
OSF DCE Version 1.2.2

DCE Testing Guide

January 17, 1997
Revision 1.2.2

Open Software Foundation

11 Cambridge Center

Cambridge, MA 02142

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or
consequential damages in connection with the furnishing, performance, or use of this material.

Copyright 1995, 1996 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

• Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation

• Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company

• Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation

• Copyright 1990, 1991 Siemens Nixdorf Informationssysteme AG

• Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996 International Business Machines

• Copyright 1988, 1989, 1995 Massachusetts Institute of Technology

• Copyright  1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the University of
California

• Copyright 1995, 1996 Hitachi, Ltd.

All Rights Reserved
Printed in the U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE
USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF
OR ITS LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are registered trademarks of the Open
Software Foundation, Inc.

X/Open is a registered trademark, and the X device is a trademark, of X/Open Company Limited.

The Open Group is a trademark of the Open Software Foundation, Inc. and X/Open Company Limited.

UNIX is a registered trademark in the US and other countries, licensed exclusively through X/Open Company
Limited.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.

AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.

DFS is a trademark of the Transarc Corporation.

Episode is a registered trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

NetWare is a registered trademark of Novell, Inc.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED
SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer
software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in Section
52.227-19 of the FARS Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-
7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set
forth in paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This
computer software is submitted with ‘‘restricted rights.’’ Use, duplication or disclosure is subject to the restrictions as
set forth in NASA FAR SUP 18-52.227-79 (April 1985) ‘‘Commercial Computer Software-Restricted Rights (April
1985).’’ If the contract contains the Clause at 18-52.227-74 ‘‘Rights in Data General’’ then the ‘‘Alternate III’’
clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

0−0 January 17, 1997

Contents_____________________________

Preface . xi

Audience xi

Applicability xi

Purpose xi

Document Usage xi

Related Documents xii

Typographic and Keying Conventions. xiii

Problem Reporting xiv

Chapter 1. DCE Subsystems. 1-1

1.1 Internationalization 1-1
1.1.1 Testing and Verification. 1-2

1.2 Serviceability 1-2
1.2.1 Testing and Verification. 1-2

Chapter 2. DCE Programs. 2-1

2.1 dcecp 2-1
2.1.1 Testing and Verification. 2-1

2.2 dced 2-11
2.2.1 Testing and Verification. 2-11
2.2.2 dced Runtime Output and Debugging Output. . . . 2-13

2.3 DCE ACL Facility and Backing Store Library. 2-15
2.3.1 Testing and Verification. 2-15

Chapter 3. DCE Threads 3-1

3.1 Testing and Verification 3-1
3.1.1 Installing Threads Functional Tests with

dcetest_config 3-1
3.1.2 Testing Dependencies 3-2
3.1.3 Threads Test Case Categories. 3-3
3.1.4 Test Case Execution. 3-6
3.1.5 Test Case Results 3-7
3.1.6 Test Plans 3-7

3.2 Debugging DCE Threads. 3-7
3.2.1 Debugging with gdb. 3-8
3.2.2 Debugging with dbx. 3-10

Chapter 4. DCE Remote Procedure Call. 4-1

4.1 Overview 4-1

4.2 Setup, Testing, and Verification. 4-2

January 17, 1997 i

DCE Testing Guide

4.2.1 Installing RPC Functional Tests with
dcetest_config 4-2

4.2.2 RPC Setup. 4-3
4.2.3 RPC Application Tests 4-3
4.2.4 IDL Compiler Tests 4-17
4.2.5 RPC Runtime I18N Extension Functional

Tests 4-24
4.2.6 RPC Runtime Library and IDL Compiler

Tests 4-27
4.2.7 Name Service Interface Test 4-32
4.2.8 Test Plans 4-32

4.3 RPC Runtime Output and Debugging Output. 4-32
4.3.1 Normal RPC Server Message Routing. 4-32
4.3.2 Debugging Output 4-35

Chapter 5. DCE Cell Directory Service. 5-1

5.1 Overview 5-1

5.2 Setup, Testing, and Verification. 5-2
5.2.1 Installing CDS Functional Tests with

dcetest_config 5-2
5.2.2 CDS Setup 5-3
5.2.3 CDS Test Scripts. 5-8
5.2.4 Distributed ACL Tests 5-10
5.2.5 NSI Test 5-12
5.2.6 Testing Intercell Lookup 5-12

5.3 CDS Runtime Output and Debugging Output. 5-13
5.3.1 Normal CDS Server Message Routing. 5-13
5.3.2 Debugging Output 5-16

Chapter 6. DCE Global Directory Service. 6-1

6.1 Overview 6-1

6.2 GDS Testing Overview 6-2
6.2.1 Changes to the GDS Functional Tests Since DCE

1.0.3 6-2
6.2.2 Installing GDS Functional Tests with

dcetest_config 6-4
6.2.3 Running GDS Functional Tests with TET 6-5

6.3 The XDS Test Tool xt_test 6-9
6.3.1 Examples 6-12
6.3.2 MAVROS Compiler Tests 6-13
6.3.3 Testing GDS Intercell Operation. 6-13

6.4 GDS Runtime Output and Debugging Output. 6-15
6.4.1 Test Plans 6-15

Chapter 7. DCE Distributed Time Service. 7-1

7.1 Overview 7-1

7.2 Setup, Testing, and Verification. 7-1
7.2.1 Installing DTS Functional Tests with

dcetest_config 7-2
7.2.2 Building the Tests 7-3
7.2.3 DTS Setup. 7-3
7.2.4 API Tests 7-3
7.2.5 Synchronization Testing 7-4
7.2.6 dtscp Testing 7-5
7.2.7 Additional DTS Testing. 7-6
7.2.8 Test Run Examples 7-8

7.3 DTS Runtime Output and Debugging Output. 7-10

ii January 17, 1997

Contents

7.3.1 Normal DTS Server Message Routing. 7-10
7.3.2 Debugging Output 7-13
7.3.3 Test Plans 7-15

Chapter 8. DCE Security Service. 8-1

8.1 Overview 8-1

8.2 Setup, Testing, and Verification. 8-2
8.2.1 Installing DCE Security Functional Tests with

dcetest_config 8-2
8.2.2 Basic Security Setup. 8-3
8.2.3 Basic Functionality Tests 8-7
8.2.4 ERA, Delegation, and Extended Login Tests. . . . 8-11
8.2.5 PKSS Functional Tests. 8-15
8.2.6 Certification API Tests 8-18
8.2.7 Kerberos 5 Functional Tests 8-25
8.2.8 Public Key Login API Tests 8-31
8.2.9 GSSAPI Tests. 8-35
8.2.10 Commands Tests. 8-36
8.2.11 API Tests 8-41
8.2.12 Use of the ‘‘compile_et’’ Program 8-45
8.2.13 Test Plans. 8-46

Chapter 9. DCE Audit Service 9-1

9.1 Audit Service Overview 9-1

9.2 Testing and Verification 9-2
9.2.1 Description of the Audit API Test Cases. 9-2
9.2.2 Description of the Event Class Test Case. 9-3
9.2.3 Installing the Audit functional tests with

dcetest_config 9-3
9.2.4 Audit Test Configuration Requirements. 9-4
9.2.5 Running the Audit Test Cases. 9-4
9.2.6 Test Plans 9-6

9.3 Audit Runtime Output and Debugging Output. 9-6
9.3.1 Normal Audit Server Message Routing. 9-6
9.3.2 Debugging Output 9-9

Chapter 10. DCE Distributed File Service 10-1

10.1 Overview 10-1

10.2 Setup, Testing, and Verification. 10-2
10.2.1 Installing DFS Functional Tests with

dcetest_config 10-2
10.2.2 Debugging Notes. 10-3
10.2.3 Test Types. 10-6
10.2.4 DFS Test Setup 10-8
10.2.5 DCE Distributed File Service Tests. 10-8
10.2.6 Delegation Tests. 10-11
10.2.7 Multihome Server Tests. 10-11
10.2.8 File Exporter Authorization Tests. 10-11
10.2.9 DCE Local File System Tests. 10-14
10.2.10 DFS Server Process Tests. 10-16
10.2.11 DFS Command Interface Tests. 10-16
10.2.12 DFS Administrative Tests 10-17
10.2.13 DFS Gateway Tests. 10-18
10.2.14 Test Plans. 10-19

Chapter 11. TET and DCE Testing. 11-1

11.1 Installing TET 11-1
11.1.1 Using dcetest_config 11-3
11.1.2 Installing TET with dcetest_config 11-3

January 17, 1997 iii

DCE Testing Guide

11.1.3 Installing the DCE Functional Tests with
dcetest_config 11-6

11.1.4 Installing the DCE System Tests with
dcetest_config 11-8

11.1.5 Configuring for System Test with
dcetest_config 11-12

11.2 Using TET 11-13
11.2.1 Overview of TET Use 11-15
11.2.2 Running DCE System Tests under TET. 11-16
11.2.3 Using the ‘‘Run’’ Scripts: An Example 11-18
11.2.4 Prerequisites for Running System Tests Using the ‘‘Run’’

Scripts 11-20
11.2.5 Standard DCE System Test Output Location. . . . 11-21
11.2.6 Command Line Options Common to Some or All of the

‘‘Run’’ Scripts 11-24
11.2.7 External and Internal Looping. 11-26

11.3 System Test Tools 11-28
11.3.1 Performing a Quick Check of DCE on a

Machine 11-28
11.3.2 TET Tools 11-29
11.3.3 Multi-Vendor Test Case Development Tools 11-31
11.3.4 Test Case Logging Facilitators for System Tests Not under

TET 11-32
11.3.5 Execution Tools 11-33
11.3.6 Miscellaneous Tools. 11-33

Chapter 12. DCE System Tests under TET. 12-1

12.1 Threads 12-1
12.1.1 dcethcac 12-2
12.1.2 dceth002 12-2
12.1.3 dcethmut 12-3
12.1.4 dcethrpc 12-4

12.2 RPC 12-6
12.2.1 dcerpary 12-6
12.2.2 dcerpidl 12-7
12.2.3 dcerprec 12-8
12.2.4 dcerpbnk 12-8
12.2.5 RPC Runtime Stress Test. 12-10
12.2.6 RPC-Security System Test. 12-11
12.2.7 dcerpper 12-22

12.3 DCE Host Daemon (dced) 12-23

12.4 Security 12-26
12.4.1 secrep 12-26
12.4.2 dceseacl 12-27
12.4.3 eraobj001 12-28
12.4.4 dceseact 12-29
12.4.5 dcesepol 12-30
12.4.6 dcesestr 12-30
12.4.7 erarel001 12-31
12.4.8 dlgcfg001 12-32
12.4.9 Security Registry System Test dcesergy. 12-33

12.5 CDS 12-37
12.5.1 dcecdsrep 12-37
12.5.2 CDS Server System Test 12-38
12.5.3 CDS ACL Manager System Test. 12-40
12.5.4 dcecdsacl6 Initialization 12-40
12.5.5 Logic Flow of dcecdsacl6 Test. 12-41
12.5.6 Hierarchical Cell Tests. 12-41

iv January 17, 1997

Contents

12.6 DCE Audit Service System Tests 12-43

12.7 DTS 12-44
12.7.1 dcetmsyn 12-44

12.8 Internationalization System Tests 12-45
12.8.1 Prerequisite Setup 12-46
12.8.2 Running the Tests 12-47

12.9 DCE ServiceabilitySystem Tests 12-47

Chapter 13. DCE System Tests not under TET. 13-1

13.1 Security Administrative Tests 13-1
13.1.1 Backup and Restore Registry Checklist. 13-1
13.1.2 Registry Replica Checklist. 13-3

13.2 CDS Administrative Tests and Checklists. 13-4
13.2.1 Backup and Restore Clearinghouse Automated

Test 13-4
13.2.2 Backup Clearinghouse Automated Test. 13-7
13.2.3 Restore Clearinghouse Automated Test. 13-9
13.2.4 Clearinghouse and Replica Checklist 1. 13-11
13.2.5 Clearinghouse and Replica Checklist 2. 13-13
13.2.6 Intercell GDA Checklist 13-14
13.2.7 dcecp System Tests. 13-16
13.2.8 DFS Administrative Checklist. 13-16

13.3 Global Directory System Tests 13-18
13.3.1 dcegdshd 13-18
13.3.2 gds_xds_str_001. 13-22

13.4 DFS System Tests. 13-31
13.4.1 DFS System Test Cell Requirements. 13-31
13.4.2 Installing the DFS System Tests and

Checklists 13-32
13.4.3 dfs.glue 13-32
13.4.4 dfs.lock 13-34
13.4.5 dfs.maxdir 13-36
13.4.6 dfs.maxfile 13-36
13.4.7 dfs.block_frag 13-36
13.4.8 dfs.read_write_all.main. 13-37
13.4.9 filewnr.c 13-37
13.4.10 dirread.c 13-40
13.4.11 dirwrite.sh 13-42
13.4.12 dfs.fmul 13-45
13.4.13 DFS System Testing Checklists 13-46

13.5 Security Delegation Tests. 13-47
13.5.1 dlgstr001 13-47
13.5.2 dlgcf002 13-47

13.6 RPC-CDS System Test 13-48
13.6.1 Features of the RPC-CDS System Test. 13-48
13.6.2 Logic Flow of RPC-CDS System Test Setup. 13-48
13.6.3 Server Side Logic Flow. 13-49
13.6.4 Client Side Logic Flow 13-51
13.6.5 Parameters and Options for the RPC-CDS System

Test 13-51
13.6.6 Compile-Time Switches for Optional

Functionality 13-55
13.6.7 Customizing the Configuration File 13-57
13.6.8 Format of the Configuration File 13-57
13.6.9 Contents of the Configuration File 13-58
13.6.10 Setting Up to Run the RPC-CDS System Test. . . . 13-59
13.6.11 Running the rpc.cds.3_setup.sh Setup Script. 13-60

January 17, 1997 v

DCE Testing Guide

13.6.12 Starting the Servers. 13-61
13.6.13 Starting the Clients 13-61
13.6.14 Analyzing the Results 13-62
13.6.15 Implementation Notes 13-62
13.6.16 Runtime Error Handling 13-63

Appendix A. File and Path Names Cross-Reference. A-1

A.1 Threads Files A-1

A.2 RPC Files A-1

A.3 CDS Files A-2

A.4 GDA Files A-3

A.5 GDS Files A-3

A.6 DTS Files A-3

A.7 Security Files A-4

A.8 DFS Files A-5

Appendix B. DCE Abbreviations List B-1

B.1 A . B-1

B.2 B . B-2

B.3 C . B-3

B.4 D . B-3

B.5 E . B-4

B.6 F . B-5

B.7 G . B-5

B.8 H . B-5

B.9 I . B-6

B.10 K . B-7

B.11 L . B-7

B.12 M . B-7

B.13 N . B-8

B.14 O . B-8

B.15 P . B-9

B.16 R . B-9

B.17 S . B-10

B.18 T . B-10

B.19 U . B-11

B.20 V . B-11

B.21 W . B-12

B.22 X . B-12

B.23 Z . B-12

vi January 17, 1997

Contents

LIST OF FIGURES

Figure 3-1. Supplying Threads Test Install-from Location. 3-2

Figure 11-1. Installing TET: Step 1 11-4

Figure 11-2. Installing TET: Step 2 11-4

Figure 11-3. Completion of Installation 11-4

Figure 11-4. Return to Main Menu 11-5

Figure 11-5. Selecting Test Installation 11-6

Figure 11-6. Supplying Test Location. 11-6

Figure 11-7. Functional Test Installation Menu. 11-7

Figure 11-8. Previously Installed Tests 11-7

Figure 11-9. Installing Functional Tests. 11-8

Figure 11-10. Installing System Tests: Step 1. 11-9

Figure 11-11. Installing System Tests: Step 2. 11-9

Figure 11-12. Installing System Tests: Step 3. 11-10

Figure 11-13. Installing System Tests: Step 4. 11-10

Figure 11-14. Installing System Tests: Installation Messages. 11-11

Figure 11-15. Configuring for System Test. 11-12

Figure 11-16. End of Configuration. 11-13

January 17, 1997 vii

DCE Testing Guide

LIST OF TABLES

TABLE 2-1 . 2-8

TABLE 11-1. DCE System Test Suites and TET Scenarios. 11-13

TABLE 12-1. Objects Created by the rpc.sec.2 System Test. 12-13

TABLE 12-2. Compile-Time Switches for rpc.sec.2 12-16

TABLE 12-3. Configuration File Contents 12-18

TABLE 13-1. Example Cell Configuration for gds_xds_str_001. 13-30

TABLE 13-2. filewnr.c Parameters and Values. 13-38

TABLE 13-3. dirread.c Parameters and Values. 13-41

TABLE 13-4. dirwrite.sh Parameters and Values. 13-43

TABLE 13-5. Command Line Switches for rpc.cds.3_setup.sh. 13-52

TABLE 13-6. Parameters for rpc.cds.3_srv. 13-52

TABLE 13-7. Flags for rpc.cds.3_srv. 13-53

TABLE 13-8. Parameters for rpc.cds.3_cli 13-54

TABLE 13-9. Flags for rpc.cds.3_cli 13-55

TABLE 13-10. Compile-Time Switches for rpc.cds.3 13-56

TABLE 13-11. Contents of Configuration File 13-58

TABLE 13-12. Objects Required by the rpc.cds.3 System Test. 13-60

viii January 17, 1997

Preface

The DCE Testing Guidedescribes how to test the OSFTM Distributed Computing
Environment (DCE).

Audience

The DCE Testing Guideis for licensees who are porting DCE to a non-reference
platform.

Applicability

This is Revision 1.0 of this guide. It applies to the OSFTM DCE Version 1.2.2 offering.
See your software license for details.

Purpose

The purpose of this manual is to guide developers testing DCE. After reading this guide,
you should be able to effectively test DCE.

Document Usage

January 17, 1997 xi

DCE Testing Guide

This section describes the 13 chapters and 2 appendices that make up the guide.

• Chapters 1 - 10

These chapters give information on testing the DCE components, with one chapter
devoted to each component.

• Chapter 11: TET and DCE Testing

This chapter describes how to install the Test Environment Toolkit (TET), which is
used to execute many of the DCE functional and system tests, and how TET is used
to execute tests and monitor their results.

• Chapter 12: DCE System Tests under TET

This chapter describes the DCE system tests that are executed using TET.

• Chapter 13: DCE System Tests not under TET

This chapter describes the DCE system tests that are not executed directly, not by
TET.

• Appendix A: File and Path Names Cross-Reference

This appendix lists the pathnames of many files mentioned in the DCE
documentation.

• Appendix B: DCE Abbreviations List

This appendix contains a list of DCE abbreviations met with both in the
documentation and the source code, together with brief definitions.

Throughout this guide, the path variabledce-root-dir is used, anddce-root-dir is your-
root-dir/dce, whereyour-root-dir is the directory in which you create thedce directory,
and dce is the directory into which you unloaded the contents of the DCE distribution
tape.

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

• Introduction to OSF DCE

• OSF DCE Command Reference

• OSF DCE Application Development Reference

• OSF DCE Administration Guide

• OSF DCE DFS Administration Guide and Reference

• OSF DCE GDS Administration Guide and Reference

• OSF DCE Problem Determination Guide

• OSF DCE Application Development Guide

xii January 17, 1997

Preface

• Application Environment Specification (AES)/Distributed Computing

• OSF DCE Technical Supplement

• OSF DCE Release Notes

Typographic and Keying Conventions

This document uses the following typographic conventions:

Bold Bold words or characters represent system elements that you
must use literally, such as commands, flags, and pathnames.

Italic Italic words or characters represent variable values that you
must supply.

CCoonnssttaanntt wwiiddtthh Examples and information that the system displays appear in
ccoonnssttaanntt wwiiddtthh typeface.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an item in
format and syntax descriptions.

 | A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the
preceding item one or more times. Vertical ellipsis points
indicate that you can repeat the preceding item one or more
times.

This document uses the following keying conventions:

<Ctrl- x> or x̂ The notation<Ctrl- x> or ˆx followed by the name of a key
indicates a control character sequence. For example,<Ctrl-c>
means that you must hold down the control key while pressing
<c>.

<Return> The notation<Return> refers to the key on your terminal or
workstation that is labeled with the word ‘‘Return’’ or ‘‘Enter,’’
or with a left arrow.

Entering commands When instructed toenter a command, type the command name
and then press<Return>. For example, the instruction ‘‘Enter
the ls command’’ means that you must type thels command and
then press <Return> (enter = type command + press
<Return>).

