’s Notes provides information about developing DCE
applications for PC-DCE.

Additional information about writing DCE applications may be found in the
following OSF DCE guides:

■ OSF DCE Application Development Guide — Core Components

This guide describes how to put DCE’s core components (host services,
application message service, serviceability, backing store database
services) to work in your applications

■ OSF DCE Application Development Guide — Directory Services

This guide describes how application developers can access the DCE
Directory Services including the DCE Cell Directory Service (CDS), the
DCE Global Directory Service (GDS), and the X/Open Directory Service
(XDS) and X/Open OSI-Abstract-Data Manipulation (XOM)
programming interfaces.

■ OSF DCE Application Development Guide — Introduction and Style

This guide provides information about how to program the application
programming interfaces (APIs) provided for each OSF DCE component.

Developer’s may also use the search capabilities of the Entegrity Support web
(http://support.entegrity.com.) for quick access to specific development
information from these and other OSF DCE documents.

2

C H A PT E R 2

Notes on Compiling and Linking
This chapter provides information on compiling and linking
PC-DCE™ programs. It contains the following sections:

2.1 Linking and Compiling PC-DCE Applications
2.2 Exception Handling
2.3 Using OLE 2.0 with PC-DCE
2.4 Generating Stubs from the IDL Command Line
2.5 Using the Microsoft IDE Interface

2.1 Linking and Compiling PC-DCE Applications
When you compile your PC-DCE programs, be sure to use the following
compile switches:

-DWIN32

-D_MT

-D_DLL

-DWIN32_LEAN_AND_MEAN

The DCE API is exported via dce32.dll, so you must link your applications
with dce32.lib.

If you do not want to link with the DLL version of the C runtime library, be
careful when freeing memory returned by DCE API calls and RPCs. Use
rpc_sm_client_free() to free this memory.

2.1.1 Using Non-Microsoft Compilers
Special instructions are available if you are using the OMF-compliant link
library (dce32_omf.lib) supplied in this release to build PC-DCE applications
with the Borland C compiler. Although not yet exhaustively tested in other
non-MS environments, this library should also support the Symantec build
environment.

Visit our Technical Support web page for PC-DCE at http://
support.entegrity.com for more detailed instructions on using this library.

2.2 Exception Handling
PC-DCE provides support for exception handling that conforms to OSF DCE
threads specification.

12 PC-DCE Developer’s Notes
NOTE: PC-DCE exception handling is not the same as exception handling
provided by Visual C++ and the native WIN32 support for structured
exception handling. For a discussion of how to use DCE exception handling,
refer to the OSF DCE Application Development Guide.

2.2.1 Global Unwinding
The exception handler provided by the C++ language provides global
unwinding. In global unwinding, when an exception occurs, the exception
handler calls the destructors for all objects on the stack between where the
exception is raised and where it is caught. If you are accustomed to C++
exception handling, you should be aware that DCE exceptions do not provide
a similar feature.

2.2.2 DCE Exception Handler Definitions for C++

C++ and DCE both define certain keywords, such as TRY, for exception
handling. To avoid conflict in PC-DCE programs written in C++, Entegrity®
has renamed the DCE macros using the prefix DCE_ as shown in Table 2-1.

In C programs, PC-DCE (in exc_handling.h) automatically redefines all
instances of the DCE default names to the PC-DCE macro names. Programs
written using the default names will use the DCE exception handler.

In C++, you must define the preprocessor directive
STANDARD_DCE_EXCEPTIONS in order to redefine the DCE default
names to the PC-DCE names. If STANDARD_DCE_EXCEPTIONS is not
defined, you must use the PC-DCE names to invoke the DCE exception
handler.

Be aware that the DCE and C++ exception handlers are not compatible.

Table 2-1: DCE Exception Handler Macro Redefinitions

DCE Default Name PC-DCE Name

RAISE DCE_RAISE

TRY DCE_TRY

CATCH DCE_CATCH

CATCH_ALL DCE_CATCH_ALL

RERAISE DCE_RERAISE

FINALLY DCE_FINALLY

ENDTRY DCE_ENDTRY

Chapter 2 Notes on Compiling and Linking 13
2.2.3 Runtime Library Requirement
The PC-DCE exception handler implementation uses setjmp() and longjmp()
calls. If your application uses PC-DCE exception handling, the runtime
library that you link to your application must provide a setjmp() and
longjmp() implementation compatible with the Microsoft Visual C++
runtime. This includes the size and semantics of the jump buffer allocated for
these calls.

2.2.4 Mapping WIN32 Exceptions to DCE Threads Exceptions
PC-DCE exception macros use WIN32 structured handling support by default
to map WIN32 exceptions such as EXCEPTION_ACCESS_VIOLATION
(winbase.h) to equivalent DCE threads exceptions (for example, in this case,
to exc_e_illaddr).

As a side effect of this mapping, these exceptions are no longer propagated up
via WIN32 structured exception handling to be handled by an external
debugger. Non-production environments and environments that do not care
about this mapping can disable this feature by calling the function
__exc_w32_to_dce_map_set with an argument of 0 (false). This function,
exported from dce32.dll and defined in dce/exc_handling.h, disables the
mapping for the current process. You must call this function before executing
any code block that uses PC-DCE exception handling.

2.3 Using OLE 2.0 with PC-DCE
OLE 2.0 supports distributed OLE calls which internally use the Microsoft
RPC to handle the distributed part of OLE. OLE and DCE both define certain
types (such as HANDLE_T and UUID_T) in their header files. If a source file
includes both OLE and DCE header files, compile errors occur.

If you need to use OLE and DCE in your application, make sure you do the
following:

■ Use the -DWIN32_LEAN_AND_MEAN compile option.

■ Make sure that your source files do not include both DCE and OLE header
files. Store all OLE calls inside one file and all DCE calls inside another.

2.4 Generating Stubs from the IDL Command Line
You can use the PC-DCE IDL compiler to generate stubs directly into object
code from the IDL command line. For example, to run IDL and directly
compile the generated stubs, use the following command:

prompt> idl -no_mepv -v -cc_opt "-nologo -I. -DWIN32_LEAN_AND_MEAN \
-DWIN32 -D_MT -D_DLL"

14 PC-DCE Developer’s Notes
2.5 Using the Microsoft IDE Interface
To use the Microsoft IDE interface with PC-DCE applications:

1 Add the following preprocessor definitions:

WIN32
WIN32_LEAN_AND_MEAN
_MT
_DLL

2 Add install_directory\include and install_directory\include\dce and your
current directory as Additional Include Directories.

3 Add the install_directory\lib as a Library Directory.

4 Add the dce32.lib library to your project.

5 Compile your IDL file. Be sure to include the -keep c_source option to the
IDL precompiler.

6 Add the *_cstub.c or *_sstub.c file generated to your project.

3

C H A PT E R 3

Migration Notes
This chapter contains information on how to migrate applications developed
for environments other than 32 bit Windows, or with other DCE vendors. It
contains the following sections:

3.1 Migrating UNIX DCE Applications to PC-DCE
3.2 Migrating Applications Developed With Compaq DCE for Windows NT
3.3 Migrating 16 bit Windows Applications To 32 bit Windows
3.4 Migrating Applications Developed Using Earlier Releases of PC-DCE

3.1 Migrating UNIX DCE Applications to PC-DCE
Keep the following in mind when porting your existing DCE applications
from a UNIX system to PC-DCE:

■ Time Synchronization within a Cell

If a DTS Clerk is running on the client, it functions like its UNIX
counterpart. If such a clerk isn’t running in Windows 98, our dce32init
program will automatically synchronize your clock with a DTS Server
running on the Security Server. Windows 2000 and Windows NT have a
similar program called timesync.exe that does the same thing without the
clerk running.