January 17, 1997 xiii

DCE Testing Guide

Problem Reporting

If you have any problems with the software or documentation, please contact your
software vendor’s customer service department.

xiv January 17, 1997

Chapter 1. DCE Subsystems

This chapter contains information regarding porting DCE 1.2.2 subsystems and APIs. It
consists of the following main sections:

• Miscellaneous

Contains information about various platform-sensitive aspects of DCE subsystem
code not peculiar to any single component.

• Internationalization

Contains information about porting the DCE internationalization mechanisms.

• Serviceability

Contains information about porting the DCE Serviceability routines.

• DCE configuration routines

Contains information about porting the DCE configuration routines.

1.1 Internationalization

An ‘‘internationalized’’ RPC application uses a wide variety of languages other than
U.S. English. DCE 1.2.2 contains RPC runtime support for character and code set
interoperability for use by internationalized RPC applications. If you are porting DCE
and plan for your DCE product to support internationalized RPC applications, you must
create a character and code set registry from a ‘‘template’’ character and code set
registry source file that OSF supplies on the DCE source tape. The file is installed at:

/usr/lib/nls/csr/code_set_registry.txt

The code set registry template source file contains unique identifiers that OSF has
assigned to the character sets and code sets that have been registered with OSF. You
must edit this source file and supply the names that your platform uses to refer to these
character sets and code sets, then run thecsrc utility to generate the binary-format code
set registry, which is required for porting and testing the RPC runtime extensions for

January 17, 1997 1−1

DCE Testing Guide

character and code set interoperability. See the chapter entitled ‘‘Configuring DCE’’ in
the OSF DCE Administration Guide — Introduction, and thecsrc(8dce)reference page
in the OSF DCE Command Referencefor details on the template code set registry file
and how to run csrc. See the chapter entitled ‘‘Writing Internationalized RPC
Applications’’ in the OSF DCE Application Development Guide — Core Components
volume for more information on character sets, code sets, and RPC runtime support for
internationalized RPC applications.

1.1.1 Testing and Verification

See Chapter 12 for information on the DCE Internationalization system tests.

1.2 Serviceability

The Serviceability API is alibrary of routines used by the DCE components (with the
exception of DCE Threads) to display or write server information of various kinds. It
uses message catalogs (generated by the DCEsamsutility), but it is more than simply a
message catalog-manipulation library. Serviceability is also made available for
application use; this is documented in theOSF DCE Application Development Guide —
Core Componentsvolume.

The DCE Serviceabilitysource code is located at:

dce-root-dir/dce/src/dce/utils/svc

The DCEsamsutility source code is located at:

dce-root-dir/dce/src/tools/sams

1.2.1 Testing and Verification

A version of the DCE example applicationtimop which uses the serviceability API can
be found at

dce-root-dir/dce/src/examples/svc/timop_svc

The timop_svc application was developed mainly during the writing of the OSF DCE
Application Development Guide chapter on Serviceability.Although it was not designed
to be used for test purposes, it does make use of most of the serviceabilityroutines, and it
is included in the DCE 1.2.2 release as (it is hoped) a useful functional hand test for the
interface. Instructions for building and running the program, as well as sample run
results, can be found in:

dce-root-dir/dce/src/examples/svc/timop_svc/README

1−2 January 17, 1997

DCE Subsystems

An additional very simple Serviceabilityhand test can be found at:

dce-root-dir/dce/src/examples/svc/hello_svc

This program, when compiled and executed, does nothing more than print a ‘‘Hello
world’’ message to standard output, using the serviceability API. Unlike timop_svc,
hello_svc does not require you to have a DCE cell up and running in order to
successfully execute it. (It does however require you to have the DCE Application
Environment installed). For further information, see:

dce-root-dir/dce/src/examples/svc/hello_svc/README

January 17, 1997 1−3

Chapter 2. DCE Programs

This chapter contains information about testing the following DCE 1.2.2 programs and
facilities:

• dcecp— the DCE command program

• dced— the DCE daemon

• DCE ACL Facility

• DCE Backing Store Library

2.1 dcecp

In DCE 1.1 a new control program calleddcecp was added to the DCE administrative
package. This program is meant to augment the use of the existing control programs in
the present release, and ultimately to replace them entirely.

2.1.1 Testing and Verification

Thedcecpfunctional tests are designed to run under the TET scaffold (Test Environment
Toolkit; see ‘‘Overview of TET Use’’ in Chapter 11 for general information on TET).

Thedcecptests can be run in two different ways:

• Usetcc to run a block of tests

• Run individual test files as scripts

The second method is often helpful when you are porting and want to just run specific
tests without going through the overhead of runningtcc.

The general format of running the tests under the TET scaffold is:

January 17, 1997 2−1

DCE Testing Guide

tcc -e functional/admin/dcecptest_suite_name

wheretest_suite_nameis one of the following, as defined in the TET scenario file:

• all

• account

• acl

• attrlist

• aud

• audevents

• audfilter

• audtrail

• cdsalias

• cdsalias_hcell

• clearinghouse

• clock

• directory

• dts

• endpoint

• group

• group_era

• hostdata

• ktb

• link

• log

• misc

• object

• org_era

• organization

• principal

• principal_era

• registry

• registry_one

• rpcentry

• rpcgroup

2−2 January 17, 1997

DCE Programs

• rpcprofile

• schema

• secval

• server

• utc

Theall test_suite_nameis used to run the entire suite ofdcecptests.

Most of the above suites are named for thedcecp object they test. The names whose
meanings are not obvious have the following explanations:

obj_era Tests manipulating Extended Registry Attributes (ERAs) onobj
objects.

obj_hcell Tests thecdsaliascommand onobj objects in a hierarchical cells
environment.

misc Tests miscellaneous, non-objectdcecpcommands such aslogin.

ktb Testskeytab objects.

registry_one Destructive registry tests. These tests should be run individually
outside of the test suite.

schema Tests thexattrschemaobject.

Within each test suite are individual test files that are used to test subcomponents. The
list of these subcomponents is too lengthy to be given here, but it can be found in the
tests scenario file at:

dce-root-dir/dce/src/test/functional/admin/dcecp/tet_scen

Tests are divided into two groups. The first group consists of negative tests. These are
found in files with the_N.tcl suffix in their name; they are designed to supply input that
generates error conditions.

The second group consists of positive tests. These are found in files with the_P.tcl suffix
in their name; they verify the functionality ofdcecpcommands.

For more information about this file and other files used for thedcecp functional test
suite, see ‘‘Files Used By the Tests’’. below.

For the purpose of creating thedcecpfunctional test suite, a Tcl API to the TET scaffold
was added to the previously existing C, Bourne shell (XPG3) and Korn shell APIs. The
TET APIs are designed to allow tests to log test information and report results to the TET
journal file. The source for all the TET APIs can be found in:

dce-root-dir/dce/src/test/tet/src/tcl/api
dce-root-dir/dce/src/test/tet/src/posix_c/api
dce-root-dir/dce/src/test/tet/src/ksh/api
dce-root-dir/dce/src/test/tet/src/xpg3sh/api

For more information about TET in general, see ‘‘Overview of TET Use’’ in Chapter 11.
See ‘‘Running the Tests’’, below, for details on running thedcecptests.

See the ‘‘Platform Definitions and Variables’’ section earlier in this chapter for
information on the_DCECP_TEST preprocessor variable, which must be defined when

January 17, 1997 2−3

DCE Testing Guide

building dcecpfor functional testing.

2.1.1.1 Building the Tests

The current source location of thedcecpfunctional tests is:

dce-root-dir/dce/src/tests/functional/admin/dcecp

In order to run any of thedcecp functional tests, you must first build and install all the
files in the following directories:

dce-root-dir/dce/src/test/functional/admin/dcecp
dce-root-dir/dce/src/test/functional/admin/dcecp/lib
dce-root-dir/dce/src/test/tet/src/posix_c
dce-root-dir/dce/src/test/tet/src/tcl/api
dce-root-dir/dce/src/test/tools

The tests themselves are found in:

dce-root-dir/dce/src/test/functional/admin/dcecp/ts/*

These may be installed by subcomponent or as a whole.

To build and install the entiredcecp test suite (without the required TET and tools
directories) under ODE, do the following:

cd dce-root-dir/dce/src/test/functional/admin/dcecp
build
build install_all

(ODE is the OSF Development Environment; for more information on it, see Chapter 12
of the DCE 1.1OSF DCE Porting and Testing Guide.)

2.1.1.2 Running the Tests

Note: Thedcecpfunctional tests should be run under an ordinary user login,not
as root or any other extraordinary identity. This is because some of the
tests verify functionality running unauthenticated, and invoking the tests
under an ordinary login is the only way to make sure that authentication
does not occur when it is not supposed to.

There are two methods for running thedcecp functional tests. The first is the standard
approach. After installing the tests, do the following:

cd dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT:$PATH
tcc -e functional/admin/dcecptest_suite_name

2−4 January 17, 1997

DCE Programs

where test_suite_nameis one of the test suites listed in the TET scenario file. (See
‘‘Testing and Verification’’, above, for a list of valid test suite names.)

The second method for running tests can be helpful during the development and
debugging process. The individual script files found in:

$TET_ROOT/functional/admin/dcecp/ts/*

can be run by hand. To do this, set theTET_CONFIG environment variable to the
location of thetetexec.cfgfile, as follows:

setenv TET_CONFIG $TET_ROOT/functional/admin/dcecp/tetexec.cfg

Prior to running the tests, thetetexec.cfgfile must be modified to reflect your local
configuration.

This file defines variables that are used throughout the tests. There are only a few
variables that need to be changed. The following list shows the variables that you will
need to modify, and what their values should be changed to (example values are given in
parentheses):

DCP_CLIENT The principal name of the cell administrator
(cell_admin).

DCP_CLIENT_PW The password forDCP_CLIENT .

DCP_CELLNAME_ONE The name of the cell you are in. (/.../name.foo.com).

DCP_CELLNAME_TWO The name of the cell used for intercell tests
(/.../name.foo.com).

DCP_HOSTNAME_ONE The simple name of the host you are on (famagusta).

DCP_HOSTNAME_TWO The simple name of another host in your cell
(murgatroyd).

DCP_ROOT_CH The name of the clearinghouse that contains the master
copy of the root directory (machine_ch).

DCP_INTERCELL_AVAIL Do you want to run the intercell tests? (0 or 1).

DCP_SR_IP_ADDR The IP address of the machine that you are running the
tests on.

DCP_SR_STR_BINDING A protocol sequence followed by the above IP address.
Separated by a colon ‘‘:’’. (ncacn_ip_tcp:127.0.0.1).

After you have changed the above variables’ values as appropriate,cd to the directory
that contains thedcecpfunctional test that you wish to run. For example:

cd $TET_ROOT/functional/admin/dcecp/ts/dts

You may now execute the test script by hand:

dts_modify_P.tcl

After the test completes, the results will be left in the filetet_xres in the current
directory. Note that each test file invocation will overwrite this file, so you should either

January 17, 1997 2−5

DCE Testing Guide

view or save its contents, as desired, after each test run.

Note that the above sequence of commands assumes that the tests have been installed in
their default location (by ODE) and that you wish to run them from that location.
However, the

dce-root-dir/dce/install/platform/dcetest/dce1.2.2

test tree is self-contained (insofar as the tests and TET are concerned), and can be copied
to any other preferred location on your system, and executed from there. If you do this,
the first step given above becomes the following three steps:

cd dce-root-dir/dce/install/platform/dcetest
cp -r dce1.2.2your_test_tree
cd your_test_tree

If you execute the tests from their default installed location, test results will be found at:

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet/functional/admin/dcecp/results/pass_nr/journal

wherepass_nris the number of the test iteration whose results are being written. The
results subdirectory is created by TET in the subdirectory specified by-e to the tcc
command, as shown above. For further information about TET output, see ‘‘Overview of
TET Use’’ in Chapter 11.

For information on how to run specific tests within a suite, see the following section.

2.1.1.3 Special Requirements for Running the Tests

All of the dcecp tests must be run in a fully functioning DCE cell with the following
specific characteristics:

• There must be adcedrunning on the current host.

• A security master and a CDS server must be running in the cell.

• The appropriate helper programs (such as a CDS advertiser (cdsadv) and a CDS
clerk (cdsclerk)) must be running on the host on which the tests are run.

In addition, the followingdcecptests have the following special requirements:

• clearinghouseanddirectory tests

These tests must be run on a machine that is running a CDS server.

• dts andacl tests

These tests must be run on a machine that is running a DTS server.

• audit tests

These tests must be run on a machine that is running an audit daemon, which must be
started with the-a option.

2−6 January 17, 1997

DCE Programs

• registry tests

These tests must be run in a cell that has a security replica.

• registry_one tests

Must be run on a machine on which a security replica is running. In addition, the tests
must be run one at a time, and the security state of the cell has to be restored between
each run.

2.1.1.4 Files Used By the Tests

The following files are used by TET when invoked to rundcecpfunctional tests:

• The TET configuration file

dce-root-dir/dce/src/test/admin/dcecp/tetexec.cfg

is where global variables should be defined for alldcecptests.

• The TET scenario file

dce-root-dir/dce/src/test/admin/dcecp/tet_scen

is where TET gets the list of tests it must run for a specific test component. If you
wish to run a specific test within a component, you must change the contents of the
TET scenario file. For example, to run specific ‘‘negative ACL modify’’ tests, you
should edit the following section in the scenario file:

""SSttaarrtti inngg nneeggaatti ivvee AACCLL MMOODDIIFFYY tteessttss""
//ttss//aaccll/ /aaccll__mmooddiif fyy__NN..ttccll

so that it reads:

""SSttaarrtti inngg nneeggaatti ivvee AACCLL MMOODDIIFFYY tteessttss""
//ttss//aaccll/ /aaccll__mmooddiif fyy__NN..ttccll{{2288--3300}}

or:

""SSttaarrtti inngg nneeggaatti ivvee AACCLL MMOODDIIFFYY tteessttss""
//ttss//aaccll/ /aaccll__mmooddiif fyy__NN..ttccll{{2288,,2299,,3300}}

Either version will result in only tests 28, 29, and 30 in the negative ACL modify
suite to be executed when the ACL test suite is run by invoking TET as follows:

tcc -e admin/dcecp acl

January 17, 1997 2−7

DCE Testing Guide

2.1.1.5 Tcl Tests

The

dce-root-dir/dce/src/test/admin/tcl_dce

subdirectory contains a set of validation tests for the Tcl commands. See theREADME
file located in this directory for instructions on how to build and run these tests.

__________________________ 1.2.2,Add note on LANG (start) __________________________

Note that before running the Tcl functional tests, you must set theLANG environment
variable to ‘‘C’’.

__________________________ 1.2.2,Add note on LANG (end) __________________________

2.1.1.6 Hand Tests for dcecp registry set Functionality

dcecpcontains support for severalsec_admincommands, as follows:

TABLE 2-1

__
New dcecp Command Equivalent sec_admin Command__LL LL LL__

registry set <replica_name> change_master -to <replica_name>__
registry set <replica_name> -slave become -slave__
registry set <replica_name> -master become -master__LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

This section contains procedures for hand testing thisdcecpfunctionality.

To execute the test procedures successfully, the tester must first set up a master and at
least one slave replica, as follows:

ddcceeccpp>> registry cat
//......// cellname//ssuubbssyyss//ddccee//sseecc//ssppaarrttaaccuuss
//......// cellname//ssuubbssyyss//ddccee//sseecc//ccaaeessaarr

where, in the example given here,spartacus is the name of a slave machine incellname
before the tests are performed, andcaesaris the name of the master machine in the same
cell.

Test 1: Bind to master and change master to slave.

The test is performed as follows:

ddcceeccpp>> registry set subsys/dce/sec/spartacus

You should now be able to execute theregistry dump command and get results similar
to the following:

2−8 January 17, 1997

DCE Programs

ddcceeccpp>> registry dump
{{nnaammee //......// cellname//ssuubbssyyss//ddccee//sseecc//ccaaeessaarr
{{ttyyppee ssllaavvee}}
{{cceelll l / /......// cellname}}
{{uuuuiidd 0088cc119999bb66--bb883366--1111ccdd--9944bb44--00880000009922773344aa44}}
{{ssttaattuuss eennaabblleedd}}
{{llaassttuuppddtti immee 11999944--0088--2222--1133::5544::0077..000000--0044::0000II----------}}
{{llaassttuuppddsseeqq 00..11110000}}
{{aaddddrreesssseess {{nnccaaccnn__iipp__ttccpp nnn.nnn.n.nnn}}

{{nnccaaddgg__iipp__uuddpp nnn.nnn.n.nnn}}}}
{{mmaasstteerraaddddrrss {{nnccaaccnn__iipp__ttccpp nnn.nnn.n.nnn}}

{{nnccaaddgg__iipp__uuddpp nnn.nnn.n.nnn}}}}
{{mmaasstteerrsseeqqnnuumm 00..11110011}}
{{mmaasstteerruuuuiidd 22ee77aacc3322bb--bb884466--1111ccdd--aa88ccff--00000000cc00223399aa7700}}
{{vveerrssiioonn sseeccdd..ddccee..11..22..22}}

{{nnaammee //......// cellname//ssuubbssyyss//ddccee//sseecc//ssppaarrttaaccuuss}}
{{ttyyppee mmaasstteerr}}
{{cceelll l / /......// cellname}}
{{uuuuiidd 22ee77aacc3322bb--bb884466--1111ccdd--aa88ccff--00000000cc00223399aa7700}}
{{ssttaattuuss eennaabblleedd}}
{{llaassttuuppddtti immee 11999944--0088--2222--1144::1100::2255..000000--0044::0000II----------}}
{{llaassttuuppddsseeqq 00..11110011}}
{{aaddddrreesssseess {{nnccaaccnn__iipp__ttccpp nnn.nnn.n.nnn}}

{{nnccaaddgg__iipp__uuddpp nnn.nnn.n.nnn}}}}
{{mmaasstteerraaddddrrss {{nnccaaccnn__iipp__ttccpp nnn.nnn.n.nnn}}

{{nnccaaddgg__iipp__uuddpp nnn.nnn.n.nnn}}}}
{{mmaasstteerrsseeqqnnuumm 00..11110011}}
{{mmaasstteerruuuuiidd 22ee77aacc3322bb--bb884466--1111ccdd--aa88ccff--00000000cc00223399aa7700}}
{{vveerrssiioonn sseeccdd..ddccee..11..22..22}}
{{uuppddsseeqqqquueeuuee {{00..11009999 00..11110011}}}}

Test 2: Change replica to a slave replica.

The test is performed as follows:

ddcceeccpp>> rreeggiissttrryy sseett ssuubbssyyss//ddccee//sseecc//ccaaeessaarr --ssllaavvee

You should now be able to execute theregistry dump command and get results similar
to the following:

ddcceeccpp>> rreeggiissttrryy dduummpp
{{nnaammee //......// cellname//ssuubbssyyss//ddccee//sseecc//ssppaarrttaaccuuss}}
{{ttyyppee ssllaavvee}}
{{cceelll l / /......// cellname}}
{{uuuuiidd 22ee77aacc3322bb--bb884466--1111ccdd--aa88ccff--00000000cc00223399aa7700}}
{{ssttaattuuss eennaabblleedd}}
{{llaassttuuppddtti immee 11999944--0088--2222--1122::2266::3399..000000--0044::0000II----------}}
{{llaassttuuppddsseeqq 00..11009911}}
{{aaddddrreesssseess {{nnccaaccnn__iipp__ttccpp nnn.nnn.n.nnn}}

{{nnccaaddgg__iipp__uuddpp nnn.nnn.n.nnn}}}}

January 17, 1997 2−9

DCE Testing Guide

{{mmaasstteerraaddddrrss {{nnccaaccnn__iipp__ttccpp nnn.nnn.n.nnn}}
{{nnccaaddgg__iipp__uuddpp nnn.nnn.n.nnn}}}}

{{mmaasstteerrsseeqqnnuumm 00..11009911}}
{{mmaasstteerruuuuiidd 0088cc119999bb66--bb883366--1111ccdd--9944bb44--00880000009922773344aa44}}
{{vveerrssiioonn sseeccdd..ddccee..11..22..22}}

{{nnaammee //......// cellname//ssuubbssyyss//ddccee//sseecc//ccaaeessaarr}}
{{ttyyppee ssllaavvee}}
{{cceelll l / /......// cellname}}
{{uuuuiidd 0088cc119999bb66--bb883366--1111ccdd--9944bb44--00880000009922773344aa44}}
{{ssttaattuuss eennaabblleedd}}
{{llaassttuuppddtti immee 11999944--0088--2222--1122::2266::3399..000000--0044::0000II----------}}
{{llaassttuuppddsseeqq 00..11009911}}
{{aaddddrreesssseess {{nnccaaccnn__iipp__ttccpp nnn.nnn.n.nnn}}

{{nnccaaddgg__iipp__uuddpp nnn.nnn.n.nnn}}}}
{{mmaasstteerraaddddrrss uunnkknnoowwnn}}
{{vveerrssiioonn sseeccdd..ddccee..11..22..22}}

Test 3: Change replica to a master replica.

The test is performed as follows:

ddcceeccpp>> rreeggiissttrryy sseett ssuubbssyyss//ddccee//sseecc//ssppaarrttaaccuuss --mmaasstteerr

You should now be able to execute theregistry dump command and get results similar
to the following:

ddcceeccpp>> rreeggiissttrryy dduummpp
{{nnaammee //......// cellname//ssuubbssyyss//ddccee//sseecc//ssppaarrttaaccuuss}}
{{ttyyppee mmaasstteerr}}
{{cceelll l / /......// cellname}}
{{uuuuiidd 22ee77aacc3322bb--bb884466--1111ccdd--aa88ccff--00000000cc00223399aa7700}}
{{ssttaattuuss eennaabblleedd}}
{{llaassttuuppddtti immee 11999944--0088--2222--1144::2266::4455..000000--0044::0000II----------}}
{{llaassttuuppddsseeqq 00..11110044}}
{{aaddddrreesssseess {{nnccaaccnn__iipp__ttccpp nnn.nnn.n.nnn}}

{{nnccaaddgg__iipp__uuddpp nnn.nnn.n.nnn}}}}
{{mmaasstteerraaddddrrss {{nnccaaccnn__iipp__ttccpp nnn.nnn.n.nnn}}

{{nnccaaddgg__iipp__uuddpp nnn.nnn.n.nnn}}}}
{{mmaasstteerrsseeqqnnuumm 00..11110044}}
{{mmaasstteerruuuuiidd 22ee77aacc3322bb--bb884466--1111ccdd--aa88ccff--00000000cc00223399aa7700}}
{{vveerrssiioonn sseeccdd..ddccee..11..22..22}}
{{uuppddsseeqqqquueeuuee {{00..11110033 00..11110044}}}}

{{nnaammee //......// cellname//ssuubbssyyss//ddccee//sseecc//ccaaeessaarr}}
{{ttyyppee ssllaavvee}}
{{cceelll l / /......// cellname}}
{{uuuuiidd 0088cc119999bb66--bb883366--1111ccdd--9944bb44--00880000009922773344aa44}}
{{ssttaattuuss eennaabblleedd}}
{{llaassttuuppddtti immee 11999944--0088--2222--1144::2266::4455..000000--0044::0000II----------}}
{{llaassttuuppddsseeqq 00..11110044}}

2−10 January 17, 1997

DCE Programs

{{aaddddrreesssseess {{nnccaaccnn__iipp__ttccpp nnn.nnn.n.nnn}}
{{nnccaaddgg__iipp__uuddpp nnn.nnn.n.nnn}}}}

{{mmaasstteerraaddddrrss {{nnccaaccnn__iipp__ttccpp nnn.nnn.n.nnn}}
{{nnccaaddgg__iipp__uuddpp nnn.nnn.n.nnn}}}}

{{mmaasstteerrsseeqqnnuumm 00..11110044}}
{{mmaasstteerruuuuiidd 22ee77aacc3322bb--bb884466--1111ccdd--aa88ccff--00000000cc00223399aa7700}}
{{vveerrssiioonn sseeccdd..ddccee..11..22..22}}

2.2 dced

This and the following sections contain testing information aboutdced, the DCE Host
Daemon, which replaces the (pre-DCE 1.1) RPC daemon (rpcd) andsec_clientd.

2.2.1 Testing and Verification

The installed location of thedcedtests is:

your_install_path/test/tet/functional/admin/dced

which by default is:

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet/functional/admin/dced

2.2.1.1 Running the Tests

Before attempting to run the tests, you must edit the

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet/functional/admin/dced/tetexec.cfg

file and set the values of the following parameters:

T_CELL_ADMIN This should be the value of your Cell Adminstrator’s principal name
(the default value when setting up the cell withdce_config is
cell_admin).

T_CELL_ADMIN This should be your Cell Administrator principal’s password.

TET_SIG_IGN This should be the (system-dependent) value of theSIGVTALRM
signal, defined in

/usr/include/sys/signal.h

for your platform.

To run the tests, do the following:

January 17, 1997 2−11

DCE Testing Guide

1. Make suredced is running.

2. dce_loginas a privileged user.

3. Change directory to the installed test subtree:

cd your_install_path/test/tet/
set TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/bin:$PATH

4. To execute all of the tests, do:

tcc -e functional/admin/dced

5. To execute a test suite, do:

tcc -e functional/admin/dcedtest_suite_name

wheretest_suite_nameis one of the suites listed in the TET scenario file located
at:

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet/functional/admin/dced/tet_scen

The existing test suites are:

• binding

• common

• hostdata

• keytab

• secval

• srvrconf

• srvrexec

You can also specify atest_suite_nameof all, which will cause all of the suites to
be run.

If you execute the tests from their default installed location, test results will be
found at:

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet/functional/admin/dced/results/pass_nr/journal

wherepass_nris the number of the test iteration whose results are being written.
The results subdirectory is created by TET in the subdirectory specified by-e to
the tcc command, as shown above. For further information about TET output, see
‘‘Overview of TET Use’’ in Chapter 11.

2−12 January 17, 1997

DCE Programs

2.2.2 dced Runtime Output and Debugging Output

The dced component outputs server information of all kinds via the DCE serviceability
component. The following sections describe how to control the various kinds of
information (including debugging output) available fromdcedvia serviceability.

2.2.2.1 Normal dced Server Message Routing

There are several ways to control normaldcedserver message routing:

• At startup, through the contents of a routing file (which are applied to all components
that use serviceability messaging).

• Dynamically, through thedcecp logobject.

• Via environment variables (such asSVC_ERROR).

• Via command line options

The svcroute(5dce)reference page describes most of these methods; thedced(8dce)
reference page should be referred to for the last method. Routing of an already-started
dced’s messages can be controlled through thedcecp log object. See thelog.8dce
reference page in theOSF DCE Command Referencefor further information.

2.2.2.2 Debugging Output

Debugging output fromdced can be enabled (provided thatdced has been built with
DCE_DEBUG defined) by specifying the desired debug messaging level and route(s) in
the

dce-local-path/svc/routing

routing file (described above), or by specifying the same information in the
SVC_DHD_DBG environment variable, before bringing updced. Debugging output
can also be enabled and controlled through thedcecp logobject.

Note that, unlike normal message routing, debugging output is always specified on the
basis of DCE component/sub-component (the meaning of ‘‘sub-component’’ will be
explained below) and desired level.

The debug routing and level instructions for a component are specified by the contents of
a specially-formatted string that is either included in the value of the environment
variable or is part of the contents of the routing file.

The general format for the debug routing specifier string is:

January 17, 1997 2−13

DCE Testing Guide

"component:sub_comp.level,. . .:output_form:destination6
[output_form:destination. . .] "

where the fields have the same meanings as in the normal routing specifiers described
above, with the addition of the following:

component specifies the component name

sub_comp.level specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

A star (‘‘* ’’) can be used to specify all sub-components. The sub-
component list is parsed in order, with later entries supplementing earlier
ones; so the global specifier can be used to set the basic level for all
sub-components, and specific sub-component exceptions with different
levels can follow (see the example below).

‘‘Sub-components’’ denote the various functional modules into which a component has
been divided for serviceabilitymessaging purposes. Fordced, the sub-components are as
follows:

aclmgr ThedcedACL managers

xattrschema Thedcedattribute service

general Generaldcedfacilities

hostdata Thedcedhostdata service

rkeytab Thedcedrkeytab service

secval Thedcedsecval service

srvrconf Thedcedsrvrconf service

srvrexec Thedcedsrvrexec service

locks Thedced lock manager

endpoint Thedcedendpoint mapper service

For example, the string

ddhhdd::**..11,,ggeenneerraall. .33::TTEEXXTTFFIILLEE..5500..220000:://ttmmpp//ddcceedd__LLOOGG

sets the debugging level for alldced sub-components (exceptgeneral) at 1; general’s
level is set at 3. All messages are routed to/tmp/dced_LOG. No more than 50 log files
are to be written, and no more than 200 messages are to be written to each file.

The texts of all thedced serviceabilitymessages, and the sub-component list, can be
found in thedcedsams file, at:

dce-root-dir/dce/src/admin/dced/idl/dhd.sams

For further information about the serviceabilitymechanism and API, see Chapter 4 of the
OSF DCE Application Development Guide — Core Componentsvolume, ‘‘Using the
DCE ServiceabilityApplication Interface’’.

2−14 January 17, 1997

DCE Programs

2.3 DCE ACL Facility and Backing Store Library

2.3.1 Testing and Verification

The source code for the functional tests for the DCE Backing Store library is located in
the

dce-root-dir/dce/src/test/dce/utils/acldb/ts/db

subdirectory. The following tests are supplied:

• dce_db_open

• dce_db_close

• dce_db_fetch

• dce_db_store

• dce_db_misc

• dce_db_delete

• dce_db_iter

These programs test the DB APIs implied by their names. They are standalone (no
server) tests which create, manipulate, and delete backing stores in the current directory.

The source code for the functional tests for the DCE ACL facility are located in the

dce-root-dir/dce/src/test/dce/utils/acldb/ts/acl

subdirectory. The following tests are supplied:

• rdacl_svr_opers

Tests therdacl_* routines.

• dce_acl_perm_fcns

Tests thedce_acl_*permissions-related routines.

• dce_acl_conv_fcns

Tests thedce_acl_*convenience routines.

• acl_setup

This module implements the setup routines for the DCE ACL functional tests.
FVT’s.

Each of the test suites attempts to add a principal and account, calledtest_princ1, which
they need. The setup script logs in ascell_admin and sets an ACL on

/.:/hosts/host_name

January 17, 1997 2−15

DCE Testing Guide

in preparation for the tests.

2.3.1.1 Running the Tests

To run the Backing Store or ACL library tests, do the following:

cd dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/bin:$PATH
tcc -e functional/dce/utils/acldbtest_suite_name

wheretest_suite_nameis one of the suites listed in the TET scenario file located at:

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet/functional/dce/utils/acldb/tet_scen

Note that the above sequence of commands assumes that the tests have been installed in
their default location (by ODE) and that you wish to run them from that location.
However, the

dce-root-dir/dce/install/platform/dcetest/dce1.2.2

test tree is self-contained (insofar as the tests and TET are concerned), and can be copied
to any other preferred location on your system, and executed from there. If you do this,
the first step given above becomes the following three steps:

cd dce-root-dir/dce/install/platform/dcetest
cp -r dce1.2.2your_test_tree
cd your_test_tree

If you execute the tests from their default installed location, test results will be found at:

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet/functional/dce/utils/acldb/results/pass_nr/journal

wherepass_nris the number of the test iteration whose results are being written. The
results subdirectory is created by TET in the subdirectory specified by-e to the tcc
command, as shown above. For further information about TET output, see ‘‘Overview of
TET Use’’ in Chapter 11.

2−16 January 17, 1997

Chapter 3. DCE Threads

DCE Threads is a POSIX 1003.4a-compliant threading service which allows an
application to create separate threads of execution within a process. These threads have
low startup overhead and can share data among themselves.

The DCE Remote Procedure Call (RPC) service uses threads to let servers communicate
with multiple clients concurrently. Many of the server functions in DCE use threads to
allow simultaneous communication with multiple clients and for the concurrent
processing of data while waiting for I/O operations to complete.

3.1 Testing and Verification

Nineteen types of DCE Threads tests are shipped with DCE. These tests are described
below.

3.1.1 InstallingThreads Functional Tests with dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guide.dcetest_config
will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocal) to that location.

The functional tests for a given component will thus be installed under a:

/dcetest/dcelocal/test/component_name/

directory, where thetest/component_nameelements of this path are equivalent to the
test/component_nameelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locationfrom whichthe tests should be
installed (in other words, the location of the built test tree). If you are installing the DCE

January 17, 1997 3−1

DCE Testing Guide

Threads functional tests, you should give the pathname of the DCEobj tree, not the
install tree, even though the prompt message contains as an example an install tree
pathname. For example:

Figure 3-1. Supplying Threads Test Install-from Location

LLooccaatti ioonn ooff DDCCEE TTeesstt IInnssttaalll l BBiinnaarriieess

11.. FFiil leessyysstteemm
22.. MMeeddiiaa

9988.. RReettuurrnn ttoo pprreevviioouuss mmeennuu
9999.. EExxiit t

sseelleecctti ioonn:: 1

EEnntteerr tthhee ffuulll l ppaatthh ttoo tthhee DDCCEE bbiinnaarryy iinnssttaalll l t trreeee..
TThhiiss wwiil ll l bbee tthhee ddiirreeccttoorryy tthhaatt ccoonnttaaiinnss tthhee
......//<<BBUUIILLDD>>//i innssttaalll l/ /<<mmaacchhiinneettyyppee>>//ddcceetteesstt//ddccee11..22..22
ddiirreeccttoorryy:: /myproject/dce/dce1.2.2/obj

Thus,dcetest_configwill install the DCE Threads functional tests at:

/dcetest/dcelocal/test/threads/

where /dcetest/dcelocal is the link to whatever path you supplied as the install
destination.

The advantage in usingdcetest_configto install the functional tests is that it will install
all that is needed andonly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlyinstall (if you choose) functional tests withdcetest_config; for
test configuration and execution you must follow the instructions in the sections below.

Refer to Chapter 11 of this guide for further information on usingdcetest_config.

3.1.2 Testing Dependencies

Several of the test cases require the presence of Berkeley I/O, particularly theftime()
system call. If you are porting to an operating system that is not compatible with the
Berkeley Software Distribution (BSD) UNIX, you must link a compatibility library with
the test cases for them to work properly. The test cases also make use of the ANSI C
functionatexit(). If your system does not support this function, you will have to provide
an equivalent.

Note that one of the Threads test cases (cuvb_nbi_005, which testscma_fcntl()) uses
lockd to create a write lock for a file which it uses. If the file is NFS-mounted, the test
will hang forever at this point iflockd andstatd are not running on both the local and

3−2 January 17, 1997

DCE Threads

remote machines. This means that you may have to make sure that the test is run on only
one machine if your platform does not supportlockd andstatd (which is the case with
the OSF/1 platform).

Note: Both reference platforms require that a compatibility library be used.

3.1.3 Threads Test Case Categories

The following sections describe categories of testing done for threads, and a brief
description of the coverage of each category.

3.1.3.1 Test Case Naming Format

DCE Threads tests are named using the following format:
4 alphabetic characters,
a dash,
3 alphabetic characters,
a dash,
3 alphabetic characters.

For example,
abcd-efg-hij

is a test name where each of the following characters represents a certain type of test:

a C for tests using the CMA Threads interface

P for tests using the PThreads (POSIX) interface

E for ‘‘extended’’ test, which may apply to Pthreads entry
points, or to CMA threads entry points that are visible to them.
Tests starting with E examine thread operation under error,
exception, or excess conditions, such as writes to broken pipes,
or situations where thread operations exceed process limits.

b V for VMS specific test
U for U*IX specific test
R for reference implementation (portable) test

c P for performance test
Q for performance test using internal interfaces
R for regression test
U for unit test using internal interfaces
V for validation test

d B for batch mode test
I for interactive test (for example, needs user input)

January 17, 1997 3−3

DCE Testing Guide

e, f, and g The test topic. Tests having more than one topic have 3
additional characters (for example,abcd-efg-efg-hij). Topics
have the following meanings:

ALT Alerts

AQO Atomic queue operation

ATT Attributes objects

CAN Pthread cancel

CVX Condition variable operations, including barrier
operations

ERR Error reporting

EXC Exceptions

HAN Handles

INI One-time initialization

MUT Mutex operations

NBI Nonblocking (UNIX) I/O

OBJ Dynamic object management

PTC Per threads context

SAM Sample (or example) programs

SIG U*IX signal handling

STK Stacks

THD Threads operations

TIM Timer operations

WRP Unix wrapper routines

h, i, and j The sequence number of each test. Tests whose names differ
only by this number typically exercise the same operations.
However, they usually are not versions or revisions of each
other, and may exercise the same operations quite differently.

For example,crub_err_001 is an actual test name, specifying that it:

• is a CMA test

• is portable

• is a unit test that uses internal interfaces

• is a batch mode test

• is testing error reporting

• is number 1 in the sequence of tests of this kind.

3−4 January 17, 1997

DCE Threads

3.1.3.2 Test Topic Abbreviations

The test topic abbreviations, represented byefg in the preceding test name example,
specify test cases with the following functions:

Alerts (ALT) These test cases attempt to alert threads with and
without exception handlers and verify correct thread exit
or handling. They alert compute-bound threads and
threads in atimed_wait state and also ensure that
deferred and synchronous alerts work.

Atomic Queue Operation (AQO)
Exercise the Atomic Queue Operations of the CMA
library services. The operations are currently available
only on VMS and are not part of DCE.

Attributes Objects (ATT) Verify that attribute objects can be created and deleted
for both default and specified values. They check
deferred delete, cache sequencing, and cache
reclamation and also verify locking during attribute
deletion.

Pthread Cancel (CAN) Test the functionality of the thread cancellation
mechanism that allows a thread to terminate the
execution of any other thread in the process in a
controlled manner.

Condition Variables (CVX) Measure wait/signal performance time when condition
variables are used. They also verify timed wait
functionality.

Error Reporting (ERR) Ensure that callingcma__error or cma__bugcheck
causes process termination and confirm the ability of the
functions to raise warning and failure exceptions. Error
return values are also ensured as per-thread.

Exception Handling (EXC) Force various exceptions, including address and status
exceptions, which are handled per-thread.

Handles (HAN) Verify that the thread handle size is static.

One Time Initialization (INI) Use one-time initialization and ensure that it executes
only once.

Mutex Operations (MUT) Lock and unlock a mutex, both with a single thread and
with multiple threads, while measuring elapsed time.
Threads attempt to lock and unlock mutexes to which
they do not have access, as well as friendly mutexes.
They also test nested locks and use global locks to gain
exclusive access to libraries.

Nonblocking UNIX I/O (NBI) Test the wrapper routines for the UNIX I/O system calls.
These wrapper routines provide thread-synchronous I/O
through the use of select and nonblocking I/O mode.
This category verifies system calls such asopen(),

January 17, 1997 3−5

DCE Testing Guide

close(), andselect(). File descriptors need to be shared
between threads.

Object Management (OBJ) Test management of various dynamically allocated data
objects, such as thread control blocks, mutexes, and
condition variables.

Per Thread Context (PTC) Use a PTC destructor that locks a TCB, which ensures
proper behavior. A batch of threads is created with a
context associated with them, and proper behavior of
yields is verified.

Sample Program (SAM) Demonstrate the use of threads. It creates 10 threads,
terminates the odd-numbered threads with an alert, and
allows even-numbered threads to terminate normally.

Signal Handling (SIG) Test asynchronous, synchronous, terminating, and
nonterminating signals. The tests send all possible
signals and verify correct behavior.

Stack Handling (STK) Test the stack management services. Stacks are created,
deleted, reassigned, alternated, and shared.
Multithreaded operations are used on stacks. One test
case also checks limits by touching a stack guard page
to simulate a stack overflow by a thread.

Thread Operations (THD) Measure thread creation time, thread yield performance
time, and time elapsed during a context switch. They
also measure the time-slicing algorithm performance
and ensure thatthread_exit operations affect the current
thread only. Use varying process priorities and policies
when creating threads.

Timing (TIM) Verify timed waits.

UNIX Wrapper Routines (WRP) Test the implementation of CMA wrapper routines
around certain UNIX system calls, particularly I/O calls
andfork() .

3.1.4 Test Case Execution

To execute the test cases, no parameters are required. A shell script,runtest, is provided
for serial execution. This script can be found in the

dce-root-dir/dce/obj/machinetype/test/threads

directory, wheremachinetypeis your system type (for example,rios or mips). The test
cases can be executed individually by entering the test case name on the command line.