■ Thread Scheduling

Although the pthreads library on UNIX systems has many possible
scheduling methods, the Windows environments PC-DCE supports only
support the Win32 thread scheduling method. This method is a modified
round robin technique that increases priority for waiting threads, decreases
priority for running threads, and increases priority for threads holding
resources required by higher priority threads. Any thread that receives a
Win32 message also has its priority raised. Applications can use the Win32
API to change thread priority attributes.

■ Integrated Login

PC-DCE provides the integrated login function, in which logging into a
Windows account also logs you into a mirror DCE account.

■ Partitioning and Security

16 Gradient PC-DCE Developer’s Notes
If you are using NTFS partitioning on a Windows 2000 or Windows NT
system and plan to migrate existing applications from a UNIX
environment, you will have comparable security to what was previously
available. However, this security is tied to Windows user accounts and not
to DCE accounts. If you are using the FAT file system, you will have
minimal security.

■ On UNIX systems, rpc_ss_allocate() and rpc_ss_free() can be used as
callback arguments in DCE API calls. With PC-DCE, you may need to
wrap these calls and create __cdecl versions as shown below so that they
match argument prototypes for the API call used.

#if defined(WIN32)

/* wrap rpc_ss_allocate in a __cdecl call so arg pointers will work */
static idl_void_p_t rpc_ss_allocate_cdecl(idl_size_t size)
{
return rpc_ss_allocate(size);
}
#define rpc_ss_allocate rpc_ss_allocate_cdecl

/* wrap rpc_ss_free in a __cdecl call so arg pointers will work */
static void rpc_ss_free_cdecl(idl_void_p_t ptr)
{
return rpc_ss_free(ptr);
}
#define rpc_ss_free rpc_ss_free_cdecl
#endif /* WIN32 */

You can also use the cdecl_rpc_ss_allocate, cdecl_rpc_ss_free and
cdecl_rpc_ss_client_free calls from the dce32.dll library.

3.1.1 Retrieving Errors on DCE API Calls
In PC-DCE applications, failed pthread API calls (and other failed DCE API
calls) return an error to the application via the Win32 API call
GetLastError() rather than by setting the errno variable as expected in
UNIX DCE implementations.

This mechanism for PC-DCE error retrieval is necessary because there is no
way to set the errno variable from the PC-DCE runtime that works reliably
for all C compilers or for all versions of a particular compiler’s C runtime
library. To retrieve the errno value of the most recent failed DCE API call,
you must use GetLastError().

3.2 Migrating Applications Developed With Compaq DCE for Windows NT
Applications developed using Compaq DCE for Windows NT will have to be
recompiled and relinked with PC-DCE ADK to be compatible with PC-DCE.

Developers who previously used Compaq's IDL compiler to generate stubs or
header files may notice that PC-DCE's IDL compiler assigns a different
calling convention to the function prototypes. PC-DCE's IDL compiler
defaults the convention as being __cdecl whereas Compaq's IDL compiler

Chapter 3 Migration Notes 17
defaults it to __stdcall. This may lead to some unresolved function prototype
issues when applications are migrated to a PC-DCE development
environment.

PC-DCE uses the -mgr_call_seq and -ptr_call_seq command line options to
enable a developer to choose calling conventions. To force the call convention
to be a __stdcall only, call the PC-DCE IDL compiler with the following
parameters:

idl.exe -ptr_call_seq __stdcall -mgr_call_seq __stdcall

3.3 Migrating 16 bit Windows Applications To 32 bit Windows
Please keep the following in mind when porting your existing PC-DCE for
Windows 3.1 (16-bit) applications to PC-DCE (32-bit):

■ Unlike 16-bit versions of PC-DCE (PC-DCE for Windows 3.1), PC-DCE
(Windows 2000, Windows NT, and Windows 98 supported) does not
employ a blocking function. To execute asynchronous RPCs, you must use
pthreads as demonstrated in the Greet sample application. Be aware that
use of the Winsock blocking function is not supported by threads making
DCE RPCs.

■ To conserve resources, the default stack size in 16-bit PC-DCE for
Windows 3.1 is set to 12 KB. This value, however, commonly needs to be
increased to accommodate many DCE applications, especially those that
issue a lot of Security calls. In PC-DCE, the default stack size is set to 32
KB. In most cases, you should no longer need to increase the stack size.

■ Remove all the Entegrity-specific DCE API extension calls such as
DCEGetLastError, DCERegisterServerName, DCESetBlockingHook,
DCETaskDestroy, DCETaskInit, DCEUnhookBlockingHook, and
DCEYield.

■ Change all of the header files to their full names since they were
abbreviated in Windows 3.1. Please refer to Appendix C of your PC-DCE
for Windows 3.1 Application Developer’s Guide for translations.

■ The sec_login_certify_identity call is supported as long as the user is
running with dced.

■ The client and server stubs have the _cstub and _sstub extensions,
respectively (instead of the cs and ss extensions). All IDL files will need to
be recompiled using the new 32-bit IDL compiler.

■ Remote Procedure Calls (RPCs) are not limited to 64K.

■ On Windows 2000 and Windows NT, the local file system may be
considered secure if you are using NTFS.

■ Memory models are irrelevant.

■ If you were using pthread_yield or DCEYield to maintain multitasking
ability, these are no longer necessary.

18 Gradient PC-DCE Developer’s Notes
■ Unlike in Windows 3.1, threads in PC-DCE cannot freely look at the
Windows message queue of any other thread or the main process, nor can
they automatically share resources from other processes. Please see the
AttachThreadInput Win32 API call for a workaround to this issue.

3.4 Migrating Applications Developed Using Earlier Releases of PC-DCE
■ All PC-DCE programs you may have developed with pre-3.1 releases

should run without any problems on PC-DCE Version 3.1 Client Runtime
Kit.

■ A version 3.1-compiled program may not work on previous PC-DCE
releases; Entegrity does not support forward compatibility.

■ Regarding DTS: If no external time provider is in use in the cell, all times
will have infinite inaccuracy.

■ ONC RPC Interoperability: ONC RPCs and DCE RPCs will neither affect
nor interact with each other.

3.4.1 Mutexes
PC-DCE fully supports recursive (MUTEX_RECURSIVE_NP),
nonrecursive (MUTEX_NONRECURSIVE_NP) and fast
(MUTEX_FAST_NP) mutexes, with fast mutexes set as the default. As a
result, any code from a previous PC-DCE release that tries to lock a mutex
more than once in the same thread should be rewritten to unlock the mutex
before it tries to relock it, unless the recursive mutex is explicitly selected.