Note: Any tests with ‘‘i’’ as the fourth character (such ascrvi_sig_003,
cuvi_nbi_004, and puvi_nbi_004) are not executed byruntest because
they are interactive and must be invoked manually.

3−6 January 17, 1997

DCE Threads

3.1.5 Test Case Results

Standard output for a successful execution includes aPPAASSSSEEDDmessage. Some test cases,
however, deliberately cause abnormal program termination, and may cause core dumps.
The following test cases have nonstandard output:

• crub_err_001, crub_err_002, crub_err_003

These tests correctly return a core dump.

• crvb_exc_001

The first 10 loops of this test complete with the message

NNoorrmmaall f faalll l t thhrroouugghh EENNDDTTRRYY..

The eleventh loop correctly terminates with a core dump.

• crvb_sam_001, prvb_sam_001

Even-numbered threads exit normally; odd-numbered threads exit prematurely due to
an alert. The test then prints

PPrrooggrraamm oovveerr..

Note: In DCE 1.0.1, theprvb_sam_001 test does not output the normal
header and trailer lines (START and PASSED). However, the test does
run correctly.

• crvb_thd_007

This test generates reports that must be verified manually for schedulingaccuracy.

• crvi_exc_001, prvi_exc_001

These tests require that the<Ctrl-Y> debug sequence be entered during test case
execution.

3.1.6 Test Plans

Refer to Chapter 1 of theOSF DCE Release Notesfor the location of the DCE test plans
on the DCE distribution tape.

3.2 Debugging DCE Threads

In the course of porting DCE Threads, you will probably need to debug applications that
make use of them. These applications could be threads functional tests, DCE component
programs, or applications of your own design. Because any application that uses DCE

January 17, 1997 3−7

DCE Testing Guide

Threads maintains execution state for multiple threads of execution, it will probably
confuse your current debugger, unless the debugger has already been extended to
understand the current DCE Threads implementation.

The amount of work necessary to extend your debugger to work correctly with DCE
Threads applications will naturally depend on which one you use. Essentially, the
debugger must relate the execution state of the currently-running thread to the tables
internal to DCE Threads thatprovide information on all threads. Ideally, the debugger
should also permit you to find out information on threads that are not currently running.

A simple example of such capabilities is described in the following section. It consists
of additions that can be made to a standard, non-thread-aware version ofgdb, in order to
find out information about the currently-executing thread in a DCE Threads application.

3.2.1 Debugging with gdb

gdb is not aware of DCE Threads, how threads affect the stack, multiple contexts, or
breakpointing in a particular thread. However, it is possible to find out which thread you
are currently executing in withgdb. Calling the internal DCE Threads routine:

ccmmaa____ggeett__sseellf f__ttccbb(())

will return a pointer to the current thread’s TCB (thread control block).

The ‘‘.gdbinit File’’ section below contains a listing for a.gdbinit file that contains three
commands for identifying the currently executing thread.

The commandpthd uses a fixed offset into the TCB to print the thread’s ‘‘sequence,’’ or
identifier. This integer identifier is the number output by DCE Threads to identify the
thread to which a particular error or status message applies. Thepthd command is
probably the one you will use the most from this package.

Note: This fixed offset may be DCE Threads-revision dependent, but is not likely
to cause problems in the near future.

Thepthdx command prints this same thread sequence integer, but requires the module to
have included<cma.h> and<cma_tcb.h>and to be compiled with symbol information
(-g). This is a cleaner way to use the package, but most modules will not have
<cma_tcb.h>included.

Finally, the commandptcb simply prints a pointer to the TCB. Likepthd, this command
does not require your program to be built with any CMA symbols.

3.2.1.1 Breakpointing in a Particular Thread

You can use agdb condition on a breakpoint to stop on a particular statement in a
particular thread. To do this easily, you should include<cma.h>and<cma_tcb.h>in the
module. For example, doing the following:

3−8 January 17, 1997

DCE Threads

break 180
condition 1 (cma__get_self_tcb () -> header.sequence == 15)

will stop execution on Line 180 of the current source file, whenever thread 15 is
executing. (It is not possible to write a.gdbinit macro to do this breakpointing because
gdb macros are not able to take arguments, such as line number or thread ID.)

3.2.1.2 The .gdbinit File

Put the following into a file called.gdbinit in your home directory:

ddeeffi innee pptthhdd
xx//xx ((ccmmaa____ggeett__sseellf f__ttccbb(()) ++ 88))
eenndd

ddooccuummeenntt pptthhdd
PPrriinnttss tthhee CCMMAA tthhrreeaadd iiddeenntti if fi ieerr iinn tthhee TTCCBB iinn aa pprrooggrraamm
ccoommppiil leedd wwiit thhoouutt ddeebbuugg ssyymmbboollss..

NNBB:: TThhiiss ccoommmmaanndd mmaayy bbee CCMMAA rreevv ddeeppeennddeenntt!!!!

eenndd

ddeeffi innee pptthhddxx
pprriinntt ((((ccmmaa____tt__iinntt__ttccbb **)) ccmmaa____ggeett__sseellf f__ttccbb(()))) -->> hheeaaddeerr..sseeqquueennccee
eenndd

ddooccuummeenntt pptthhddxx
PPrriinnttss tthhee CCMMAA tthhrreeaadd iiddeenntti if fi ieerr iinn tthhee TTCCBB
eenndd

ddeeffi innee ppttccbb
pprriinntt//aa ccmmaa____ggeett__sseellf f__ttccbb(())
eenndd

ddooccuummeenntt ppttccbb
PPrriinnttss tthhee aaddddrreessss ooff tthhiiss tthhrreeaadd’’ss TTCCBB
eenndd

3.2.1.3 Debugging Shared Object Core Files

One approach to the problem of debugging core files generated with shared objects is as
follows. Begin by invokinggdb:

January 17, 1997 3−9

DCE Testing Guide

%% gdb program_to_be_debugged core

(If the application dumped core while executing code in a shared library routine,gdb
will at this point incorrectly report the name of the routine.) Continue as follows:

((ggddbb)) break main
((ggddbb)) run
((ggddbb)) kill
KKiil ll l t thhee iinnffeerriioorr pprroocceessss?? ((yy oorr nn)) y
((ggddbb)) where

—and at this point a correct backtrace will be produced.

While this may not be the best solution to the problem of debugging with shared objects,
running the application and breaking atmain does allowgdb to build the shared object
symbol tables needed for a backtrace from the core file.

3.2.2 Debugging with dbx

This section contains code for three DCE Threads-awaredbx commands for Ultrix,
implemented asdbx scripts. Thesedbx scripts will allow you to display the call frames
of each DCE thread in a process. You can also continue execution after doing this.

Note: To use these scripts to debug a DCE application, you must have built the
application with a DCE Threads library with symbols (that is, with the-g
flag), and you must usedbx.

Following is the code fordbx_cma_stack_dump:

##
##
sseett $$ddbbxxttccbb == ((ssttrruucctt CCMMAA____TT__IINNTT__TTCCBB **))((((iinntt))(($$ddbbxxqquueeuuee)) -- \\

((iinntt))((&&((((((ssttrruucctt CCMMAA____TT__IINNTT__TTCCBB**))00))-->>tthhrreeaaddss))))))
##
sseett $$ddbbxxsspp == ((((ssttrruucctt CCMMAA____TT__IINNTT__TTCCBB **))$$ddbbxxttccbb))..ssttaatti icc__ccttxx..sspp

##>>>>>>
##>>>>>> TThhee ffoolll loowwiinngg nnuummbbeerrss oobbttaaiinneedd ffrroomm //uussrr//i inncclluuddee//sseettj jmmpp..hh
##>>>>>>
aassssiiggnn $$ss00 == **(($$aaddddrreessss))(($$ddbbxxsspp ++ 1199 ** 44))
aassssiiggnn $$ss11 == **(($$aaddddrreessss))(($$ddbbxxsspp ++ 2200 ** 44))
aassssiiggnn $$ss22 == **(($$aaddddrreessss))(($$ddbbxxsspp ++ 2211 ** 44))
aassssiiggnn $$ss33 == **(($$aaddddrreessss))(($$ddbbxxsspp ++ 2222 ** 44))
aassssiiggnn $$ss44 == **(($$aaddddrreessss))(($$ddbbxxsspp ++ 2233 ** 44))
aassssiiggnn $$ss55 == **(($$aaddddrreessss))(($$ddbbxxsspp ++ 2244 ** 44))
aassssiiggnn $$ss66 == **(($$aaddddrreessss))(($$ddbbxxsspp ++ 2255 ** 44))
aassssiiggnn $$ss77 == **(($$aaddddrreessss))(($$ddbbxxsspp ++ 2266 ** 44))
aassssiiggnn $$ss88 == **(($$aaddddrreessss))(($$ddbbxxsspp ++ 3333 ** 44))
aassssiiggnn $$rraa == **(($$aaddddrreessss))(($$ddbbxxsspp ++ 3344 ** 44))

3−10 January 17, 1997

DCE Threads

aassssiiggnn $$ppcc == **(($$aaddddrreessss))(($$ddbbxxsspp ++ 3344 ** 44))

aassssiiggnn $$sspp == $$ddbbxxsspp ++ 333322
##>>>>>> 333322 sshhoouulldd bbee ((__JJBBLLEENN == 8844)) ** 44

wwhheerree
sseett $$ddbbxxqquueeuuee == ((((ssttrruucctt CCMMAA____TT__QQUUEEUUEE **))$$ddbbxxqquueeuuee))-->>ffl li innkk
##
##

Following is the code fordbx_cma_stack_dump_init:

##
##
sseett $$ddbbxxhhppcc == $$ppcc
sseett $$ddbbxxhhsspp == $$sspp
sseett $$ddbbxxhhss00 == $$ss00
sseett $$ddbbxxhhss11 == $$ss11
sseett $$ddbbxxhhss22 == $$ss22
sseett $$ddbbxxhhss33 == $$ss33
sseett $$ddbbxxhhss44 == $$ss44
sseett $$ddbbxxhhss55 == $$ss55
sseett $$ddbbxxhhss66 == $$ss66
sseett $$ddbbxxhhss77 == $$ss77
sseett $$ddbbxxhhss88 == $$ss88
sseett $$ddbbxxhhrraa == $$rraa
sseett $$ddbbxxppttrr == ((&&ccmmaa____gg__kknnoowwnn__tthhrreeaaddss..qquueeuuee))
sseett $$ddbbxxqquueeuuee == ((((ssttrruucctt CCMMAA____TT__QQUUEEUUEE **))$$ddbbxxppttrr))-->>ffl li innkk
sseett $$ddbbxxtthhdduummppiinniit t == 11;;
##
##

Following is the code fordbx_cma_stack_dump_restore:

##
##
aassssiiggnn $$ppcc == $$ddbbxxhhppcc
aassssiiggnn $$sspp == $$ddbbxxhhsspp
aassssiiggnn $$ss00 == $$ddbbxxhhss00
aassssiiggnn $$ss11 == $$ddbbxxhhss11
aassssiiggnn $$ss22 == $$ddbbxxhhss22
aassssiiggnn $$ss33 == $$ddbbxxhhss33
aassssiiggnn $$ss44 == $$ddbbxxhhss44
aassssiiggnn $$ss55 == $$ddbbxxhhss55
aassssiiggnn $$ss66 == $$ddbbxxhhss66
aassssiiggnn $$ss77 == $$ddbbxxhhss77
aassssiiggnn $$ss88 == $$ddbbxxhhss88
aassssiiggnn $$rraa == $$ddbbxxhhrraa
sseett $$ddbbxxtthhdduummppiinniit t == 00
##
##

January 17, 1997 3−11

DCE Testing Guide

3.2.2.1 Description of dbx Commands

Following is a description of what each of the three commands will do:

• dbx_cma_stack_dump_init

dbx_cma_stack_dump_initwill save some context and setup a pointer to the DCE
Thread control block linked list. It does not display anything.

• dbx_cma_stack_dump

dbx_cma_stack_dumpwill dump the stack of a thread using thedbx ‘‘where’’
command. It will then increment the pointer to the next thread control block. Running
dbx_cma_stack_dumpagain will result in this thread’s stack being dumped and the
pointer being set to point to the next thread control block. The thread control block
linked list is circular: If executing dbx_cma_stack_dump causes numerous
simultaneous memory violations, this means that the pointer has looped around to the
front of the list. A subsequent invocation ofdbx_cma_stack_dumpwill then display
the first thread on the list again, and so on.

• dbx_cma_stack_dump_restore

dbx_cma_stack_dump_restore will restore the context saved in
dbx_cma_stack_dump_init, thus allowing you to use thedbx ‘‘continue’’
command.

3.2.2.2 Example

The following sample command lines are excerpted from a possibledbx session, and
demonstrate how the three scripts should be invoked:

ddbbxx>> record output cma_dbx_stack_dump.log

ddbbxx>> source<location>/cma_dbx_stack_dump_init

ddbbxx>> source<location>/cma_dbx_stack_dump

......

ddbbxx>> source<location>/cma_dbx_stack_dump

......

dbx> source<location>/cma_dbx_stack_dump

......

dbx> source<location>/cma_dbx_stack_dump

3−12 January 17, 1997

DCE Threads

......

dbx> source<location>/cma_dbx_stack_dump_restore

ddbbxx>> continue

January 17, 1997 3−13

Chapter 4. DCE Remote Procedure Call

4.1 Overview

The DCE Remote Procedure Call (RPC) facility is a network protocol used in distributed
systems. RPC is modeled after the local procedure call found in most programming
languages, but the called procedure is executed in a different process from that of the
caller, and is usually executed on another machine. The RPC facility makes the
construction of distributed systems easier because developers can focus on the
fundamentals of building distributed applications, instead of the underlying
communication mechanisms.

Making a remote procedure call involves five different bodies of code:

• the client application

• the client stub

• the RPC runtime library

• the server stub

• the server application

The client and server stubs are created by compiling a description of the remote interface
with the DCE Interface Definition Language (IDL) compiler. The client application, the
client stub, and one instance of the RPC runtime library all execute in the caller machine;
the server application, the server stub, and another instance of the RPC runtime library
execute in the called (server) machine.

January 17, 1997 4−1

DCE Testing Guide

4.2 Setup, Testing, and Verification

The following types of RPC test cases are shipped with DCE:

• IDL compiler tests (for testing compiled stubs)

• RPC application tests

• KRPC application tests

• RPC runtime library and IDL compiler tests

Before running the RPC runtime library and IDL compiler Name Service Interface (NSI)
test cases, you must configure the namespace and start the namespace daemon and clerk.
See the section on CDS setup in Chapter 5 of this guide for more information on
configuring and starting CDS.

Before running the RPC runtime library and IDL compiler RPC authentication test cases,
the DCE Security Service must be configured properly. See the section on DCE Security
Service setup in Chapter 8 of this guide for more information on configuring and starting
DCE Security Service.

Note: These setup steps are not required prior to running the IDL compiler tests.
They may be tested once their code has been built.

4.2.1 Installing RPC Functional Testswith dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guide.dcetest_config
will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocal) to that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/test/component_name/

directory, where thetest/component_nameelements of this path are equivalent to the
test/component_nameelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locationfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the RPC functional
tests, this path should be the location, on your machine, of:

dce-root-dir/dce/install

—which is the DCEinstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of theOSF DCE Release Notes).

Thus,dcetest_configwill install the RPC functional tests at:

/dcetest/dcelocal/test/rpc/

4−2 January 17, 1997

DCE Remote Procedure Call

where /dcetest/dcelocal is the link to whatever path you supplied as the install
destination.

The advantage in usingdcetest_configto install the functional tests is that it will install
all that is needed andonly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlyinstall (if you choose) functional tests withdcetest_config; for
test configuration and execution you must follow the instructions in the sections below.

Refer to Chapter 11 of this guide for further information on usingdcetest_config.

4.2.2 RPC Setup

The following steps are necessary in order to run theperf and v2test tests in normal
configuration (that is, using the namespace to handle binding information). If you are
testing only with full string bindings, the following steps are not necessary.

To configure RPC for OSFTM DCE Version 1.2.2 testing, do the following:

1. Make sure that

/opt/dce1.2.2/etc/cds_attributes

is available from the DCE CDS component.

2. Make sure that thedcedendpoint map service is running.

3. You can optionally configure DCE CDS forrtandidl name service tests and DCE
Security Service for authenticated RPC testing. For more information on
configuring these components, see the sections on component setup in the CDS
and Security Service chapters of this guide.

4.2.3 RPC Application Tests

The following test cases are shipped with DCE to test the user-mode version of RPC:

• perf

• v2test

The source code for these test cases can be found in theperf and v2test_lib
subdirectories of the

dce-root-dir/dce/src/test/rpc/runtime

directory of the DCE source tree.

Both of these test cases let you test authenticated remote procedure calls. However,
running authenticated RPC requires special configuration of both the client and server
machines. See Chapter 8 of this guide for information on how to perform this
configuration.

January 17, 1997 4−3

DCE Testing Guide

4.2.3.1 The perf Tests

Theperf test case tests a larger subset of the RPC runtime library thanv2test. You must
start theperf server as one process and then start theperf client as another process
before running theperf test case. These processes can be run on the same or different
hosts, as long as the server process is started first. Theserver andclient can be found in
the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/rpc/runtime/perf

directory. (Note that the contents of this directory are built from the contents of the

dce-root-dir/dce/src/test/rpc/runtime/perf

directory in the source tree.)

To test using theperf test case, make a number of remote procedure calls from theperf
client to theperf server. Theperf server waits for remote procedure calls from theperf
client and then gives a response. Theperf server then prints messages that give the
results of the remote procedure call. To fully test usingperf test, use different
combinations ofperf server andperf client testing options and observe the resulting
messages.

To start theserver, enter

server 1 ncadg_ip_udp

or:

server 1 ncacn_ip_tcp

at the command line. The following message will be printed:

GGoott BBiinnddiinngg:: nnccaaddgg__iipp__uuddpp:: ip_addr[[port]]

whereip_addr is the IP address of the server andport is the number of the port the server
is listening to.

To start theclient, enter a command similar to the following:

client 1 ncadg_ip_udp:ip_addr[port] 10 5 n y 100

or:

client 1 ncacn_ip_tcp:ip_addr[port] 10 5 n y 100

at the command line, whereip_addr is the IP address of the server (printed out when you
started the server) andport is the port number that the server is listening to (printed out
when you started the server).

See the

dce-root-dir/dce/src/test/rpc/runtime/perf/README

4−4 January 17, 1997

DCE Remote Procedure Call

file for further information, including information about several scripts that can be used
to run theperf tests.

4.2.3.1.1 Help Messages

You can get help messages on how to invoke both theserver and client programs by
entering the program name at the command line with no arguments. You can get
additional help on a specificclient test case by entering the program name followed by
the test number. For example, enteringclient 2 prints help on test number 2.

4.2.3.1.2 The perf server Program

Theperf server testing options are listed below:

server [-sD] [-S server_loops] [-dswitch_level] [-p auth_proto, principal, [keytab_file]]
[-v {0|1}]
[-B bufsize] max_calls protseq_spec[protseq_spec ...]

where:

-s Enables remote shutdown of the server. This parameter is
optional, and is currently not implemented.

-D This optional parameter specifies the default level of debug
output.

-S server_loops Specifies the number of times to run the server listen loop. If no
value is specified for theserver_loopsparameter, the default value
is 1.

-d switch_level This optional parameter lets you specify the amount of debug
output desired. Some usefulswitch_level settings are the
following:

0-3.5 Maximum error/anomalous condition reporting
and mutex checking. This amount of output is
often too verbose for normal use. Also, there is
extra overhead for mutex checking.

0-1.10 Same function as 0-3.5, but drops some
transmit/receive informational messages.

2-3.4 Same function as 0-1.10.

0.10 Reports all error conditions plus a little more; no
mutex checking.

0.1 Report error conditions only (same as specifying
-d).

January 17, 1997 4−5

DCE Testing Guide

-p Specifies an authenticated RPC call. You must enter the-p
parameter with theauth_proto parameter and theprincipal
parameter.

auth_proto Specifies which authentication service to use when the server
receives a remote procedure call. The following values are valid
for auth_proto:

0 No authentication is used.

1 OSF DCE private key authentication is used.

2 OSF DCE public key authentication is used. This
parameter is reserved for future use and is not yet
supported.

Note that if private key authentication is desired, a keytab file
must be set up (with thergy_edit ktadd command) before the
server program is run. Otherwise, the server will display the
following message at startup:

******EErrrroorr sseetttti inngg pprriinncciippaall -- RReeqquueesstteedd kkeeyy iiss uunnaavvaaiil laabbllee ((ddccee//sseecc))

and terminate.

principal Specifies the principal name of the server to use when
authenticating remote procedure calls. The content of the name
and its syntax are defined by the authentication service in use.