The pthread_mutexattr_getkind_np() and
pthread_mutexattr_setkind_np() routines are also supported, allowing you
to set and retrieve the mutex kind attribute for recursive, nonrecursive, and
fast mutexes.

4

C H A PT E R 4

Miscellaneous Notes
This chapter contains miscellaneous information useful when developing
DCE applications with PC-DCE. It contains the following sections:

4.1 Developing C++ Applications
4.2 DCE Message Catalogs
4.3 Static Initialization of Constants
4.4 Microsoft RPC Interoperability
4.5 Name Service Interface Gateway
4.6 DCECP Functionality
4.7 .DBG Files
4.8 Max Call Requests
4.9 External Time Providers
4.10 Controlling RPC Timeouts
4.11 Setting a Session-Wide Login Context
4.12 Converting an Exception to an Error Status Code
4.13 Starting PC-DCE Services from the Command Line
4.14 Developing Thread-Safe Code
4.15 Setting Thread Priority Under Windows
4.16 Using Per-Thread Login Contexts
4.17 Using DCE Pipes
4.18 Runtime Version Requirement

4.1 Developing C++ Applications
In order to use the XIDL/DCE IDL compiler for C++ development, you need
to have a C++ environment available on a machine where the PC-DCE ADK
is installed. Currently, Microsoft Visual C++ Version 4.1 or later is the only
supported environment. For portability reasons, stubs generated in this
environment and the runtime library (libidlcxx.lib) used in this environment
do not use features such as templates, exceptions, and multiple inheritance.

4.1.1 Typical Development Procedure
The following steps represent a typical development flow while using XIDL/
DCE IDL C++ support:

1 Create an interface definition using IDL.

2 Identify operations that create remote objects in the IDL file with the
cxx_new attribute in the attribute configuration (.acf) file.

20 PC-DCE Developer’s Notes
3 Invoke the IDL compiler with the -lang cxx option to generate the C++
header and the client/server stubs.

4 For the client, develop the code that uses the class generated. The client
can use the static member function <class>::bind() to bind to any named
or exported remote object. The client can also optionally set rebinding
policy on communication failures with remote objects using the
<class>::SetRebind() static member.

5 For the server, develop the implementation of the class and initialization
code that performs the RPC setup and desired object registration (using the
<class>::register_named_object() static member function).

6 Link application C++ code and the stubs into an executable file.

XIDL/DCE IDL also supports passing of C++ objects as RPC parameters.
Applications may use the represent_as parameter attribute to pass in the
object or the cxx_delegate attribute on the interface definition to pass the
object by reference.

By default, XIDL/DCE IDL with the -lang cxx option generates a manager
class from which the manager implementation may be derived. This can be
prevented with the -no_cxxmgr option for a manager implementation in the C
language.

4.1.2 Pthread Exceptions vs. MS Visual C++
When the pthread header files are included by C++ code, the exception
handling macros (CATCH, TRY, ENDTRY, etc.) are renamed with the prefix
DCE_ (DCE_CATCH, DCE_TRY, DCE_ENDTRY, etc.) by default. If
your C++ code expects to use the original macro names, you must define the
STANDARD_DCE_EXCEPTIONS macro either by using the CL
command line option -DSTANDARD_DCE_EXCEPTIONS or by adding
the #define STANDARD_DCE_EXCEPTIONS statement to the C++
source code prior to including <pthread.h> or <dce/exc_handling.h>.

Be aware, however, that the DCE and C++ exception handlers are not
compatible.

The DCE default names are always used when compiling a C application.

4.1.3 Calling Conventions vs. MS Visual C++
Since there are a number of different function-calling conventions (call
sequences) available in C and C++, there are some issues when interfacing
between user-written code and IDL-generated code. In particular, functions
that are called through the server manager interface are declared with the
IDL_MGR_CALL_SEQ macro which is defined as __cdecl by default. This
is the compiler's default for functions written in C.

This macro may be redefined on the CL command line in situations where
__cdecl is inappropriate or unusable. For example, to specify the standard call
convention, you can add the compiler option
-DIDL_MGR_CALL_SEQ=__stdcall. To use the default C++ calling

Chapter 4 Miscellaneous Notes 21
convention (also known as "thiscall"), define the macro as
-DIDL_MGR_CALL_SEQ="" (i.e., nothing). Such a routine will not be
callable from outside C++.

When generating new code, Entegrity recommends that you use the
IDL_MGR_CALL_SEQ macro wherever classes are derived from
IDL-generated manager classes.

4.2 DCE Message Catalogs
DCE message catalogs are located in:

install_directory\opt\dcelocal\nls\msg\en_US.ISO8859-1

4.2.1 Generating Message Catalogs from .sams Files
Message catalogs (.cat) generated for application-defined .sams (symbol and
message strings) files should be compatible with PC-DCE. Currently, the
PC-DCE sams utility does not support the -c command line option, which
generates the message catalogs.

In order to generate the necessary message catalogs:

1 Use MSVC 2.2 or later.

2 Generate the message file (.msg) from the .sams file using sams with the
-m command line option:

sams -m app.sams

3 Use the PC-DCE strtbl.exe to generate a resource (.rc) file with
definitions for the message strings:

strtbl app_svc.rc dceapp.msg

4 Compile the generated resource file using the resource compiler.

5 Build a DLL that includes the compiled resources with a dummy entry
point and name it dceapp.cat.

4.2.2 NT_EVENTLOG Routing
On Windows NT systems, applications may direct serviceability messages to
the NT event log by specifying the NT_EVENTLOG route. Select this route
by placing the keyword NT_EVENTLOG in the routing specification. For
example:

FATAL:NT_EVENTLOG

This example directs all fatal DCE serviceability messages to the NT event
log.

See The Open Group DCE 1.1 Application Development Guide for more
information on routing and DCE serviceability.

22 PC-DCE Developer’s Notes
4.3 Static Initialization of Constants
The PC-DCE runtime DLL exports several DCE constants which cannot be
included in static initialization. For example, if an application wants to import
the rpc_x_comm_failure exception into an array, the following is invalid:

static EXCEPTION *pExcList[]={&rpc_x_comm_failure,...};

The same can be initialized as:

pExcList[0]=&rpc_x_com_failure ;

4.4 Microsoft RPC Interoperability
Since Microsoft uses a “DCE-compliant” Remote Procedure Call (RPC)
layer, PC-DCE can use Microsoft RPC DCE clients and servers as long as no
security or CDS namespace operations are also being used. However, stub
files are not compatible. You must use the MIDL compiler to generate a
Microsoft RPC program and the PC-DCE IDL compiler to generate a DCE
RPC program.

If you want Microsoft RPC Clients to read entries from the CDS namespace,
set up an NSID in your cell. This does not let Microsoft RPC servers write to
the CDS namespace.

4.5 Name Service Interface Gateway
The Name Service Interface Gateway (nsid), allows remote systems that only
have RPC services to use the DCE CDS name service. The nsid runs on one
or more DCE systems in the cell and acts on behalf of the remote system to
execute the RPC name service API calls. Through a hidden level of
indirection, the nsid allows the PC to appear as if it is directly involved in the
broader cell namespace.

4.5.1 Supported nsid Protocols
The nsid is currently designed to listen on TCP/IP and DECnet. It checks to
ensure that each protocol sequence is supported before using it. If neither
TCP/IP or DECnet are supported, then the nsid will exit with an error
message to that effect.