-v 0 Enables verbose output.

-v 1 Disables verbose output. Verbose output is disabled by default if
no -v flag is used withperf server.

bufsize Sets the connection-oriented protocol socket buffer size, specified
in bytes.

max_calls Specifies the number of threads that are created to service
requests.

protseq_spec Specifies one of the following:

protocol_sequence
Tells the server to listen for remote procedure
calls using the specified protocol sequence (for
example, network protocol) combined with the
endpoint information inperf.idl . Valid values for
this argument are described in the discussion of
the v2server program. The server calls
rpc_server_use_protseq_if to register the
protocol sequence with the RPC runtime.

all Tells the server to listen for remote procedure
calls using all supported protocol sequences. The
RPC runtime creates a different binding handle

4−6 January 17, 1997

DCE Remote Procedure Call

for each protocol sequence. Each binding handle
contains an endpoint dynamically generated by
the RPC runtime. The server calls
rpc_server_use_all_protseqsto accomplish this.

allif Tells the server to listen for remote procedure
calls using all the specified protocol sequences
and endpoint information inperf.idl . The server
uses rpc_server_use_all_protseqs_if to
accomplish this.

ep protocol_sequence endpoint
Tells the server to listen for remote procedure
calls using the specified protocol sequence and
endpoint information (for example, ep
ncadg_ip_udp 2000). The server calls
rpc_server_use_protseq_epto accomplish this.

notif protocol_sequence
Tells the server to listen for remote procedure
calls using the specified protocol sequence. The
RPC runtime dynamically generates the endpoint.
The server calls rpc_server_use_protseq to
accomplish this.

4.2.3.1.3 The perf client Program

theperf client testing options are listed below:

client [-Disf] [-d switch_level] [{-m | -M} nthreads] [-t timeout]\
[-c timeout] [-w wait_point, wait_secs]\
[-p auth_proto, authz_proto[, level, principal]\
[-r frequency] [-R frequency] [-v {0|1}]\
[-f opt] [-B bufsize] [-o] [-s]\
test test_parms

where:

-D This optional parameter specifies the default level of debug
output.

-i This optional parameter causes statistics to be dumped at the end
of the test.

-s This optional parameter prints statistics at the end of the test.

-o Specifies thatperf object UUID be used in bindings (default is
that no object UUID is used).

-f Repeats the test after afork() .

-d switch_level Lets you specify the amount of debug output desired. Some useful
switch_levelsettings are the following:

January 17, 1997 4−7

DCE Testing Guide

0-3.5 Maximum error/anomalous condition reporting
and mutex checking. This amount of output is
often too verbose for normal use. Also, there is
extra overhead for mutex checking.

0-1.10 Same function as 0-3.5, but drops some
transmit/receive informational messages.

2-3.4 Same function as 0-1.10.

0.10 Reports all error conditions plus a little more; no
mutex checking.

0.1 Report error conditions only (same as specifying
-d).

-m nthreads This optional parameter causesnthreadstasks to be run at the
same time.

-M nthreads This optional parameter has the same function as the-m
parameter, but uses a shared binding handle.

-t timeout Sets the communications timeout value totimeout seconds. The
value specified fortimeoutmust be between zero and ten.

-c timeout Sets the cancel timeout value totimeoutseconds.

-w wait_point, wait_secs
Causes the client to wait at thewait_pointfor wait_secsseconds.

-p Specifies an authenticated RPC call. You must enter the
auth_protoand authz_protoparameters when using-p; the level
andprincipal parameters are optional.

-r frequency Resets bindings everyfrequencynumber of calls in a single pass.

-R frequency Recreates bindings everyfrequencynumber of calls in a single
pass.

auth_proto Specifies which authentication service to use. The following
values are valid forauth_proto:

0 No authentication is used.

1 OSF DCE private key authentication is used.

2 OSF DCE public key authentication is used. This
parameter is reserved for future use and is not yet
supported.

authz_proto Specifies the authorization service implemented by the server.
The following values are valid forauthz_proto:

0 The server performs no authorization.

1 Server performs authorization based on the client
principal name.

2 Server performs authorization checking using the client
DCE privilege attribute certificate (PAC) information sent
to the server with each remote procedure call.

4−8 January 17, 1997

DCE Remote Procedure Call

level Specifies the level of authentication to be performed on remote
procedure calls. The following values are valid forlevel:

0 Use the default authentication level for the specified
authentication service.

1 Perform no authentication.

2 Authenticate only when the client first establishes a
relationship with the server (only on "connect.")

3 Authenticate only at the beginning of each remote
procedure call.

4 Authenticate that all data received is from the expected
client.

5 Authenticate that none of the data transferred between
client and server has been modified.

6 Authentication includes all previous levels as well as
encrypting each remote procedure call argument.

principal Specifies the expected principal name of the server. The content
of the name and its syntax are defined by the authentication
service in use.

-v 0 Enables verbose output.

-v 1 Disables verbose output. Verbose output is disabled by default if
no -v flag is used withperf client.

-f opt Repeats test after fork.opt is a digit from 1 to 6, with the
following meanings:

1 Repeat test in the original and child processes.

2 Repeat test in the original process only.

3 Repeat test in the child process only.

4 Repeat test in the child and grandchild processes.

5 Repeat test in the grandchild process only.

6 Run test in the child process only.

-B bufsize Sets the connection-oriented protocol TCP socket buffer size,
wherebufsizeis the desired size, specified in bytes.

test Specifies which test to run. Each test requires different
test_parms. The following values are valid fortest:

0 Null call

1 Variable-length input argument

2 Variable-length output argument

3 Broadcast test

4 Maybe test

January 17, 1997 4−9

DCE Testing Guide

5 Broadcast/maybe test

6 Floating-point test

7 Call unregistered server interface

8 Forwarding test

9 Exception test

10 Slow call

11 Shutdown server

12 Callback (Note: This test is not supported.)

13 Generic interface test

14 Context test

15 Static cancel test

16 Statistics test

17 Interface identifiers test

18 One shot test

test_parms The following test_parmscorrespond to the test numbers:

Nr Test Parms

0 string_binding passes calls/pass verify? idempotent?

1 string_binding passes calls/pass verify? idempotent?
nbytes

2 string_binding passes calls/pass verify? idempotent?
nbytes

3 protocol_sequence

4 string_binding

5 protocol_sequence

6 string_binding passes calls/pass verify? idempotent?

7 string_binding

8 string_binding global?

9 string_binding

10 string_binding passes calls/pass verify? idempotent?
seconds [mode]

11 string_binding

12 string_binding passes callbacks/pass idempotent?

13 string_binding

14 Host passesdie?seconds

4−10 January 17, 1997

DCE Remote Procedure Call

15 Host passesidempotent?[seconds[cancel_two_seconds]]

16 [host+ep]

17 [host+ep]

18 [host+ep] forward? idempotent?
where:

string_binding
Contains the character representation of a binding in the
form protocol_sequence:network_address[port], where
protocol_sequenceis one of the valid protocol sequences
discussed previously,network_addressis the network
address of the server, andport is the port the server is
listening to.

passes
Specifies the number of times to run the test.

calls/pass
Specifies the number of remote calls per pass.

verify?
Specifies whether the test case must verify that there were
no data transmission errors. Entery to verify, n to not
verify.

die?
For the context test, this parameter specifies if the server’s
context is freed at the end of each pass. Entery to free the
context.

idempotent?
Specifies whether or not to place an idempotent or
nonidempotent call (entery to place an idempotent call,n
to place a nonidempotent call.)

nbytes
Specifies the number of bytes transferred per call.

protocol_sequence
Specifies one or more network protocols that can be used
to communicate with a client. Valid values for this
argument are specified in the discussion of thev2server
program.

callbacks/pass
Specifies the number of times the server calls back the
client per pass.

seconds
The secondsparameter specifies the number of seconds
the server delays while executing a remote procedure call.
For the context test, this parameter specifies the number of
seconds the client willsleepafter it checks if the test was
successful.

January 17, 1997 4−11

DCE Testing Guide

mode
For theslow call test,modespecifies the technique used
by perf to slow down the call. The following values are
valid for mode:

0 Sleep

1 Slow I/O

2 CPU loop

global
This parameter is currently not checked. It can be set by
enteringy or n.

cancel_two_seconds
Specifies the number of seconds that the client’s RPC
runtime will wait for a server to acknowledge a cancel.
Note that the value ofcancel_two_secondsmust be
greater than the value of thesecondsargument (described
above); otherwise Test 15 cannot be run successfully.

[host+ep]
Specifies the host IP address and endpoint.

4.2.3.2 The v2test Testcase

The v2test test suite tests the underlying packet-handling routines of the RPC runtime
library. You must start thev2server program as one process and then start thev2client
program as another process before running thev2test test suite. These processes can be
run on the same host or on different hosts as long as the server process is started first.
Thev2serverandv2client can be found in the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/rpc/runtime/v2test_lib

directory. (Note that the contents of this directory are built from the contents of the

dce-root-dir/dce/src/test/rpc/runtime/v2test_lib

directory in the source tree.)

Essentially, thev2test bypasses the IDL stubs to test parts of the underlying RPC
runtime. The following two scripts:

• v2test_tcp.sh

• v2test_udp.sh

contain useful test scenarios.

Note: It is possible to successfully pass illegal combinations of arguments to the
v2tests; the tests should therefore be used carefully.

To test using thev2testsuite, make a number of remote procedure calls from thev2client
to the v2server. The v2server waits for remote procedure calls from thev2client and
then gives a response. Thev2server then prints messages that give the results of the

4−12 January 17, 1997

DCE Remote Procedure Call

remote procedure call. To fully test usingv2test, use different combinations ofv2server
andv2client testing options and observe the resulting messages.

To start the server, enter

v2server 1 ncadg_ip_udp

or:

v2server 1 ncacn_ip_tcp

at the command line. A message similar to the following will be printed:

GGoott BBiinnddiinngg:: nnccaaddgg__iipp__uuddpp:: ip_addr[port]

where ip_addr is the IP address of the server andport is the port number the server is
listening to.

To start the client, enter a command similar to the following:

v2client io ncadg_ip_udp:ip_addr[port] 10 17 132 0

or:

v2client io ncacn_ip_tcp:ip_addr[port] 10 17 132 0

at the command line, whereip_addr is the IP address of the server (printed out when you
startedv2server) andport is the port number that the server is listening to (also printed
out when you startedv2server).

You can get help messages on how to invoke both thev2server andv2client programs
by entering the program name at the command line with no arguments.

4.2.3.2.1 The v2server Program

Thev2server testing options are as follows:

v2server [-Dbce] [-dswitch_level] [-p auth_prot, auth_name] \
max_calls protocol_sequence

where:

-D This optional parameter specifies the default level of debug
output.

-b Enables a break between the RPC runtime calls.

-c This optional parameter causes the server to call back its clients.

-e This optional parameter causes the server to register its endpoint
with the local location broker daemon, unregister its endpoint, and
print a message indicating whether these operations were

January 17, 1997 4−13

DCE Testing Guide

successful.

-d switch_level This optional parameter lets you specify the amount of debug
output desired. Some usefulswitch_level settings are the
following:

0-3.5 Maximal error/anomalous condition reporting and
mutex checking. This amount of output is often
too verbose for normal use, and there is extra
overhead for mutex checking.

0-1.10 Same function as 0-3.5, but drops some
transmit/receive informational messages.

2-3.4 Same function as 0-1.10.

0.10 Reports all error conditions plus a little more; no
mutex checking.

0.1 Report error conditions only (same as specifying
-d).

-p Specifies an authenticated RPC call. You must enter the-p
parameter with theauth_protand theauth_nameparameters.

auth_prot Specifies which authentication service to use. The following
values are valid forauth_prot:

0 No authentication is used.

1 OSF DCE private key authentication is used.

2 OSF DCE public key authentication is used. This
parameter is reserved for future use, and is not yet
supported.

auth_name Specifies the principal name of the server. The content of the
name and its syntax are defined by the authentication service in
use.

max_calls Specifies the number of threads that are created to service
requests.

protocol_sequence Specifies one or more network protocols that can be used to
communicate with client applications. The following values are
valid for protocol_sequence:

ncacn_ip_tcp NCA connection over Internet Protocol:
Transmission Control Protocol (TCP/IP).

ncadg_ip_udp NCA datagram over Internet Protocol: User
Datagram Protocol (UDP/IP).

4−14 January 17, 1997

DCE Remote Procedure Call

4.2.3.2.2 The v2client Program

Thev2client testing options are listed below:

v2client [-D] [-d switch_level] [-p auth_prot, authz_proto, level, auth_name]\
test string_binding num_calls num_buffs buff_size call_opts

where:

-D This optional parameter specifies the default level of debug
output.

-d switch_level This optional parameter lets you specify the amount of debug
output desired. Some usefulswitch_levelsettings:

0-3.5 Maximum error/anomalous condition reporting
and mutex checking. This amount of output is
often too verbose for normal use, and there is
extra overhead for mutex checking.

0-1.10 Same function as 0-3.5, but drops some
transmit/receive informational messages.

2-3.4 Same function as 0-1.10.

0.10 Reports all error conditions plus a little more; no
mutex checking.

0.1 Reports error conditions only (same as specifying
-d).

-p Specifies an authenticated RPC call. You must enter the-p
parameter with theauth_prot, authz_proto, level, andauth_name
parameters.

auth_prot Specifies which authentication service to use. The following
values are valid forauth_prot:

0 No authentication is used.

1 OSF DCE private key authentication is used.

2 OSF DCE public key authentication is used. This
parameter is reserved for future use and is not yet
supported.

authz_proto Specifies the authorization service implemented by the server. The
validity and trustworthiness of authorization data depends on the
authentication service and authentication level selected. The
following values are valid forauthz_prot:

0 The server performs no authorization

1 Server performs authorization based on the client
principal name.

2 Server performs authorization checking using the client
DCE privilege attribute certificate (PAC) information sent

January 17, 1997 4−15

DCE Testing Guide

to the server with each remote procedure call.

level Specifies the level of authentication to be performed on remote
procedure calls. The following values are valid forlevel:

0 Use the default authentication level for the specified
authentication service.

1 Perform no authentication.

2 Authenticate only when the client first establishes a
relationship with the server (only on ‘‘connect.’’)

3 Authenticate only at the beginning of each remote
procedure call.

4 Authenticate that all data received is from the expected
client.

5 Authenticate that none of the data transferred between
client and server has been modified.

6 Authentication includes all previous levels as well as
encrypting each remote procedure call argument.

auth_name Specifies the expected principal name of the server. The content
of the name and its syntax are defined by the authentication
service in use.

test Specifies one of the following tests:

n Null test. Makes remote procedure calls with no
parameters.

i Input test. Makes remote procedure calls with input
parameters only.

o Output test. Makes remote procedure calls with output
parameters only.

io Input/Output test. Makes remote procedure calls with both
input and output parameters.

string_binding Contains the character representation of a binding in the form

protocol_sequence:network_address[port]

whereprotocol_sequenceis one of the valid protocol sequences
discussed previously,network_addressis the network address of
the server, andport is the port the server is listening to.

num_calls Specifies the number of timesv2client calls the server.

num_buffs Specifies the number of buffers that are sent with each call.

buff_size Specifies the number of bytes in each buffer.

call_opts Specifies one of the following call options:

0 Nonidempotent call

4−16 January 17, 1997

DCE Remote Procedure Call

1 Broadcast call

2 Idempotent call

4 Maybe call

8 Nonidempotent call; actively keeps communications alive
with the server

9 Broadcast call; actively keeps communications alive with
the server

10 Idempotent call; actively keeps communications alive
with the server

12 Maybe call; actively keeps communications alive with the
server

4.2.4 IDL Compiler Tests

The test cases for IDL data types are found in the

dce-root-dir/dce/src/test/rpc/idl

directory. The compatibility testcases are provided for information purposes only; they
do not compile properly. The

dce-root-dir/dce/src/test/rpc/idl/README

file contains additional information about the test cases.

Before running the IDL tests, be aware of the following:

• The stubs and theserver andclient programs for each test case are built when the
source tree is built.

• The IDL compiler will not report an error if there is no.acf file corresponding to an
.idl file, so always keep the.acf file in the directory where thebuild or make
command is issued.

4.2.4.1 IDL Compiler Testcase Driver

To run the IDL compiler testcase driver, enter:

run_testsrepeat_count[testcase_name ...]

where repeat_countspecifies the number of times to repeat a test, andtestcase_name
specifies the testcase (or testcases) to run.

To test connection-oriented RPC, you must set thePROTOCOL environment variable to
‘‘ncacn_ip_tcp’’; run_testsdefaults this to ‘‘ncadg_ip_udp’’.

January 17, 1997 4−17

DCE Testing Guide

4.2.4.2 Running Individual Testcases

To run a test, you must first start theserver as one process, then start theclient as
another process. These processes can be run on the same or different hosts as long as the
server process is started first.

The server and client processes exist under each built subdirectory (for example, in the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/rpc/idl/array

directory. In general these build locations correspond to subdirectories in the source tree;
for example, the contents of the subdirectory mentioned just above are built from the
contents of the

dce-root-dir/dce/src/test/rpc/idl/array

directory). To start theserver for a test case, enter

server [- | -f filename] protseq

where - specifies that binding information be written to standard output,-f filename
specifies that binding information be written out to the filefilename, and protseq
specifies the protocol sequence (usuallyncadg_ip_udp or ncadg_ip_tcp) used. The
command prints the line

protocol ip_addr port

whereprotocol is the protocol specified with theserver command,ip_addr is the IP
address of the server, andport is the number of the port the server is monitoring. Unless
you specify a name forfilename, information is written to a file calledbinding.dat.

To start theclient, enter

client protocol ip_addr port passes

whereprotocol, ip_addr, andport are the values obtained from the output of theserver
command, andpassesis the number of times the client calls each remote procedure call
specified in the interface definition.

Enteringserver or client at the command line with no arguments prints a help message
on how to invoke the programs.

The test case automatically generates data and verifies correct data transfer. See the

dce-root-dir/dce/src/test/rpc/idl/README

file for more information.

Testcases are provided that test:

• Simple data types likechar, byte, and float, as well as structures that can be
transmitted using thepipe data type

• Reference pointers with null or non-null values and directional attributes

4−18 January 17, 1997

DCE Remote Procedure Call

• Reference pointers with directional attributes

• The field attribute for arrays

• Arrays of pointers and field attributes for arrays specified as pointers

• Attributes

4.2.4.3 IDL C++ Tests

The following are tests of the IDL compiler C++ functionality. The source for the tests is
located at:

dce-root-dir/dce/src/test/rpc/idlcxx

• account

Tests inheritance, binding to an object using another interface, binding to an object
with an unsupported interface, and the reflexive, symmetric, and transitive relation
properties of thebind() API. A Savings interface is derived from anAccount
interface. A nowAccount implementation class is derived from theSavings and
Checking interfaces. AnoldAccount implementation class is derived from the
Savings but not theChecking class which implies that anoldAccount does not
support aChecking interface.

• account2

Tests the same properties asaccount but combines the client and server stubs in the
test to also verify a local object with multiple interfaces as an RPC argument.

• accountc

Tests the same properties asaccountbut uses the C interfaces for all the APIs.

• bind

Tests the bind() APIs for binding to named objects; specifically, the
bind((unsigned_char_t *)), bind(uuid &) andbind(rpc_binding_handle_t) APIs.

• card

Tests the passing of C++ objects as parameters using the[cxx_delegate]attribute and
the polymorphism property of the base class. APlayer implementation class is a
generic sports card class. Derived fromPlayer are aBaseballPlayer class and a
BasketballPlayer class. The application interfaces with thePlayer class to invoke
virtual operations in the derived classes.

• handle

Tests the invocation of a remote static procedure using explicit and implicit handles.
The operations are really remote constructors([cxx_new]) which are static by
definition.

• local_object

Tests the[local] IDL attribute in conjunction with inheritance to verify side casts in a
C++ class hierarchy. No RPC calls are made and the server is just a copy of the client

January 17, 1997 4−19

DCE Testing Guide

executable to be compatible with the test environment. C++ itself does not support
side casts, but IDL helps get around this problem with therpc_object_reference
base class and therpc_object_reference::bind(rpc_object_reference *)API.

• lookup

Tests the[cxx_lookup] attribute and the passing of arpc_x_object_not_found
exception from the server to the client.

• matrix

Tests many different basic features, such as: local and remote objects as parameters;
structures; arrays and unions containing interfaces as parameters;bind() APIs;
registering named objects; and so on.

• matrixc

Tests the basic C interfaces to member functions and IDL generated APIs.

• native

Tests passing a native C++ object as a parameter using the[represent_as]attribute.
A system supplied C++String object is passed as an RPC argument. (This test is
used as a model in the paperPassing C++ Objects as DCE RPC Parametersfrom the
IDL WWW home page, and is included in the WWW examples link.)

• refcnt

Tests the reference counting APIs and validates that the Object Table is maintained
properly on the server by creating lots of remote dynamic objects, and then deleting
them.

• refmon

Tests the rpc_object_reference::get_binding_handle() and
rpc_object_reference::secure()APIs and uses a reference monitor. The client must
be logged into DCE in order to run this test. Therefmon.pwd contains the principal’s
passwords for thejail , idl andxidl cells. To port this test to another cell will require
adding the password torefmon.pwd and creating a DCE principalrefmon_test with
the password ‘‘dce’’. During DCE 1.2.2 testing the client was run as follows:

dce_login refmon_test dce -exec client

• retry

Tests the retry feature of a client proxy object. The server executable file produced by
the make file is a script that runs two server processes in the background using 2
different protocols. The client connects to one of the server processes. That server
process then exits. The client then tries to connect to the same process again; this
fails. The client then selects another binding handle to communicate with the second
server process. (The client and servers are synchronized withpthread_delay_np()
rather thansleep()because of a bug in thesleep()API on VMS, causing it to wake
up prematurely.)

• stack

Tests the passing of C++ objects as parameters using the[cxx_delegate]attribute and
a user definedStack class. This test implements a reverse Polish notation algorithm

4−20 January 17, 1997

DCE Remote Procedure Call

where the binary arithmetic operations are performed on the server. (This test is used
as a model in the paperPassing C++ Objects as DCE RPC Parametersfrom the IDL
WWW home page, and is included in the WWW examples link.)

• static

Tests the IDLstatic and ACF[cxx_static] and[cxx_static(arg)] attributes. There are
three ways to specify static member operations in IDL.

• stubexc

Tests the passing of arpc_x_no_client_stubexception from a server to the client and
the raising of arpc_x_no_server_stubin the client application. These exceptions
are raised at runtime if the client or server stub is not linked with the server or client
application respectively and a RPC parameter requires it.

• tiered

Tests the passing of an object reference from one client to another. A client is built
as both a server and client of an interface. It creates a remote object on the server. A
second client connects to the first client to get the object reference to the server’s
object.

Before running the tests, you should set theRPC_DEFAULT_ENTRY environment
variable to a CDS pathname consisting of an object name (named after the test to be run)
located in a CDS directory that can be set writable to all. For example, to create an
idltest directory for this purpose, do the following:

cdscp create dir /.:/idltest
acl_edit /.:/idltest << EOF

m unauthenticated:rwdtcia
m anyother:rwdtcia
co

EOF

After having done the above, you can run (for example) theaccounttest as follows:

%% cd dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/rpc/idlcxx/account
%% setenv RPC_DEFAULT_ENTRY /.:/idltest/account_myhost

%% server &
%% client

________________________ 1.2.2,IDL C++ Extension Tests (start) ________________________

4.2.4.4 IDL C++ Extension Tests

This test suite tests the capability added to IDL to generate and support C++. The tests
are located under:

January 17, 1997 4−21

DCE Testing Guide

src_tree/test/rpc/idlcxx/...

The following areas are tested:

• Interface inheritance

• Object bind calls:
bind(unsigned_char_t *)
bind(uuid &)
bind(rpc_binding_handle_t)

• C/C++ interface

• Passing of C++ objects:
[cxx_delegate]attribute
[represent_as]attribute

• Static member functions:
IDL file static attribute
ACF [cxx_static] attribute
ACF [cxx_static(arg)] attribute

• [cxx_lookup] attribute:
passing ofrpc_x_object_not_foundexception

• [cxx_new]attribute

• rpc_object_referenceclass testing:
[local] attribute
rpc_object_reference::bind(rpc_object_reference*)
rpc_object_reference::get_binding_handle()
rpc_object_reference::secure()

• Named objects:
register_named_object(unsigned_char_t *)

• Dynamic objects

• Coexistence of local and remote objects

• Enhanced enumeration types

4.2.4.4.1 Prerequisites forRunning the Tests

The following are prerequisites for running the tests:

• ODE 2.3.3 (or later version)

• C++ and C compilers

• For the C/C++ interface tests, C++ constructors must be invoked even if themain()
routine is written in C.

For the native C++/C compilers on current versions of Digital Unix and AIX this
happens automatically—you must only be sure to link using the C++ compiler itself
instead of either the C compiler or the linker. (UsexlC on AIX or cxx on Digital
Unix.) When using GNU’sg++ compiler for AIX, a call must be inserted into the C

4−22 January 17, 1997

DCE Remote Procedure Call

main() to __do_global_ctors(). For the accountc and matrixc tests this means
inserting the special call intoclient.c. This necessity may or may not be consistent
among the g++ implementations. Other platforms may have different special
requirements for causing the constructors to be invoked, or they may do it
automatically when using the C++ compiler to link the C and C++ object modules.

4.2.4.4.2 Building TET and the Tests

To build TET, do the following:

1. Locate yourself in the

src_tree/test/tet

directory and typebuild .

2. Put the directory

obj_tree/test/tet/src/posix_c/tcc

into your path or copy the file

obj_tree/test/tet/src/posix_c/tcc/tcc

to some directory already in your path.

3. Adjust any necessary build flags for your particular platform.

To do so, edit the

src_tree/test/rpc/idlcxx/idlcxx.mk

file, which is pulled into each Makefile for the tests below. Each machine may
have a separate section of IDL, compile, and link flags as shown below:

<...>

.if ${TARGET_MACHINE} == "RIOS"
With TET builds
CFLAGS += -DTET -DIDL_CHAR_IS_CHAR
IDLFLAGS += -lang cxx -v -cc_opt "-DTET -DIDL_CHAR_IS_CHAR -DAIX32"
RIOS_LIBS += -lidlcxx -ldce -ltetapi -ltettcm -ltetapi
.elif ${TARGET_MACHINE} == "ALPHA"

<...>

The flags shown above for the AIX/RIOS platform are expected to be required for
all platforms with exception of-DAIX32 . A circular link dependency requires-
ltetapi to appear twice. The-cc_opt option for IDL must include all flags to be
handed to the compiler from IDL—they are not additions to the C flags that IDL
generates for the platform by default. You can find out what your default IDL-
spawned C flags are by using the-v option with IDL on a test.idl file.

4. Build the tests themselves. Go to

January 17, 1997 4−23

DCE Testing Guide

src_tree/test/rpc/idlcxx

and typebuild .

4.2.4.4.3 Running the Tests andChecking Results

To execute these tests under TET, follow the directions below. It is not necessary to have
any special privileges (root or cell_admin) to follow these steps, but the scriptssetupand
refmon/run assume that the password forcell_admin is ‘‘ -dce-’’.

1. Go to the test directory:

%% cd object_tree/test/rpc/idlcxx

2. Run the ’setup’ script, which will create a CDS test directory and open up the
permissions for anyone to write to the directory:

%% setup

3. Set TET’s root directory to your current directory:

%% setenv TET_ROOT ‘pwd‘

4. Begin execution of the tests with:

%% tcc -e -j tet_jrnl -s tet_scen -x tetexec.cfg all

This final step will look for failures and summarize which tests passed, failed, or were
missing results. This summary will happen automatically through thetcc execution, but
can be repeated by executing thesummary script which is created in the same current
directory as above.

________________________ 1.2.2,IDL C++ Extension Tests (end) ________________________

4.2.5 RPC Runtime I18N Extension Functional Tests

This test suite tests the APIs for I18N extensions to the RPC runtime in OSF DCE 1.1.
The following APIs are tested:

• NSI management:

• rpc_ns_mgmt_set_attribute

• rpc_ns_mgmt_remove_attribute

• rpc_ns_mgmt_read_codesets

• rpc_ns_mgmt_free_codesets

4−24 January 17, 1997

DCE Remote Procedure Call

• Codeset Registry

• dce_cs_loc_to_rgy

• dce_cs_rgy_to_loc

• rpc_rgy_get_max_bytes

• rpc_rgy_get_codesets

• Evaluation

• rpc_ns_import_ctx_add_eval

• rpc_cs_eval_without_universal

• rpc_cs_get_tags(default eval logic)

• rpc_ns_binding_lookup_next

• rpc_ns_binding_lookup_done

• rpc_cs_binding_set_tags

• rpc_cs_char_set_compat_check

• custom evaluations (CMIR /SMIR)

• Stub Support

• rpc_cs_get_tags

• cs_byte_net_size

• wchar_t_net_size

• cs_byte_to_netcs

• wchar_t_to_netcs

• cs_byte_local_size

• wchar_t_local_size

• cs_byte_from_netcs

• wchar_t_from_netcs

The test sources are located at

dce-root-dir/dce/src/test/functional/rpc/runtime/i18n_api

in the source tree; the built objects can be found at:

dce-root-dir/dce/obj/platform/test/functional/rpc/runtime/i18n_api

4.2.5.1 Prerequisites forRunning the Tests

The following things must be true in order to successfully run the I18N Extension RPC
runtime tests:

January 17, 1997 4−25

DCE Testing Guide

• All platforms:

• OSF character and code set registry must be installed as

/usr/lib/nls/csr/code_set_registry.db

This is a binary file, which is produced bycsrc (the code set registry compiler).
The input file should be found in:

dce-root-dir/dce/src/test/functional/rpc/runtime/i18n_api/ts/cs_rgy/platform

• The Japanese EUC and SJIS locales are required. This is because the test input
data are Japanese. However, the contents ofi18n_input_data can be changed to
other data (for example, French), in which case the other appropriate locale will
be required.

• HP-UX Platform:

• HP-UX version 10 is required, sincenl_langinfo() is broken with HP-UX version
9.

4.2.5.2 Running the Test and Checking Results

To run the tests, do the following:

1. Compile the code set registry:

%% cd /usr/lib/nls/csr

%% csrc \
-i dce-root-dir/dce/src/test/functional/rpc/runtime/i18n_api/ts/cs_rgy/platform/code_set_registry.txt \
-o code_set_registry.db

(Note that this step requiresroot permission, because/usr/lib/nls is a system
directory.)

2. dce_loginascell_admin:

dce_login cell_adminpassword

3. Go to the

dce-root-dir/dce/obj/platform/test/functional/rpc/runtime

directory.

4. Execute the following shell commands (the following is given incshsyntax):

%% setenv I18N_SERVER_ENTRY "/.:/i18n_test"
%% setenv TET_ROOT "‘pwd‘/i18n_api"
%% setenv TET_EXECUTE "‘pwd‘/i18n_api"
%% mkdir i18n_api/all

4−26 January 17, 1997

DCE Remote Procedure Call

5. Add TET’s path to your current execution path, for example:

%% setenv PATH /usr/dcetest/test/tet/bin:$PATH

6. Set the appropriate locale names for your system (locale names are system
dependent). For example, on an HP-UX system:

%% setenv I18N_SERVER_LOCALE "japanese.euc"
%% setenv I18N_CLIENT_LOCALE "japanese"

—or, on an OSF/1 system:

%% setenv I18N_SERVER_LOCALE "/usr/lib/nls/loc/ja_JP.AJEC"
%% setenv I18N_CLIENT_LOCALE "/usr/lib/nls/loc/ja_JP.SJIS"

7. Execute the test under TET with the following command:

%% tcc -e -s i18n_api/tet_scen -x i18n_api/tetexec.cfg -jjournal all

wherejournal is the pathname of the journal file where test results will be written.
This command will execute all of the available test cases. Note that if you wish to
execute the test more than once, you will have to either remove the journal file
from the test’s previous run or specify a different journal filename.

To verify the test results, check the journal output. The journal will be located in a
numbered directory, where the number represents a test run. A numbered directory and
journal is created for each invocation of thetcc command (for example,0001e, 0002e,
and so on).

For the evaluation/stub support test cases, go to the

dce-root-dir/dce/obj/platform/test/functional/rpc/runtime/i18n_api/ts/cs_eval/cs_byte

and

dce-root-dir/dce/obj/platform/test/functional/rpc/runtime/i18n_api/ts/cs_eval/wchar

directories, and run theresult_check.shscript. The script will verify that the generated
output is the same as the expected output.

4.2.6 RPC Runtime Library and IDL Compiler Tests

A suite of test cases is provided for verification of compiler and runtime interaction. Use
the testsh shell script, which allows for summary statements and uniformly formatted
output for each test case, to execute these test cases. Control program scripts are ‘‘built’’
in the directory:

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/rpc/rtandidl/control

(The scripts all have file names ending with.tsh.) Note that the contents of this directory
are built from the contents of the

January 17, 1997 4−27

DCE Testing Guide

dce-root-dir/dce/src/test/rpc/rtandidl/control

directory.

Each control program imports an environment from one or more configuration files (with
names ending with the suffix.tshrc) and invokes the test case with the appropriate input
parameters. Summary information can be printed prior to exit from the control program.
This structure lets the user ignore complicated parameter requirements for individual test
cases, thereby simplifying test case execution.

Before executing the Naming Service Interface (NSI) portion of this suite, be aware of
the following:

• The namespace must be configured.

• The NSTEST_DIR directory must be created in the namespace for use by the NSI
tests. See Chapter 5 of this guide, the chapters on configuring and starting up DCE in
theOSF DCE Administration Guide—Introduction, andAppendix Aof theOSF DCE
Administration Guide—Introductionfor details on namespace configuration.

Before executing the RPC Authentication testcases, the DCE Security Service must be
properly configured. See Chapter 8 of this guide for information on configuring and
enabling the DCE Security Service.

You must also do the following before running authenticated RPC tests:

• Login as the privileged user (root).

• Authenticate as cell_admin, or any user with privileges to modify the registry, using
thedce_logincommand. The default password is ‘‘-dce-’’.

dce_login cell_admin -dce-

• Set the following environment variables:

BACKTREE The absolute path to the backing tree or sandbox.

CALLER_KEY Password for thecell_admin account. The default is-dce-.

CLIENT_KEY Password given to the client useraccount.

CLIENT_NAME Account name for the client user.

PROTOCOL Should be set to either ‘‘ncadg_ip_udp’’
or ‘‘ncacn_ip_tcp’’.

SERVERHOST Should be set to the machine name of the machine that is to
run the server daemon.

SERVER_KEY Password given to the serveraccount.

SERVER_NAME Account name for the server user.

• Ensure therun_server shell script invokes thesofservprocess with the appropriate
value for the server account andserver_key.

Note: Typically server_nameand server_key are set to ‘‘server,’’ and
client_nameandclient_keyare set to ‘‘client.’’

To run these tests, you must first start therun_server shell script, and then start the
run_client shell script. Sincerun_server starts a server process, it must be executed

4−28 January 17, 1997

DCE Remote Procedure Call

prior to run_client. The run_client script invokes the test case control files using the
testshprogram.

To start the server process, enter

run_server

at the command line. No parameters are required.

The run_client shell script executes the specified test cases and has the following
syntax:

run_client -testlist server_host testsh_dir testcase_dir include_dir testname

where

-testlist Provides a listing of all valid test case choices. Individual test
cases are valid choices, as are categories of tests such asall,
which requests execution of all test cases in this suite.

server_host Specifies the name of the machine on which therun_server
shell script was executed.

testsh_dir Specifies the name of the directory containing thetestsh
executable.

testcase_dir Specifies the name of the directory containing the test case
executables.

include_dir Specifies the name of the directory containing the DCE header
files. It is used by the IDL compiler testsnocodeandcmd_line
so these tests can be run prior to final installation of the DCE
RPC header files.

testname Specifies the name of the test to run, or category of test cases to
be run. The run_client -testlist command can be used to
generate a list of valid test names.

See the

dce-root-dir/dce/src/test/rpc/rtandidl/README

file for further information, including information about thedo_rpc_test script, which
will run the rtandid test suite.

4.2.6.1 The testsh Program

The testshprogram is a front end for execution of test programs. Source code for this
program can be found in the

dce-root-dir/dce/src/test/rpc/rtandidl/testsh

directory. It provides a standard way for a test developer to create a test environment and
it tallies subtotals and summaries of test results. It also allows error conditions to abort a
test suite.

January 17, 1997 4−29

DCE Testing Guide

The default behavior forrun_client is to run the test specified, and log results in
testname.log.

The testshtesting options are as follows:

testsh [-d [output_level]] [-e] [-l filename|\
-L filename] [-s | -S] [-I path]

where:

-d Specifies an output level for all test programs. Using the-d option with
nooutput_levelinteger returns a message only when a test fails.

output_level Specifies a specific output level for all test programs. The following list
shows the valid integer values foroutput_leveland the output levels they
specify:

1 Prints message on failure.

2 Prints message on success.

3 Prints message on warning.

4 Prints message on trace.

5 Prints message on information.

63 Prints debug messages during test case execution.

-e Terminates the execution of the test case when an error is encountered.

-l Generates a log file and stores that log file infilename.

-L Sends the expandedtestsh script commands fromtestcase.tsh to
filename.

-s Prints output to the screen using the standard error.

-S Sends verbose output to the screen using the standard error.

-I Enablestestshto look in thepathdirectory for test case executables.

4.2.6.2 RPC API Function Tests

This test suite includes a test for all RPC API functions. The tests are located in the

dce-root-dir/dce/src/test/rpc/rtandidl/control

directory and are grouped as shown in the following table:

4−30 January 17, 1997

DCE Remote Procedure Call

__
Test Group Control File Function Tested___LL LL LL LL___

Binding tests all_binding.tsh rpc.binding_*() & string_()* calls
DCE error inquire text testserror_inq_text.tsh dce_error_inq_text() call
NSI tests all_ns.tsh rpc_ns_*()calls
RPC authentication tests all_auth.tsh rpc_*_auth_*() calls
RPC management tests all_mgmt.tsh rpc_mgmt_*() & network_protseqs*calls
Object tests object_set_type.tsh, object_inq_type.tsh rpc_object_*()calls
UUID tests all_uuid.tsh uuid_*() calls
IDL tests all_idl.tsh IDL compiler and application tests___L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L

4.2.6.3 Specification for control file and Command Descriptions

The control file is a template that directs the execution of test cases. The control file
consists of commands that can be composed of keywords, function calls, literals, and
values that are interpreted by the script as parameters to pass to test cases.

The valid commands are as follows:

echo string Prints the specified string.

string The # (number sign) character specifies a comment, which is
ignored.

include configfile Executes theconfigfileconfiguration file.

execute runfile Spawns a subshell and executesrunfile.

test options testcase_parameters
Executes a test case. The-p(iterations) option can be used to
execute multiple iterations of a test. The test case parameters
must coincide with the parameters expected by the individual
test case to be run.

run program Executes the specified program.

summary Generates and prints the number of successful and unsuccessful
test cases. It is typically the last line of a control file.

subtotal Prints the number of test cases that have passed or failed since
the lastsubtotal command.

subtotal clear Resets the subtotal counts to zero passes and zero failures.

remote host program testsh_options
Remotely executes aprogram on the machinehost. The
program is run under thetestsh controller with the options
specified bytestsh_options.

set VAR=value Sets an environment variableVARto value.

pause Prints the message

PPrreessss RREETTUURRNN ttoo ccoonntti innuuee oorr qq ttoo qquuiit t

January 17, 1997 4−31

DCE Testing Guide

on the screen and delays the execution of the program until the
tester enters a valid response.

onerror option Specifies default behavior of the control program when errors
occur. The following values are valid foroption:

stop Causestestsh execution to halt if an
error is encountered.

continue Causes testsh execution to continue
regardless of errors.

default Consults the global parameter (set by
the -e option to thetestshcontroller) to
determine the appropriate behavior in
the event of a failure.

4.2.7 Name Service Interface Test

dcesxis a test of the CDS NSI (Name Service Interface). Refer to Chapter 5 of this guide
for information on running the test.

4.2.8 Test Plans

Refer to Chapter 1 of theOSF DCE Release Notesfor the location of the DCE test plans
on the DCE distribution tape.