4.5.2 How the nsid Works
An application on a PC running Microsoft Windows makes a call to familiar
name-service procedures, such as rpc_ns_binding_export (or, in the
Microsoft native format, RpcNsBindingExport). Within these procedures,
the parameters are passed using RPC to the nsid.

The nsid:

1 Receives the parameters from the PC

2 Converts them to native DCE format

Chapter 4 Miscellaneous Notes 23
3 Makes a call to the native rpc_ns_binding_export procedure that
corresponds to the procedure called on the PC

The CDS server:

1 Receives the parameters

2 Performs the requested operation

3 Returns the results to the nsid

The nsid:

1 Converts the results back into a format the PC caller can understand

2 Returns them to the PC using RPC

The PC client now has the results of the call and can take appropriate action.

The system where the nsid is running can be a different system from where
the CDS server is running, because any operation defined by the NSI can be
called from any member of the cell.

4.5.3 How the PC Client Finds the nsid
The PC client queries information contained in a database called the registry.
On Windows 98, the registry is in a file in the PC root directory, called
RPCREG.DAT. In RPCREG.DAT, the first four parameters completely define
how the nsid is to be contacted, and consist of:

■ the protocol sequence (DECnet or TCP/IP, represented as ncacn_dnet_nsp
or ncacn_ip_tcp, respectively),

■ network address (TCP/IP host name or DECnet node name)

■ endpoint (TCP/IP port number or DECnet object name -should be
specified as null for TCP/IP. For DECnet, use rpccp to determine the
dynamic endpoint used, and specify this endpoint)

■ default name syntax (should be 0)

For example, within the procedure RpcNsBindingLookupBegin
RPCREG.DAT is read and a remote procedure call is made to the binding
represented by that set of parameters.

On Windows NT and Windows 2000, the Registry is an integral part of the
operating system's services.

For details on how to set up the registry for Windows NT and Windows 2000,
see Chapter 5 of the PC-DCE Adminstrator’s Guide

4.5.4 APIs Supported by the nsid
All of the NSI is supported by the nsid, but not on all platforms. For instance,
because Windows provides only client RPC services, server-only APIs are not
supported.

24 PC-DCE Developer’s Notes
The following list of APIs is in the DCE style. The native Microsoft style is
slightly different. For example, rpc_ns_group_delete appears as
RpcNsGroupDelete in the Microsoft native style. A dceport.h INCLUDE file
is provided to enhance application portability on Microsoft platforms.

rpc_ns_binding_import_begin
rpc_ns_binding_import_next
rpc_ns_binding_import_done
rpc_ns_binding_lookup_begin
rpc_ns_binding_lookup_next
rpc_ns_binding_lookup_done
rpc_ns_binding_export
rpc_ns_binding_unexport
rpc_ns_group_mbr_add
rpc_ns_group_mbr_remove
rpc_ns_group_delete
rpc_ns_mgmt_inq_exp_age
rpc_ns_mgmt_set_exp_age
rpc_ns_profile_elt_add
rpc_ns_profile_elt_remove
rpc_ns_profile_delete
rpc_ns_mgmt_entry_create
rpc_ns_mgmt_entry_delete
rpc_ns_mgmt_entry_inq_if_ids
rpc_ns_mgmt_binding_unexport
rpc_ns_entry_expand_name
rpc_ns_group_mbr_inq_begin
rpc_ns_group_mbr_inq_next
rpc_ns_group_mbr_inq_done
rpc_ns_profile_elt_inq_begin
rpc_ns_profile_elt_inq_next
rpc_ns_profile_elt_inq_done
rpc_ns_entry_object_inq_begin
rpc_ns_entry_object_inq_next
rpc_ns_entry_object_inq_done

4.6 DCECP Functionality
The DCE Control program (which is a tcl interpreter extended with
DCE-specific commands) may be embedded in applications that are
themselves tcl interpreters. When embedding dcecp functionality into an
application, you must include the tcl.h and dcecp.h header files. These files
are shipped as part of the ADK.

In addition, dcecp and tcl are shipped as DLLs rather than static libraries in
order to save paging space. dcecp.exe is a thin veneer above dcecp.tcl (lib),
which simply initializes the interpreter and starts the tcl command loop.

4.7 .DBG Files
Symbol files corresponding to all DCE executables (including those in both
the runtime and server kits) are installed under the install_directory/bin/
symbols directory. In order to debug PC-DCE (optimized) executables, these

Chapter 4 Miscellaneous Notes 25
symbol files need to be copied into the default symbol directory (for example,
windows_directory/symbols) thus preserving the directory structure. This
step is not necessary if windbg is being used for debugging and the -y
command line option is used to specify the symbol path; msdev has no such
option and requires the .dbg files in the default location.

After the debug files are installed, you can set breakpoints inside any function
within PC-DCE executables and DLLs by editing the breakpoints and
specifying the name of the function to break in. For functions that use the
__stdcall convention (as most of the functions exported from dce32.dll do),
function calls need to be suffixed by @size of arguments. For example, if you
are setting a breakpoint in the function dce_msg_define_msg_table which
takes a pointer, unsigned32 and a pointer as arguments, you should specify the
function to break in as _dce_msg_define_msg_table@12.

Once the debugger stops at the breakpoint of interest, you can now examine
registers, call stacks and variables.

4.8 Max Call Requests
OSF DCE v1.2.2 had a limitation where if you specified a max call request
argument with certain RPC functions, the argument was ignored and the
default max call request located in the header file was used instead. This
limitation affected the following functions:

■ rpc_server_use_all_protseqs
■ rpc_server_use_all_protseqs_if
■ rpc_server_use_protseq
■ rpc_server_use_protseq_ep
■ rpc_server_use_protseq_if

PC-DCE lets you specify a max call request with these functions that is
greater than the default, enabling more endpoints upon which the server can
listen for client requests.This can help reduce the possibility of a server
rejecting a client call due to the socket queue becoming full.

4.9 External Time Providers
Entegrity does not provide a DTS provider implementation. However,
Entegrity does support the DTS provider interface so that you can add your
own time provider into DTS. The dtsprovider.idl file is shipped with the
PC-DCE Application Developer’s Kit (ADK). For information on
implementing time providers, refer to the OSF DCE Application Development
Guide.

4.10 Controlling RPC Timeouts
In certain situations, you may want to exercise more control over the timeout
value of RPCs that regularly fail or generally do a better job of handling
unexpected RPC failures. The timeout value for connection-oriented services
(such as TCP) cannot be controlled at the API level because that attribute

26 PC-DCE Developer’s Notes
value is determined by the underlying transport layer. However, the datagram
service (UDP) works differently. Default timeouts are 2 minutes for TCP and
45 seconds for UDP.

You can use the DCE API rpc_mgmt_set_com_timeout() to define the
timeout for the datagram protocol. While TCP is often the protocol of choice
(because it offers guaranteed delivery), some of your specific RPCs or your
test environment might want to use UDP to take advantage of the control it
offers in this area. With PC-DCE for Windows 3.1 and PC-DCE, you can tune
the timeout from a few seconds to 30 seconds, to several minutes and longer.