4.3 RPC Runtime Output and Debugging Output

The RPC component outputs server information of all kinds via the DCE serviceability
component. The following sections describe how to control the various kinds of
information (including debugging output) available from RPC via serviceability.

4.3.1 Normal RPC Server Message Routing

There are basically two ways to control normal RPC server message routing:

• At startup, through the contents of a routing file (which are applied to all components
that use serviceability messaging).

4−32 January 17, 1997

DCE Remote Procedure Call

• Dynamically, through thedcecp logobject.

The following sections describe each of these methods.

4.3.1.1 Routing File

If a file called

dce-local-path/svc/routing

exists when RPC is brought up (i.e., whendced is executed or when the cell is started
throughdce_config), the contents of the file (if in the proper format) will be used as to
determine the routing of RPC serviceability messages.

The value ofdce-local-pathdepends on the values of twomake variables when DCE is
built:

DCEROOT its default value is:/opt

DCELOCAL its default value is:$DCEROOT/dcelocal

Thus, the default location of the serviceabilityrouting file is normally:

/opt/dcelocal/svc/routing

However, a different location for the file can be specified by setting the value of the
environment variableDCE_SVC_ROUTING_FILE to the complete desired pathname.

The contents of the routing file consist of formatted strings specifying the routing desired
for the various kinds of messages (based on message severity). Each string consists of
three fields as follows:

severity:output_form:destination[output_form:destination. . .]

Where:

severity specifies the severity level of the message, and must be one of the
following:

• FATAL

• ERROR

• WARNING

• NOTICE

• NOTICE_VERBOSE

(The meanings of these severity levels are explained in detail in Chapter
4 of theOSF DCE Application Development Guide — Core Components
volume, in the section entitled ‘‘Specifying Message Severity’’.)

output_form specifies how the messages of a given severity level should be
processed, and must be one of the following:

• BINFILE

January 17, 1997 4−33

DCE Testing Guide

Write these messages as binary log entries

• TEXTFILE

Write these messages as human-readable text

• FILE

Equivalent toTEXTFILE

• DISCARD

Do not record messages of this severity level

• STDOUT

Write these messages as human-readable text to standard output

• STDERR

Write these messages as human-readable text to standard error

Files written asBINFILE s can be read and manipulated with a set of
logfile functions. See Chapter 4 of theOSF DCE Application
Development Guide — Core Componentsvolume, mentioned above, for
further information.

Theoutput_formspecifier may be followed by a two-number specifier of
the form:

.gens.count

Where:

gens is an integer that specifies the number of files (i.e., generations)
that should be kept

count is an integer specifying how many entries (i.e., messages) should
be written to each file

The multiple files are named by appending a dot to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specified bycount, the file is
closed, the generation number is incremented, and the next file is
opened. When the maximum generation number files have been created
and filled, the generation number is reset to 1, and a new file with that
number is created and written to (thus overwriting the already-existing
file with the same name), and so on, as long as messages are being
written. Thus the files wrap around to their beginning, and the total
number of log files never exceedsgens, although messages continue to
be written as long as the program continues writing them.

destination specifies where the message should be sent, and is a pathname. The field
can be left blank if theoutput_formspecified isDISCARD, STDOUT,
or STDERR. The field can also contain a%ld string in the filename
which, when the file is written, will be replaced by the process ID of the
program that wrote the message(s). Filenames maynot contain colons or
periods.

4−34 January 17, 1997

DCE Remote Procedure Call

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings as space-separated

output_form:destination

strings.

For example,

FFAATTAALL::TTEEXXTTFFIILLEE:://ddeevv//ccoonnssoollee
WWAARRNNIINNGG::DDIISSCCAARRDD::----
NNOOTTIICCEE::BBIINNFFIILLEE..5500..110000:://ttmmpp//l loogg%%lldd SSTTDDEERRRR::--

Specifies that:

• Fatal error messages should be sent to the console.

• Warnings should be discarded.

• Notices should be written both to standard error and as binary entries in files located
in the /tmp directory. No more than 50 files should be written, and there should be no
more than 100 messages written to each file. The files will have names of the form:

/tmp/logprocess_id.nn

whereprocess_idis the process ID of the program originating the messages, andnn
is the generation number of the file.

4.3.1.2 Routing by the dcecp log Object

Routing of RPC server messages can be controlled in an already-started cell through the
dcecp logobject. See thelog.8dcereference page in theOSF DCE Command Reference
for further information.

4.3.2 Debugging Output

Debugging output from RPC can be enabled (provided that RPC has been built with
DCE_DEBUG defined) by specifying the desired debug messaging level and route(s) in
the

dce-local-path/svc/routing

routing file (described above), or by specifying the same information in the
SVC_RPC_DBG environment variable, before bringing up RPC (i.e., prior to starting
the cell). Debugging output can also be enabled and controlled through thedcecp log
object.

Note that, unlike normal message routing, debugging output is always specified on the
basis of DCE component/sub-component (the meaning of ‘‘sub-component’’ will be
explained below) and desired level.

January 17, 1997 4−35

DCE Testing Guide

The debug routing and level instructions for a component are specified by the contents of
a specially-formatted string that is either included in the value of the environment
variable or is part of the contents of the routing file.

The general format for the debug routing specifier string is:

"component:sub_comp.level,. . .:output_form:destination\
[output_form:destination. . .] "

where the fields have the same meanings as in the normal routing specifiers described
above, with the addition of the following:

component specifies the component name (i.e.,rpc)

sub_comp.level specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

A star (‘‘* ’’) can be used to specify all sub-components. The sub-
component list is parsed in order, with later entries supplementing earlier
ones; so the global specifier can be used to set the basic level for all
sub-components, and specific sub-component exceptions with different
levels can follow (see the example below).

‘‘Sub-components’’ denote the various functional modules into which a component has
been divided for serviceabilitymessaging purposes. For RPC, the sub-components are as
follows:

general RPC general messages

mutex RPC mutex messages

xmit RPC xmit messages

recv RPC receive messages

dg_state RPC DG state messages

cancel RPC cancel messages

orphan RPC orphan messages

cn_state RPC CN state messages

cn_pkt RPC CN packet messages

pkt_quotas RPC packet quota messages

auth RPC authorization messages

source RPC source messages

stats RPC statistics messages

mem RPC memory messages

mem_type RPC memory type messages

dg_pktlog RPC DG packetlog messages

4−36 January 17, 1997

DCE Remote Procedure Call

thread_id RPC thread ID messages

timestamp RPC timestamp messages

cn_errors RPC CN error messages

conv_thread RPC conversation thread messages

pid RPC pid messages

atfork RPC atfork messages

cma_thread RPC CMA thread messages

inherit RPC inherit messages

dg_sockets RPC datagram sockets messages

timer RPC timer messages

threads RPC threads messages

For example, the string

"rpc:*.1,cma_thread.3:TEXTFILE.50.200:/tmp/RPC_LOG

sets the debugging level for all RPC sub-components (except cma_thread) at 1;
cma_thread’s level is set at 3. All messages are routed to/tmp/RPC_LOG. No more
than 50 log files are to be written, and no more than 200 messages are to be written to
each file.

The texts of all the RPC serviceability messages, and the sub-component list, can be
found in the RPC sams file, at:

dce-root-dir/dce/src/rpc/sys_idl/rpc.sams

For further information about the serviceabilitymechanism and API, see Chapter 4 of the
OSF DCE Application Development Guide — Core Componentsvolume, ‘‘Using the
DCE ServiceabilityApplication Interface’’.

January 17, 1997 4−37

Chapter 5. DCE Cell Directory Service

5.1 Overview

The DCE Cell Directory Service (CDS) provides the directory (naming) services for use
within a cell in a DCE environment. CDS allows users to assign names to resources and
then use those resources, without needing to know their physical locations in the
network. CDS uses the client/server model, and provides both command line and
programming interfaces for configuring services. CDS services can be accessed through
two Application Programming Interfaces (APIs), provided as part oflibdce.a. The first is
the X/Open Directory Service (XDS) API, and the second is the Name Service Interface
(NSI) of the RPC component, which accesses CDS in an RPC-specific way.

CDS allows clients to register named objects with the server and to bind a set of
attributes, including an object’s network addresses, to these objects. An object’s
attributes are stored in a distributed database, which is partitioned and partially
replicated. CDS is composed of three programs:

• cdsd

The CDS server. This program stores and maintains CDS names and handles requests
to create, modify, or look up data in the CDS database.

• cdsclerk

The CDS clerk. This is the interface between client applications and servers, and it
must exist on every node. Several of these may be running on each node since one is
spawned for each user.

• cdsadv

The CDS advertiser, the program which makes distributed CDS servers aware of
each other and known to clients. There must be one of these on every node.

In addition to these, there is also thecdsbrowser utility and thecdscp administration
program (‘‘CDS control program’’).

January 17, 1997 5−1

DCE Testing Guide

5.2 Setup, Testing, and Verification

Eight types of CDS tests are shipped with DCE. Two ways to test CDS are provided:
cdstestand the CDS test scripts. These tests are described in more detail in the following
sections.

Thecdsd_diag, cadump, andcatraverseprograms, and thedcesxtest, are also useful in
debugging CDS.

Before executing the test cases, you must configure CDS for testing using either the DCE
Configuration script

dce-root-dir/dce/src/config/dce_config

or the instructions found in the next subsection. You can run tests on the configurations
described in that section.

5.2.1 Installing CDS Functional Testswith dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guide.dcetest_config
will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocal) to that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/test/component_name/

directory, where thetest/component_nameelements of this path are equivalent to the
test/component_nameelements in the pathnames given in the ‘‘CDS Test Scripts’’ and
following sections below, which refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locationfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the CDS functional
tests, this path should be the location, on your machine, of:

dce-root-dir/dce/install

—which is the DCEinstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of theOSF DCE Release Notes).

Thus,dcetest_configwill install the CDS functional tests at:

/dcetest/dcelocal/test/directory/cds/

where /dcetest/dcelocal is the link to whatever path you supplied as the install
destination.

The advantage in usingdcetest_configto install the functional tests is that it will install
all that is needed andonly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlyinstall (if you choose) functional tests withdcetest_config; for
test configuration and execution you must follow the instructions in the sections below.

5−2 January 17, 1997

DCE Cell Directory Service

Refer to Chapter 11 of this guide for further information on usingdcetest_config.

5.2.2 CDS Setup

You can set up CDS for testing purposes in two ways: with or without the CDS
advertiser,cdsadv. Thecdsadvprogram automatically starts up a clerk-only system; you
must start the clerk manually when running CDS withoutcdsadv for testing. You can
specify the-a switch with cdsd to create a namespace, a clearinghouse, and the root
directory. This process is called auto-initialization.

To debug the CDS commandscdscp, cdsd, cdsclerk, cdsadv, cdsd_diag, or
cdsbrowser, you need to have built the code with theDEBUG macro defined. The
debug output will go to a log file in:

dcelocal/var/adm/directory/cds/cdsd

(for server daemons) and:

dcelocal/var/adm/directory/cds/cdsclerk

(for clerk daemons) directories, if there exists a file with the command name and a file
extension.events (with an asterisk as the only character in the file) in the respective
directory. This file is checked only at startup.

Note: The CDS clerk will stop working if the contents of its events file:

dcelocal/var/adm/directory/cds/cdsclerk/cdsclerk.events

exceeds 100 entries.

Both cdsdandcdsadvtake-d and-e switches. The-d switch specifies debugging mode
(that is, it does not fork) and if specified with the-e switch, routes event output to the
standard output. The-e* switch requests debug event logging for all events to go to
standard output. (The backslash is a shell escape character so that the asterisk is passed
through the shell. The asterisk indicates that all events should be reported.)

5.2.2.1 CDS Setup without cdsadv

To configure CDS for testing withoutcdsadv, you need to be logged in as root and do the
following:

1. Change directory todcelocal/bin.

2. Thedced (DCE host daemon) process must be running before you start any CDS
processes. See thedced(8dce)reference page for information on startingdced.

3. To start thecdsddaemon, enter:

./cdsd -a

January 17, 1997 5−3

DCE Testing Guide

where-a specifies auto-initialization. The auto-initialization information is stored
in the

dcelocal/etc/cds_config

file, which is created bycdsd, and which can be used to configure clerks and
servers manually.

You may also use the following optional switches:

-d Debug mode, events tostdout, does not fork, turns on
tracing to your terminal.

-e Prints error messages. Use the\ character to escape the
shell. Use the* character to indicate full error messages (-
e*) or use a fully qualified filename.

-v Prints initialization progress messages; these verify that
initialization sucessfully completed.

4. On the server machine (the machine on which you started the server), enter:

./cdsclerk -d -F

to start thecdsclerk process, since this configuration does not usecdsadvto start
cdsclerk. The -d flag prohibits forking, and the-F flag deletes the old socket on
startup.

You may also use the following optional switches withcdsclerk:

-e Prints error messages. Use the\ character to escape the
shell. Use the* character to indicate full error messages
(-e*) or use a fully qualified filename.

-m number Uses shared memory IDnumber. The shared memory ID
can be found in:

dcelocal/etc/cdscache.shmid

5. If the machine on which you want to run the client is not the server machine, you
need to runcdsclerk. Copy the

dcelocal/etc/cds_config

from the server machine to the client machine. Enter:

./cdsclerk -d -F

to start thecdsclerk process on the client machine, since this configuration does
not usecdsadv to startcdsclerk. The -d flag prohibits forking, and the-F flag
deletes the old socket on startup.

5−4 January 17, 1997

DCE Cell Directory Service

5.2.2.2 CDS Setup with cdsadv

To configure CDS for testing withcdsadv, you must be logged in as root and do the
following:

1. Thedced (DCE host daemon) process must be running before you start any CDS
processes. See thedced(8dce)reference page for information on startingdced.

2. To start the CDS advertiser, enter:

./cdsadv

You may also use the following optional switches:

-c Specifies cache size in kilobytes.

-e Prints error messages. Use the\ character to escape the shell. Use
the * character to indicate full error messages (-e*), or use a fully
qualified filename.

-s Prohibits the sending or receiving of advertisements. This setting
is useful for debugging and for setting up multiple cells on one
LAN.

-v Prints initialization progress messages; these verify that
initialization completed successfully.

The cdsadv program solicits responses from CDS Servers on the same LAN by
broadcast RPC. The first response it receives becomes the default CDS Server used
by that clerk.

To promote some other server to default, edit

dcelocal/etc/cds_config

and change the desired defaults. You must then stop any clerks that are running,
and restartcdsadv.

3. In the same directory, start thecdsddaemon by entering:

./cdsd -a

where the-a flag specifies auto-initialization. The auto-initialization information
is stored in the

dcelocal/etc/cds_config

file, which can be used to configure clerks and servers manually. You can also use
the optional switches described forcdsd in the section on ‘‘CDS Setup Without
cdsadv’’ in this chapter.

January 17, 1997 5−5

DCE Testing Guide

5.2.2.3 Using gdad

Thegdadcommand starts the GDA daemon. The Global Directory Agent (GDA) enables
intercell communication, serving as a connection to other cells through the global
naming environment.

You may use the following optional switches:

-d For debugging use only. Ranges from d0 through d12, with d0 being the
simplest level and d12 the most complex. The most useful level of debug
output is d7 for diagnosing operational problems. Higher levels are
useful when debugging coding errors.

-f Does not fork the child process.

-F Deletes old socket on startup.

-r Alternate pathname of/etc/resolv.conf.

-s Alternate pathname ofnamed.cafile.

-u Does not update GDA information in CDS server.

-v Prints initialization progress messages; these verify that initialization
completed successfully.

5.2.2.4 Resetting the CDS Environment

If it is necessary to reset the CDS environment to a ‘‘clean’’ state, there are several files
that need to be removed and shared memory segments and semaphores to be deleted.

The shared memory segment(s) can be removed by performing the following steps:

1. Get the SHMID (shared memory ID) from the first line of the file:

dcelocal/etc/cdscache.shmid

2. Useipcs to find theshm_key for the SHMID. The semaphore used by CDS uses
the same key as the shared memory:

ipcs | awk ’/SHMID_from_step_1/ {print $3}’

3. Remove the semaphore:

ipcrm -S shm_key_from_step_2

4. Remove the shared memory:

ipcrm -m SHMID_from_step_1

The CDS files can be removed with the following script:

rm -rf dcelocal/var/adm/directory/cds/*

rm -rf dcelocal/var/directory/cds*

5−6 January 17, 1997

DCE Cell Directory Service

rm -rf dcelocal/var/directory/cds/adm/cdsd/*

rm -rf dcelocal/var/directory/cds/adm/gdad/*

rm -rf dcelocal/etc/cds_config

rm -rf dcelocal/etc/cds_defaults

rm -rf dcelocal/etc/gda_id

rm -rf dcelocal/etc/cdsadv.pid

rm -rf dcelocal/etc/cdscache.shmid

rm -rf dcelocal/etc/cdsd.pid

See also thedce.rm script.

It is sometimes useful to purge the CDS cache between runs. To remove the CDS on-disk
cache (e.g., before starting up a new CDS server), execute the following commands:

kill -9 cdsclerk PID
/etc/dce.clean
cd /opt/dcelocal/var/adm/directory/cds
mv cds_cache.numbercds_cache.number.BAD
/etc/rc.dce

If the CDS server and client cannot broadcast, you must also do the following:

cdscp define cached serverCDS_Server_Hostnametower \
ncadg_ip_udp:CDS_Server_IP_Address

For example:

cdscp define cached server west tower ncadg_ip_udp:130.105.201.10

5.2.2.5 CDS Configuration Files

The following files are used in CDS configuration:

dcelocal/etc/cds.conf This file contains security information for CDS, such
as the principal names of thecdsdandgdad, as well
as the names of thecds-server and cds-admin
groups.

dcelocal/etc/cds_config This file contains configuration information about
namespaces and clearinghouses, including the name

January 17, 1997 5−7

DCE Testing Guide

and UUID of each. In each case it also contains the
internet address of the server that supports the
clearinghouse.

dcelocal/etc/cds_attributes This text file contains a list of the DCE attributes
and their OIDs. It maps OID, SYNTAX, and the
label used by CDS to identify the displayed
attribute. For example:

OOIIDD LLAABBEELL SSYYNNTTAAXX
11..33..2222..11..33..4422 CCDDSS__LLaassttSSkkuullkk TTiimmeessttaammpp

dcelocal/etc/cds_globalnames This file is a database of DCE-supported X.500
attribute types. Some of these are ‘‘naming
attributes’’ (meaning that they occur in the names of
objects, as specified by the schema), but most are
not. The file maps the following for each Attribute
Type:

• OID

• LABEL

• ASN.1-IDENTIFIER

• SYNTAX

• MATCHING RULE

cdscp.bpt Used by thecdscpparser.

cdscp.mbf Used by thecdscpparser.

5.2.3 CDS Test Scripts

The test scripts for CDS are in the

dce-root-dir/dce/src/test/directory/cds

directory. To run a test, enter:

cp_test.sh[-switch ...] testname

where

-switch This optional parameter specifies a certain testing option. The
following values are valid forswitch:

-cdscpdir pathname Specifies an alternative pathname for
cdscp.

-cell name1 Specifies name1 as the cell name to
perform local tests on.

5−8 January 17, 1997

DCE Cell Directory Service

-ch1 name2 Specifies name2 as the primary
clearinghouse (Clearinghouse 1).

-ch2 name3 Specifies name3 as the secondary
clearinghouse (Clearinghouse 2 - an
existing clearinghouse).

-ch3 name4 Specifies nam4 as Clearinghouse 3 - a
clearinghouse to create.

-dir dirname Specifies dirname as the top level test
directory.

-disable Do not strip disable commands from
scripts.

-inet address Specifies Internet address.

-keeplines Do not delete the test script when done.

-nodeldir Stripsdeldir commands from scripts.

-noch Strips all clearinghouse information.

-noch1 Strips primary clearinghouse
(Clearinghouse 1) information.

-noch2 Strips secondary clearinghouse
(Clearinghouse 2) information.

-noch3 Strips create clearinghouse (Clearinghouse
3) information.

-nopipe Specifies that commands not be piped into
cdscp.

-noshow Stripsshowcommands from scripts.

-noskulk Stripskulk commands from scripts.

-pid Uses the process ID ofcp_test.sh to
generate unique log filenames. You can run
multiple simultaneous tests using this
option.

-remcell cellname Specifies Remote cell name to reference for
intercell testing.

-restart Specifies that the DCE servers be restarted
before starting the test.

-use_alias Use/.: in tests to refer to the cellname.