After your client application gets a binding, make your call. For example:

rpc_mgmt_set_com_timeout(binding_h, 0, &status);

where a value of 0 represents the minimum timeout and a value of 10 attempts
to communicate forever. Although the values in between do not represent
actual seconds, they are instead arbitrarily assigned and presented in
ascending order; each is longer than the previous value.

You can have your client code selectively secure a UDP binding or use the
RPC_SUPPORTED_PROTSEQS environment variable to restrict the
runtime to one protocol or the other, for example:
RPC_SUPPORT_PROTSEQS=ncadg_ip_udp.

4.11 Setting a Session-Wide Login Context
If your application uses the standard DCE sec_login functions, it will create a
login context that applies only to that specific instance of the application. If
you run such an application, open a command prompt window and issue the
klist command, it will not list the application’s login context.

The PC-DCE dce_login program sets a session-wide login context. If you
open a command prompt, run dce_login, close the command prompt, and then
open a second command prompt and run klist, it will list the credentials
created by dce_login. You can create such a session-wide login context for
your application by using the following functions:

■ sec_login_set_default_context()
■ sec_login_setup_win32_context()

For more information on these functions, refer to Chapter 5 on page 31.

4.12 Converting an Exception to an Error Status Code
Some programs may cause an unhandled exception to be raised by the DCE
runtime. Symptoms include:

■ Application produces an abnormal program termination, Runtime Error!
with a dialog box titled Microsoft Visual C++ Runtime Library

■ Access violation

■ Application hangs

Chapter 4 Miscellaneous Notes 27
You can trap the exception that is being raised and convert it to an error
message. At that point you can change the application or at least handle
similar failures better. Here's an example of how to CATCH an exception for
the RPC made in the Greet sample.

TRY
{
 for (i = 0; i < reps; i++)
 {
 greet (binding_h, greeting, reply);
 printf ("The server says: %s\n", (LPSTR) reply);
 pthread_yield ();
 }
}

CATCH_ALL
{
exc_get_status (THIS_CATCH, &status);
ERROR_CHECK (status, "This was caught during the RPC");
}

4.13 Starting PC-DCE Services from the Command Line
PC-DCE integrates all DCE services directly into the Windows 2000 and
Windows NT services layer. Typically, you manage DCE services from the
PC-DCE Service Panel. For debugging purposes only, you can start the DCE
services manually from the command line. Use the commands in the
following list to start DCE manually. This list is complete and is presented in
the order that the services would start if activated automatically.

For the lightweight client, there are no daemons to start with the possible
exception of rpcd if the client is so configured.

For a full client:

prompt> rpcd -d -f
prompt> sec_clientd -d -v
prompt> cdsadv -v

For a server:

prompt> rpcd -d -f
prompt> sec_clientd -d -v
prompt> secd -v
prompt> cdsd -v
prompt> cdsadv -v

28 PC-DCE Developer’s Notes
4.14 Developing Thread-Safe Code
Symptoms that you may see if your server manager code is not thread-safe
include:

■ With shared variables, it is possible for each thread to use the variable and
set it to the correct value for that thread. If the application is not
thread-safe, the value meant for one thread could be passed to another
thread, causing incorrect results.

■ When you are debugging your server code, check the values of shared
variables. If you are not seeing the expected value, the server manager
code may not be thread safe.

Sometimes the RPC server manager code includes operations such as file I/O
and database update routines that are not thread-safe. To use DCE pthread
mutex lock to make sure the routines are not executed by more than one
server thread:

■ In the server initialization code, call pthread_mutex_init() before calling
rpc_server_listen().

■ In your RPC manager code, wrap the appropriate routines with
pthread_mutex_lock() and pthread_mutex_unlock() to mutex-protect
them.

This ensures that only one thread at a time performs the thread-unsafe
routines.

4.15 Setting Thread Priority Under Windows
Currently, pthread_attr_setpri() takes priority values from 1-15 where levels
1-9 map to Above Normal priority and levels 10-15 map to Highest priority.
Note that the Windows 2000 and Windows NT environment makes no
distinction between values within each range. For example, a one has the
same priority as nine (Above Normal). At this time, Entegrity does not allow
any priority to go below normal.

To set the base priority of a thread below normal, you can call the Win32 API
SetThreadPriority function. The following priority levels are available using
this function: Lowest, Below Normal, Normal, Above Normal, Highest.

4.16 Using Per-Thread Login Contexts
Standard DCE allows you to have as many login contexts as you wish — you
supply the login context handle when annotating an RPC binding handle with
security or when negotiating a GSS-API session. However, standard DCE lets
you set only one process-wide default login context (using the
sec_login_set_context() call).

PC-DCE enhances standard DCE to allow default login contexts on a
per-thread basis. Your application calls sec_login_set_thread_context() to
set up the per-thread context. Then, calling sec_login_get_current_context()

Chapter 4 Miscellaneous Notes 29
from that thread returns the per-thread context rather than the per-process
context. To break the association between a thread and a login context you
call sec_login_unset_thread_context().

One example of the usefulness of per-thread login contexts is when you can
not pass around a DCE login context handle within your application. This
happens many times when you are calling across a standardized interface,
such as ODBC. ODBC has no place in the interface to pass down a DCE login
context handle to an underlying DCE-enabled ODBC driver, so these drivers
simply call sec_login_get_current_context() to get the per-process login
context. This works fine in a 2-tier environment, but breaks down in a 3-tier
delegated environment.

In the 3-tier environment, the intermediate server has one login context for
each client that is accessing it, reflecting the fact that the server is acting on
behalf of the client. Without per-thread login contexts, you would need to
mutex-protect the per-process login context and single-thread each user
through the ODBC layer. With per-thread login contexts, you associate the
delegated login context with the thread, make your ODBC calls, and then
break the association.

For details on the Entegrity extensions, refer to Chapter 5 on page 31.

4.17 Using DCE Pipes
Consider using DCE pipes in situations where:

■ You are not sure how much data you have to handle.

■ You want to deal with the data (display, process, etc.) without having to
wait for the full transfer to complete.

■ You expect large data transfers (an approximate minimum of half a
megabyte).

■ You need to perform large data transfers of a common type.

The Guide to Writing DCE Applications by Shirley, Wu, and Magid (O'Reilly
& Associates) discusses this topic in detail. Entegrity has ported the
Transfer_data sample to PC-DCE. You can download this sample from the
following location: ftp://ftp.entegrity.com/pub/dce/pcdce/samples/
xferdata.zip.

4.18 Runtime Version Requirement
If you build applications using the current PC-DCE Application Developer's
Kit, you must run them with the PC-DCE runtime at the current revision or
later.

5

C H A PT E R 5

Entegrity API Extensions
This chapter provides reference information on the following Entegrity OSF
DCE version 1.2.2 API:

■ 5.1 sec_login_set_default_context()
■ 5.2 sec_login_setup_win32_context()
■ 5.3 sec_login_set_thread_context()
■ 5.4 sec_login_unset_thread_context()
■ 5.5 sec_login_get_default_context()

32 PC-DCE Developer’s Notes
5.1 sec_login_set_default_context()

Purpose

Sets session-wide credentials for a login context.

Definition

#include <dce/sec_login.h>

boolean32 sec_login_set_default_context (
 sec_login_handle_t login_context,
 error_status_t *status
)

Input Parameters

login_context — An opaque handle to login context data.

Output Parameters

status — A pointer to the completion status.

Description

Sets the credentials as the default credentials for this Windows login session.
This is equivalent to how dce_login.exe or the integrated login sets
session-wide credentials. This is useful when developing a login program or
application that has to set session-wide credentials.

This context must have been previously validated.

Use care when using this routine. Applications setting session-wide
credentials can impact other running applications.

If this function fails it returns false. For more specific error information refer
to the contents of the status parameter.

Related Functions

sec_login_setup_win32_context()

Chapter 5 Entegrity API Extensions 33
5.2 sec_login_setup_win32_context()

Purpose

Sets session-wide credentials within a network provider or GINA DLL.

Definition

#include <dce/sec_login.h>

boolean32 sec_login_setup_win32_context (
 sec_login_handle_t login_context,
 idl_char *username,
 error_status_t *status
)

Input Parameters

login_context — An opaque handle to login context data.

username — Character string containing the WIN32 username of the user. If
the user is a member of a Windows domain this must be in the format
domain\\username.

Output Parameters

status — A pointer to the completion status.

Description

Sets the credentials as the default credentials for the login session being
established. This routine must be used by network providers or GINA
implementations.

This routine should not be used by a traditional DCE login program. This
routine will properly set up the credentials pointer in the Windows registry so
that the security runtime can access the credentials.

If this function fails it returns false. For more specific error information refer
to the contents of the status parameter.

Related Functions

sec_login_set_default_context()

34 PC-DCE Developer’s Notes
5.3 sec_login_set_thread_context()

Purpose

Makes the specified login context the per-thread login context for the calling
thread.

Definition

#include <dce/sec_login.h>

void __stdcall sec_login_set_thread_context (

 sec_login_handle_t login_context,
 unsigned32 flags,
 error_status_t *st
)

Input Parameters

login_context — An opaque handle to login context data.

flags — Flags for this call. Defined flags currently include:

(1) sec_login_thread_purgeonexit — When the thread exits, the login
context is released.

Output Parameters

st — A pointer to the completion status.

Description

PC-DCE enhances standard DCE to allow default login contexts on a
per-thread basis. Your application calls sec_login_set_thread_context() to
set up the per-thread context. To break the association between a thread and a
login context you call sec_login_unset_thread_context().

If this function fails it returns false. For more specific error information refer
to the contents of the status parameter.

For a discussion of per-thread login contexts, refer to Section 4.16 on page 28.

Related Functions

sec_login_unset_thread_context()
sec_login_get_default_context()

Chapter 5 Entegrity API Extensions 35
5.4 sec_login_unset_thread_context()

Purpose

Unsets the current per-thread login context.

Definition

#include <dce/sec_login.h>

void __stdcall sec_login_set_thread_context ()

Description

PC-DCE enhances standard DCE to allow default login contexts on a
per-thread basis. Your application calls sec_login_set_thread_context() to
set up the per-thread context. To break the association between a thread and a
login context you call sec_login_unset_thread_context(). This call removes
the per-thread context information and releases a reference to the current
thread login context. This has no effect on externally-visible credentials.

If this function fails it returns false.

For a more detailed discussion of per-thread login contexts, refer to
Section 4.16 on page 28.

Related Functions

sec_login_set_thread_context()
sec_login_get_default_context()

36 PC-DCE Developer’s Notes
5.5 sec_login_get_default_context()

Purpose

Gets the default login context. This function allows the caller to specify
whether to get the per-thread or per-process login context.

Definition

#include <dce/sec_login.h>

void __stdcall sec_login_get_default_context (
 unsigned32 type,
 sec_login_handle_t *login_context,
 error_status_t *st
)

Input Parameters

type — Identifies the type of login context to get. Defined types currently
include:

(0) sec_login_default_context_proc — Gets the per-process login
context.

(1) sec_login_default_context_thr — Gets the per-thread login context.

Output Parameters

login_context — A pointer to the requested login context data.

status — A pointer to the completion status.

Description

PC-DCE enhances standard DCE to allow default login contexts on a
per-thread basis. Your application calls sec_login_set_thread_context() to
set up the per-thread context. Once the per-thread context is set up, you can
call sec_login_get_default_context() to obtain either the process login
context or thread login context.

You can also use sec_login get_current_context(), which is modified from
standard DCE to get the thread login context (if available). Otherwise get the
process-wide login context.

If this function fails it returns false. For more specific error information refer
to the status parameter.

For a discussion of per-thread login contexts, refer to Section 4.16 on page 28.

Related Functions

sec_login_set_thread_context()
sec_login_unset_thread_context()

6

C H A PT E R 6

Samples
6.1 Using the Sample Applications
PC-DCE provides the following sample programs to introduce you to DCE
programming and to test the integrity of your PC-DCE installation and
configuration:

■ Greet Application (Section 6.2.1)
■ Grade Application (Section 6.2.2)

6.2 Greet Application
The Greet sample application consists of the following programs:

■ client.exe — Greet Client program
■ server.exe — Greet Server program

The Greet application is implemented as a 32-bit Windows application. The
executable files for the Greet application (client.exe and server.exe) are
located in dce_install_directory\samples\greet and appear as icons (Greet
Client and Greet Server) in the PC-DCE program group. You can run these
programs after installation and configuration, or at any time to verify that
PC-DCE is operating properly.

The Greet application provides a simple way for you to demonstrate how
pthreads, CDS, and RPC can be used to accomplish the following tasks:

■ Advertise the existence of a remote server to a client

■ Locate a remote server

■ Establish a connection between a client and server

■ Exchange a handshake (or greeting message) between a client and server

You can run the Greet client and server programs on the same system, or run
one of the programs on your local PC and the other program on a remote
system.

38 PC-DCE Developer’s Notes
6.2.1 The Greet Client
The Greet client program supports three different methods of locating the
Greet server:

■ Use string binding

Locates a Greet server by specifying the exact network location of the
target server using a DNS name or an IP address.

■ Import bindings from CDS

Locates the server(s) registered in the CDS namespace via the cdsclerk
process in the DCE DLL.

■ Use local server

Locates the server by communicating with dced and restricting the search
to the local system.

Entegrity suggests that you try running the Greet client using the string
binding first, then local server, and finally by looking up server locations in
the CDS namespace.

6.2.2 The Greet Server
The Greet server program advertises its existence to dced only, or to both
dced and CDS. Registration with dced only allows the Greet client to
establish a connection by using string bindings or a local server. However,
registration with CDS enables the Greet client to locate the server without
knowing the location of the system where the Greet server is running. Again,
Entegrity suggests that you try the simple case first by disabling registration
of the Greet server's bindings in the CDS namespace.

6.2.3 Running the Greet Sample Programs
1 For the Greet application to work properly, dced and the CDS Advertiser

(cdsadv) must be running on your system. If in doubt, select the PC-DCE
icon in the Windows Control Panel to activate the PC-DCE Service Panel
and verify that the Remote Procedure Call daemon and the CDS
Advertiser are running.

2 If not already logged in, DCE_login to your cell, using a valid principal
and password.

To log in, open an MS-DOS window and type: dce_login. Then enter your
username and password.

3 Select the Greet Server icon from the PC-DCE program group to start the
Greet server program. The Greet Server dialog appears. The Server name
field displays the predefined CDS name for your Greet server (/.:/hosts/
yourhostname/greet-server) that was created as part of the PC-DCE
configuration on your system.

Chapter 6 Samples 39
4 In the Threads dialog box, specify how many threads you want the Greet
server to use when listening for Greet client communications.

5 By default, the checkbox Export Server Binding into CDS is marked with
an X to allow Greet clients to establish a connection with the server by
performing a name lookup in the CDS namespace. If you want Greet
clients to connect with their local Greet server, or to establish a connection
with this server only by using a string binding, deselect the checkbox
Export Server Binding into CDS.

6 When satisfied with your settings, click Start. The Greet server responds
by registering itself with dced and with CDS (if you accepted the default
in the checkbox Export Server Bindings into CDS in step 5).

The RPC registration process may take a few moments. When the server is
ready to receive client calls, it prints Listening... in the Output: box.

7 Select the Greet Client icon from the PC-DCE program group to start the
Greet client program. The Greet Client Sample Program dialog appears.

8 Click the appropriate radio button to select the method by which the Greet
Client will locate a Greet Server:

■ Select Use Local Server to restrict a search for a Greet server by dced to
your local system.

■ Select Import Bindings from CDS to instruct the client to look up the
location of the Greet server in the CDS namespace.

■ Select Use String Binding to Server to locate the server by the
information provided in the string binding.

9 In the Message To Send field, enter the message that you want to send to
the Greet server. The message Hello Server is specified by default.

10 In the Repetitions field, enter the number of times you want the Greet
client to send the message that you specified. By default, the client repeats
the message 5 times.

11 When satisfied with your settings, click Send. The client imports the
server's binding handle (if CDS is selected) and exchanges messages with
the server. The server prints the client's greeting message and the client
prints the server's default reply Hi client!.

NOTE: If you directed the Greet client to look up the location of a Greet server
in the CDS namespace and if there are multiple Greet servers (of the same
name) active in your cell, you will be unable to control with which servers the
Greet client actually connects. This is because, based on identical names, the
Greet client binds randomly to a Greet server via CDS. You can alter this
behavior by using RPC profiles or by specifying unique server names.

To cancel either program, click the Cancel button. When you cancel the Greet
server, it automatically unregisters its endpoint.

40 PC-DCE Developer’s Notes
6.3 Grade Application
The Grade sample application consists of the following programs:

■ client.exe — Grade Server client program
■ server.exe — Grade Server server program

The Grade Server application is implemented as a Windows Console
application to demonstrate how you can create standard UNIX-style client
and server programs in the Win32® environment and avoid the overhead of
creating a Windows GUI. The executable files for the Grade Server
application (client.exe and server.exe) are located in dce_install_directory
\samples\grade.

The Grade Server programs shipped with PC-DCE are implemented as
Windows Console applications. They are based on the UNIX Grade Server
application that appears in the second edition of the Guide to Writing DCE
Applications (Shirley, Hu, and Magid) published by O'Reilly & Associates,
Inc. Entegrity's adaptations of these programs demonstrate how easy it is to
modify an existing DCE application to run under Windows. (Setup
instructions for this application were derived, in part, from materials provided
by O'Reilly & Associates, Inc.)

The server stores a fixed database of student names and their grade point
averages (GPAs). The client queries the database for GPA information and the
Grade server responds to the client.

The only interface defined for the server is the GPA interface that is called by
the client. This remote procedure returns the GPA associated with individual
students.

The Grade Server application illustrates the use of authenticated RPC and
DCE Security services, including the following tasks:

■ Annotating a binding for authenticated RPC.
■ Determining a server's principal name.
■ Setting up a server's login context.
■ Creating a thread to manage a server's secret key.
■ Setting up a reference monitor that uses name and group membership for

authorization.

6.3.1 Setting Up the Grade Server Application
The implementation of the Grade Server assumes that the principal identities
and groups and the keytab file have been created and that the keytab file can
be accessed by the Grade Server process. It also assumes that the server can
export to CDS. You perform these operations using the management utilities
supplied with PC-DCE. You should perform the Security setup first to create
the principal identities required for the CDS operation.

Chapter 6 Samples 41
6.3.1.1 Security Setup

The implementation assumes that the Grade server process executes with the
local identity of grade_server_1. The server process needs a local identity so
that it can access its keytab file.

Before you can run the Grade Server application, you need to use dcecp to
perform the following tasks:

■ Create groups for both the Grade servers and teachers. (Note that the
grade_server group is not used by the server; it is used by clients to
authenticate the server.)

■ Create principals for the Grade server, students, and teachers.

■ Create accounts for each of the three principals.

■ Create a keytab file for the server.

1 Invoke the DCE Login utility and enter the following command to log in
as the cell administrator:

dce_login cell_admin cell_admin_password

2 Invoke dcecp and enter the following commands to create the
grade_server, student, and teacher groups:

dcecp> group create grade_server

dcecp> group create teacher

3 Create the grade_server_1, student_1, and teacher_1 principals.

dcecp> principal create grade_server_1

dcecp> principal create student_1

dcecp> principal create teacher_1

4 Add the grade_server_1, student_1, and teacher_1 principals to their
appropriate groups:

dcecp> group add grade_server -m grade_server_1

dcecp> group add none -m student_1

dcecp> group add teacher -m teacher_1

5 Add the grade_server_1, student_1, and teacher_1 principals to their
appropriate organizations:

dcecp> org add none -m grade_server_1

dcecp> org add none -m student_1

dcecp> org add none -m teacher_1

6 Create accounts for the three principals. Make grade_server_1 a member
of the grade_server group, student_1 a member of the student group, and
teacher_1 a member of the teacher group.

dcecp> account create grade_server_1 -group grade_server -o none -pa
-dce- -my cell_admin_password

42 PC-DCE Developer’s Notes
dcecp> account create student_1 -group none -o none -pa -dce- -my
cell_admin_password

dcecp> account create teacher_1 -group teacher -o none -pa -dce- -my
cell_admin_password

7 Create a keytab file for the grade_server_1 principal. The following
command must be executed on the system where you intend to run the
Grade Server program. In addition, replace server_host_name below with
the name of your host server. Note that you must also create the /tmp
directory if it doesn’t already exist.

dcecp> keytab create \
/.:/hosts/server_host_name/config/keytab/grade_server_1 -storage \
“/tmp/grade_server_tab” -data {grade_server_1 plain 1 -dce-}

6.3.1.2 CDS Setup

Perform the following steps to create a CDS object (/.:/grade) and modify its
ACL:

1 Enter the following command to create the object in CDS. This is the entry
to which the Grade Server exports its bindings.

dcecp> obj create /.:/grade

2 Modify the ACL to grant read and write access to the grade_server_1
principal.

dcecp> acl modify -e /.:/grade -add {user grade_server_1 rw}

3 Issue the following command to verify that the grade_server_1 principal is
granted the correct permissions.

dcecp> acl show -e /.:/grade -entry

{unauthenticated:r--t-}
{user:cell_admin:rwdtc}
{user:grade_server_1:rw---}
{group:subsys/dce/cds-admin:rwdtc}
{group:subsys/dce/cds-server:rwdtc}
{any_other:r--t-}

dcecp> exit

6.3.2 Running the Grade Server Sample Programs
At this point, you are ready to run the application. Begin by starting up the
Grade Server. Because the server will establish its own DCE identity, the
process that starts the Grade Server does not need to log into DCE.

6.3.2.1 Running the Grade Server Program

To start the Grade Server, change directories to dce_install_directory
\samples\grade and enter the server command.

Chapter 6 Samples 43
6.3.2.2 Running the Grade Client Program

1 Invoke the DCElogin utility and DCElogin as the student_1 principal. If
you’ve been following the instructions presented above, keep in mind that
the assigned password is -dce-.

2 Change directories to dce_install_directory\samples\grade. To start the
Grade Client and display the GPA for student_1, enter client student_1.
The GPA for student_1 is displayed.

3 Now enter client Peter to attempt to retrieve the GPA for the student Peter.
Because you are logged in as student_1, and you are not a teacher, your
query is not permitted and the server returns a GPA of -1.00000.

4 Repeat step 1, but this time, login as the teacher_1 principal. Then repeat
step 2 to prove that the teacher_1 principal is permitted to retrieve the GPA
for student_1.

5 Repeat step 3. This time, because you are logged in as teacher_1, you are
entitled to see all GPAs in the database and the Grade Server displays
Peter's GPA, 4.00000.

Index
A
API extensions 31
Application message service 9
Application programming interfaces 9
Applications

development procedures 19
embedding dcecp functionality 24
login contexts 26
running with PC-DCE runtime 29
sample 37

B
Backing store database 9

C
C++ environmental requirements 19
Cell Directory Service 9
Clock synchronization 15
Compaq DCE for Windows NT

migrating applications 16
Compiling 11

switches 11
Constants

initialization 22
Contacting Entegrity Solutions 7

D
DCE

API 11
pipes 29
runtime version requirement 29
The Open Group documentation 6

DCE control program (dcecp) 24
Debug

files 24
using DCE services 27

Development procedures 19
Documentation 5, 6, 7
DTS 25

clerk 15
E
Error calls 16
Event log

routing messages to 21
Exception handling 11, 12, 20

converting to error messages 26

F
FAT file system 16
Freeing memory 11
Function-calling conventions 20

G
GetLastError() 16
Global Directory Service 9
Global unwinding 12
Grade sample application 40
Greet sample application 37

H
Host services 9

I
IDE interface 14
IDL 13, 19
Integrated login 15

L
Linking 11
Login contexts

session-wide 26

46 PC-DCE Developer’s Notes
M
Macros

exception handling 12, 13
Max Call Requests 25
Message catalogs

generating 21
Migrating applications 15
Mutexes 18

N
Name Service Interface Gateway (nsid) 22
NTFS partitioning 16

O
OLE 13
OSF DCE documentation 9
OSF documentation 6
Overview 9

P
Partitioning 15
PC-DCE

additional documentation 5
migrating pre-3.0 applications 18
Service Panel 27

pthreads
failed calls 16
library 15

R
Routing messages to the event log 21
RPC

functions 25
interoperability 22
timeouts 25

RPC services 22

S
Sample applications 37
Serviceability 9
Static initialization 22
Stub generation 13

C++ environment 19
Support 6, 7

T
Technical support 6, 7
Threads

per-thread login contexts 28
prioritization 28
scheduling 15

Thread-safe code 28
Time services 25
timesync.exe 15

U
UNIX

migrating applications 15

W
Windows 2000 and Windows NT security 15
Windows 3.1 application

porting 17 to 18
Windows NT event log

routing messages to 21

X
X/Open Directory Service 9
X/Open OSI-Abstract-Data Manipulation 9

	Notices
	Preface
	Intended Audience
	Documentation
	PC-DCE Documentation Set
	The Open Group Documentation

	Obtaining Technical Support
	Contacting Entegrity Solutions
	Obtaining Additional Technical Information

	Overview
	Notes on Compiling and Linking
	2.1 Linking and Compiling PC-DCE Applications
	2.1.1 Using Non-Microsoft Compilers

	2.2 Exception Handling
	2.2.1 Global Unwinding
	2.2.2 DCE Exception Handler Definitions for C++
	Table 2-1: DCE Exception Handler Macro Redefinitions

	2.2.3 Runtime Library Requirement
	2.2.4 Mapping WIN32 Exceptions to DCE Threads Exceptions

	2.3 Using OLE 2.0 with PC-DCE
	2.4 Generating Stubs from the IDL Command Line
	2.5 Using the Microsoft IDE Interface

	Migration Notes
	3.1 Migrating UNIX DCE Applications to PC-DCE
	3.1.1 Retrieving Errors on DCE API Calls

	3.2 Migrating Applications Developed With Compaq DCE for Windows NT
	3.3 Migrating 16 bit Windows Applications To 32 bit Windows
	3.4 Migrating Applications Developed Using Earlier Releases of PC-DCE
	3.4.1 Mutexes

	Miscellaneous Notes
	4.1 Developing C++ Applications
	4.1.1 Typical Development Procedure
	4.1.2 Pthread Exceptions vs. MS Visual C++
	4.1.3 Calling Conventions vs. MS Visual C++

	4.2 DCE Message Catalogs
	4.2.1 Generating Message Catalogs from .sams Files
	4.2.2 NT_EVENTLOG Routing

	4.3 Static Initialization of Constants
	4.4 Microsoft RPC Interoperability
	4.5 Name Service Interface Gateway
	4.5.1 Supported nsid Protocols
	4.5.2 How the nsid Works
	4.5.3 How the PC Client Finds the nsid
	4.5.4 APIs Supported by the nsid

	4.6 DCECP Functionality
	4.7 .DBG Files
	4.8 Max Call Requests
	4.9 External Time Providers
	4.10 Controlling RPC Timeouts
	4.11 Setting a Session-Wide Login Context
	4.12 Converting an Exception to an Error Status Code
	4.13 Starting PC-DCE Services from the Command Line
	4.14 Developing Thread-Safe Code
	4.15 Setting Thread Priority Under Windows
	4.16 Using Per-Thread Login Contexts
	4.17 Using DCE Pipes
	4.18 Runtime Version Requirement

	Entegrity API Extensions
	5.1 sec_login_set_default_context()
	5.2 sec_login_setup_win32_context()
	5.3 sec_login_set_thread_context()
	5.4 sec_login_unset_thread_context()
	5.5 sec_login_get_default_context()

	Samples
	6.1 Using the Sample Applications
	6.2 Greet Application
	6.2.1 The Greet Client
	6.2.2 The Greet Server
	6.2.3 Running the Greet Sample Programs

	6.3 Grade Application
	6.3.1 Setting Up the Grade Server Application
	6.3.1.1 Security Setup
	6.3.1.2 CDS Setup

	6.3.2 Running the Grade Server Sample Programs
	6.3.2.1 Running the Grade Server Program
	6.3.2.2 Running the Grade Client Program

	Index