-v Specifies verbose mode.

testname Specifies the CDS test to run. The following tests are provided:

cp_abuse.tests Stress tests.

cp_childpointer.tests Tests childpointer operations.

January 17, 1997 5−9

DCE Testing Guide

cp_clearinghouse.testsTests clearinghouse operations.

cp_clerk.tests Tests clerks.

cp_credir.tests Tests directory operations and is a subset
of cp_directory.tests.

cp_directory.tests Tests directory operations.

cp_foreign.tests Tests merges of foreign cell subtree dump
files.

cp_intercell.tests Tests references to foreign cell data
(requires-remcell to be specified).

cp_misc.tests Tests confidence, preferred clearinghouse.

cp_negative.tests Tests multiple creates/deletes, and non-
extant references.

cp_object.tests Tests object operations.

cp_replica.tests Tests replica operations.

cp_server.tests Tests servers.

cp_softlink.tests Tests softlink operations.

cp_subtree.tests Tests subtree operations.

The

dce-root-dir/dce/src/test/directory/cds/cp_killer.sh

script runs all the tests listed above except:

• cp_misc.tests

• cp_abuse.tests

• cp_intercell.tests

• cp_credir.tests

To runcp_killer.sh, enter:

cp_killer.sh

Any of the cp_test.sh switches may be used when runningcp_killer.sh. The
cp_killer.sh script usescp_test.sh.

5.2.4 Distributed ACL Tests

The driver script

dce-root-dir/dce/src/test/directory/cds/dacl_testing.sh

runs the distributed ACL tests:

5−10 January 17, 1997

DCE Cell Directory Service

• dacl_creates.sh

• dacl_deletes.sh

• dacl_modifies.sh

• dacl_reads.sh

• dacl_replicas.sh

It is invoked as follows:

dacl_testing.sh -ch1clearinghouse1-ch2 clearinghouse2

whereclearinghouse1andclearinghouse2are the names of two clearinghouses, both of
which must already have been created when the test is run, and neither of which should
be the cell default clearinghouse.

Note that the clearinghouse arguments mustnot be specified with a leading ‘‘/.:/’’ or
‘‘ /.../’’.

The following things must be true in order for the ACL tests to be run successfully:

• The driver script is running as the principalnotroot.

• The CDS server is called

/.../hosts/hostname/cds-server

This is the default name as set up bydce_config.

• Thenotroot principal has write permission for the default clearinghouse.

• Thenotroot principal has insert and read permission for the root directory.

Because of these prerequisites for running the test, it is advisable to rundacl_testing.sh
in a newly-configured DCE cell which has been specially set up for this purpose. The
dacl_setup.shscript can be run to set up such a newly-configured cell so that it meets the
above requirements.

dacl_setup.sh, which should be run as thecell_admin principal, is invoked as follows:

dacl_setup.sh -ch1clearinghouse1-ch2 clearinghouse2-ch3 default_clearinghouse

wheredefault_clearinghouseis the default clearinghouse for the cell; this usually has a
name of the formhostname_ch, wherehostnameis the name of the host machine.

Note that the clearinghouse arguments mustnot be specified with a leading ‘‘/.:/’’ or
‘‘ /.../’’.

The output of the tests is written to the following logfiles:

• dacl_creates.log

• dacl_deletes.log

• dacl_modifies.log

• dacl_reads.log

• dacl_replicas.log

January 17, 1997 5−11

DCE Testing Guide

5.2.5 NSI Test

dcesxis a test of the CDS NSI (Name Service Interface). It is invoked as follows:

ddcceessxx --KK --MM --RR --VV --ii 1100 --mm 1100 --pp 9999 --tt 3300

The flags have the following meanings:

Flag Meaning_______________________________________LL LL LL

Skulk whenever the namespace is
changed.

-K

Use multiple threads.-M

Re-randomize search context (only
used if a directory search fails).

-R

Set maximum verbosity.-V

Number of interfaces to enable (10
is the maximum).

-i 10

Number of call threads to configure
(for RPC).

-m 10

Number of passes (-p 0 means go
forever).

-p 99

Number of seconds to delay after
failure to import an interface.

-t 30

_______________________________________L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Note that you shoulddce_loginascell_admin before running thedcesxtest, so that the
test will have the permissions necessary to perform the operations it will attempt on
specific directories and objects.

5.2.6 Testing Intercell Lookup

The GDA clerk, unlike the CDS clerk which is an integral part of CDS, exists for test
purposes only. Its source is located at:

dce-root-dir/dce/src/directory/cds/gda/gda_clerk.c

The gda_clerk test program performs the same GDA lookup that the CDS clerk
performs; by running it you can eliminate all of the logic of the CDS clerk when testing
the GDA.gda_clerk uses the same interfaces and the same progress records as the CDS
clerk.

Its interactive inputs are:

• A string binding to the GDA. You can get this from the output of running the
command:

rpccp show mapping

5−12 January 17, 1997

DCE Cell Directory Service

• A /.../cellnamefor the GDA to look up.

You should make sure thatgda_clerk returns good results before you try remote cell
access through CDS.

5.3 CDS Runtime Output and Debugging Output

The CDS component outputs server information of all kinds via the DCE serviceability
component. The following sections describe how to control the various kinds of
information (including debugging output) available from CDS via serviceability.

5.3.1 Normal CDS Server Message Routing

There are basically two ways to control normal CDS server message routing:

• At startup, through the contents of a routing file (which are applied to all components
that use serviceability messaging).

• Dynamically, through thedcecp logobject.

The following sections describe each of these methods.

5.3.1.1 Routing File

If a file called

dce-local-path/svc/routing

exists when CDS is brought up (i.e., when the CDS daemons are executed or when the
cell is started throughdce_config), the contents of the file (if in the proper format) will be
used as to determine the routing of CDS serviceability messages.

The value ofdce-local-pathdepends on the values of twomake variables when DCE is
built:

DCEROOT its default value is:/opt

DCELOCAL its default value is:$DCEROOT/dcelocal

Thus, the default location of the serviceabilityrouting file is normally:

/opt/dcelocal/svc/routing

However, a different location for the file can be specified by setting the value of the
environment variableDCE_SVC_ROUTING_FILE to the complete desired pathname.

The contents of the routing file consist of formatted strings specifying the routing desired
for the various kinds of messages (based on message severity). Each string consists of

January 17, 1997 5−13

DCE Testing Guide

three fields as follows:

severity:output_form:destination[output_form:destination. . .]

Where:

severity specifies the severity level of the message, and must be one of the
following:

• FATAL

• ERROR

• WARNING

• NOTICE

• NOTICE_VERBOSE

(The meanings of these severity levels are explained in detail in Chapter
4 of theOSF DCE Application Development Guide — Core Components
volume, in the section entitled ‘‘Specifying Message Severity’’.)

output_form specifies how the messages of a given severity level should be
processed, and must be one of the following:

• BINFILE

Write these messages as binary log entries

• TEXTFILE

Write these messages as human-readable text

• FILE

Equivalent toTEXTFILE

• DISCARD

Do not record messages of this severity level

• STDOUT

Write these messages as human-readable text to standard output

• STDERR

Write these messages as human-readable text to standard error

Files written asBINFILE s can be read and manipulated with a set of
logfile functions. See Chapter 4 of theOSF DCE Application
Development Guide — Core Componentsvolume, mentioned above, for
further information.

Theoutput_formspecifier may be followed by a two-number specifier of
the form:

.gens.count

Where:

gens is an integer that specifies the number of files (i.e., generations)
that should be kept

5−14 January 17, 1997

DCE Cell Directory Service

count is an integer specifying how many entries (i.e., messages) should
be written to each file

The multiple files are named by appending a dot to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specified bycount, the file is
closed, the generation number is incremented, and the next file is
opened. When the maximum generation number files have been created
and filled, the generation number is reset to 1, and a new file with that
number is created and written to (thus overwriting the already-existing
file with the same name), and so on, as long as messages are being
written. Thus the files wrap around to their beginning, and the total
number of log files never exceedsgens, although messages continue to
be written as long as the program continues writing them.

destination specifies where the message should be sent, and is a pathname. The field
can be left blank if theoutput_formspecified isDISCARD, STDOUT,
or STDERR. The field can also contain a%ld string in the filename
which, when the file is written, will be replaced by the process ID of the
program that wrote the message(s). Filenames maynot contain colons or
periods.

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings as space-separated

output_form:destination

strings.

For example,

FFAATTAALL::TTEEXXTTFFIILLEE:://ddeevv//ccoonnssoollee
WWAARRNNIINNGG::DDIISSCCAARRDD::----
NNOOTTIICCEE::BBIINNFFIILLEE..5500..110000:://ttmmpp//l loogg%%lldd SSTTDDEERRRR::--

Specifies that:

• Fatal error messages should be sent to the console.

• Warnings should be discarded.

• Notices should be written both to standard error and as binary entries in files located
in the /tmp directory. No more than 50 files should be written, and there should be no
more than 100 messages written to each file. The files will have names of the form:

/tmp/logprocess_id.nn

whereprocess_idis the process ID of the program originating the messages, andnn
is the generation number of the file.

January 17, 1997 5−15

DCE Testing Guide

5.3.1.2 Routing by the dcecp log Object

Routing of CDS server messages can be controlled in an already-started cell through the
dcecp logobject. See thelog.8dcereference page in theOSF DCE Command Reference
for further information.

5.3.2 Debugging Output

Debugging output from CDS can be enabled (provided that CDS has been built with
DCE_DEBUG defined) by specifying the desired debug messaging level and route(s) in
the

dce-local-path/svc/routing

routing file (described above), or by specifying the same information in the
SVC_CDS_DBGenvironment variable, before bringing up CDS (i.e., prior to starting
the cell). Debugging output can also be enabled and controlled through thedcecp log
object.

Note that, unlike normal message routing, debugging output is always specified on the
basis of DCE component/sub-component (the meaning of ‘‘sub-component’’ will be
explained below) and desired level.

The debug routing and level instructions for a component are specified by the contents of
a specially-formatted string that is either included in the value of the environment
variable or is part of the contents of the routing file.

The general format for the debug routing specifier string is:

"component:sub_comp.level,. . .:output_form:destination6
[output_form:destination. . .] "

where the fields have the same meanings as in the normal routing specifiers described
above, with the addition of the following:

component specifies the component name

sub_comp.level specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

A star (‘‘* ’’) can be used to specify all sub-components. The sub-
component list is parsed in order, with later entries supplementing earlier
ones; so the global specifier can be used to set the basic level for all
sub-components, and specific sub-component exceptions with different
levels can follow (see the example below).

‘‘Sub-components’’ denote the various functional modules into which a component has
been divided for serviceabilitymessaging purposes. For CDS, the sub-components are as
follows:

5−16 January 17, 1997

DCE Cell Directory Service

adver CDS Advertiser sub-component

child CDS Clerk/Child/Client sub-component

gda CDS GDA sub-component

server CDS Server sub-component

cache CDS Cache sub-component

library CDS Library sub-component

general CDS General sub-component

dthread CDS dthreads sub-component

cdscp CDS Control Program sub-component

For example, the string

"cds:*.1,server.3:TEXTFILE.50.200:/tmp/CDS_LOG

sets the debugging level for all CDS sub-components (exceptserver) at 1;server’s level
is set at 3. All messages are routed to/tmp/CDS_LOG. No more than 50 log files are to
be written, and no more than 200 messages are to be written to each file.

The texts of all the CDS serviceability messages, and the sub-component list, can be
found in the CDS sams file, at:

dce-root-dir/dce/src/directory/cds/includes/cds.sams

For further information about the serviceabilitymechanism and API, see Chapter 4 of the
OSF DCE Application Development Guide — Core Componentsvolume, ‘‘Using the
DCE ServiceabilityApplication Interface’’.

January 17, 1997 5−17

Chapter 6. DCE Global Directory Service

6.1 Overview

The DCE Global Directory Service (GDS) provides an X.500-compliant directory
service. GDS includes the Directory User Agent (DUA), or client, and the Directory
Service Agent (DSA), or server, as specified by the X.500 standard.

In conjunction with the directory service, GDS supplies the following services and
interfaces:

Note: In the descriptions below, OSI means ‘‘Open System Interconnection,’’ an
internationally recognized (ISO) term. However, in Chapter 10 of this
guide, which covers porting and testing DFS, OSI means ‘‘Operating-
System Independent.’’

• The standard XDS/XOM (X/Open Directory Service/ X/Open OSI-Abstract-Data
Manipulation) application programming interface to GDS

• The RTROS and CMX interface, and libraries for the OSI protocol stack upper layers

• An ASN.1 compiler (MAVCOD/MAVROS) and ASN.1 runtime library, used by GDS

• A screen-based menu-oriented administration interface

• A shell-based command interface to administer GDS

• A shell-based command interface to create and initialize a directory configuration

• An integrated ROS interface (RTROS) with AOM12 support for use by DME and
DME applications

Note: Reference pages for themavros andmavcod commands can be found in
theOSF DCE Technical Supplement.

January 17, 1997 6−1

DCE Testing Guide

6.2 GDS Testing Overview

The following types of GDS tests are shipped with DCE:

• Admin

Tests the menu-driven administration interface and the functionality it provides.

• API

Tests the XDS/XOM/XOMS/MHS application programming interfaces.

• DUA Switch

Tests the switching mechanism between CDS and GDS.

• gdscp

Tests the command line interface.

• gdssetup

Tests the command to create or initialize directory configuration.

• gds_sec

Tests the use of DCE authentication.

• MAVROS

Tests for the MAVROS compiler.

In addition, hand procedures for testing GDS intercell operation can be found in the
section ‘‘Testing GDS Intercell Operation’’, later in this chapter.

Compiler and linker flags for building the GDS test cases reside in:

dce-root-dir/dce/src/test/test.mk

Machine-specific compiler and linker flags that affect the compilation or linking of the
GDS test cases should be included in this file.

The following subsections describe how to install and set up GDS, and how to run tests
for each of the categories in the previous list.

Note the following prerequisite conditions for testing various aspects of XDS:

• In order to test XDS access to GDS, you must have GDS running.

• You do not have to have GDS running in order to test XDS access to CDS.

6.2.1 Changes to the GDS Functional Tests Since DCE 1.0.3

The GDS and XDS functional tests were overhauled for DCE 1.1, and new functional
tests were implemented for new functionality. The tests were converted to use the
X/Open Test Environment Tool (TET) test harness. TET provides a common invocation
mechanism for all GDS/XDS functional tests, a consistent means of determining testcase

6−2 January 17, 1997

DCE Global Directory Service

outcome, and a common repository for testcase results.

Additionally, the administration tests are now completely automated.

The exception to the above statement is the MAVROS test. This still runs in the same
manner as it did in the previous release.

Following are the tests that are available:

• GDS Tests

• The admin tests located under the

/dcetest/dcelocal/test/tet/functional/directory/gds/ts/admin

directory:

cacheadm cache administration testsuite

dsa DSA administration testsuite

shadow shadow administration testsuite

subtree subtree administration testsuite

scheme schema administration testsuite

• Thegdscptests located under the

/dcetest/dcelocal/test/tet/functional/directory/gds/ts/gdscp

directory tests the GDS command program.

• The GDS security tests located under the

/dcetest/dcelocal/test/tet/functional/directory/gds/ts/gds_sec

directory test the GDS security methods.

• Thegdssetuptests located under the

/dcetest/dcelocal/test/tet/functional/directory/gds/ts/gdssetup

directory test the GDS setup program.

• API Tests

• The XDS API tests, located under the

/dcetest/dcelocal/test/tet/functional/directory/xds/ts/xds

directory:

xds_st single-threaded mode

xds_mtmulti-threaded mode

• XOM API tests, located under the

/dcetest/dcelocal/test/tet/functional/directory/xds/ts/xom

directory:

xom_stsingle-threaded mode

xom_mt multi-threaded mode

January 17, 1997 6−3

DCE Testing Guide

• XOMS API tests, located under the

/dcetest/dcelocal/test/tet/functional/directory/xds/ts/xoms

directory:

xoms_stsingle-threaded mode

xoms_mtmulti-threaded mode

• MHS API tests, located under the

/dcetest/dcelocal/test/tet/functional/directory/xds/ts/mhs

directory:

mhs_stsingle-threaded mode

• SWITCH API tests, located under the

/dcetest/dcelocal/test/tet/functional/directory/xds/ts/switch

directory:

switch_stsingle threaded mode

switch_mt multi-threaded mode

switch_DNStypeless tests (uses DNS Cell Name)

The MAVROS tests are located at:

/dcetest/dcelocal/test/directory/gds/mavrostest

The TET binaries and scripts are located at:

/dcetest/dcelocal/test/tet/bin
/dcetest/dcelocal/test/tet/lib

6.2.2 Installing GDS Functional Testswith dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guide.dcetest_config
will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocal) to that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/test/component_name/

directory, where thetest/component_nameelements of this path are equivalent to the
test/component_nameelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

The GDS and XDS functional tests are available via option 4 (‘‘Global Directory
Service’’) of the ‘‘DCE Test Installation (Functional Tests’’ menu. The TET binaries are
available via option 3 (‘‘TET’’) of the DCE Test Installation menu.

Note thatdcetest_configwill prompt you for the locationfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the GDS functional

6−4 January 17, 1997

DCE Global Directory Service

tests, this path should be the location, on your machine, of:

dce-root-dir/dce/install/target_machine/dcetest/dce1.2.2

—which is the DCEinstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of theOSF DCE Release Notes).

Thus,dcetest_configwill install the GDS functional tests at:

/dcetest/dcelocal/test/tet/functional/directory/gds

and:

/dcetest/dcelocal/test/tet/functional/directory/xds

where /dcetest/dcelocal is the link to whatever path you supplied as the install
destination.

It is recommended that you not actually install the tests on your root filesystem; they are
quite large. You will need at least 8 Megabytes of space in order to install the necessary
software, and you should have another 8 Megabytes to allow for the creation of log files
and test results journals.

The advantage in usingdcetest_configto install the functional tests is that it will install
all that is needed andonly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlyinstall the functional tests withdcetest_config; you must use
TET to run the tests (with the exception of the MAVROS tests). Information on running
the individual tests can be found in the following sections.

See ‘‘Overview of TET Use’’ in Chapter 11 for general information on TET.

6.2.3 Running GDS Functional Tests with TET

The following subsections describe and explain various aspects of running the GDS
functional tests that are run under TET.

6.2.3.1 Testing Tools: Test Drivers and Journal Filters

Several tools have been provided to make the testing process easier. These are not part of
either TET or the functional tests, but are additions to ease the testing work load.

In

/dcetest/dcelocal/test/tet/functional/directory/gds/tools

are the following scripts:

local_TET.admin GDS test driver

TET_filter.admin Filter for admin test TET journal

January 17, 1997 6−5

DCE Testing Guide

TET_filter.gdscp Filter for gdscptest TET journal

TET_filter.gdssetup Filter for gdssetuptest TET journal

TET_filter.gds_sec Filter for gds_sectest TET journal

Similarly, in

/dcetest/dcelocal/test/tet/functional/directory/xds/tools

are the following:

local_TET.api XDS test driver

TET_filter.api Filter for XDS tests TET journal

xt_test XDS test device

The test driver is a front-end to the TET test environment. It sets a number of
environment variables used by the GDS tests and determines the location of results files
produced by the tests. The filters scan the TET journal and produce a more concise and
understandable summary of the test results.

6.2.3.2 Setting Up to Run the Tests

Before running either the GDS or API tests you must do the following things:

1. Set theTET_ROOT environment variable to

/dcetest/dcelocal/test/tet

For example (in a C shell):

%% setenv TET_ROOT /dcetest/dcelocal/test/tet

Note that the above configuration steps are required only if the user starts with a
newly-installed GDS. As soon as the tests have been started once, some Directory
IDs will always be configured already.

2. Set theOUTDIR environment variable to specify a location to which the test-
specific log files are to be written. If this variable is not set, the test driver will
specify the default logfile destination to be:

$TET_ROOT/functional/directory/gds/outdir. hostname

or

$TET_ROOT/functional/directory/xds/outdir. hostname

—depending on which tests are being run.

You may now run whichever of the TET-executed tests you wish.

6−6 January 17, 1997

DCE Global Directory Service

6.2.3.3

The tests listed below configure single-machine DCE cells as part of the test
environment. The cellnames are hard-coded into the test scripts; thus you cannot run
these tests on more than one machine on the same LAN at the same time. If two or more
cells of the same name exist on the same LAN they will intercept and respond to each
other’s cell broadcasts. This will cause problems with CDS which will result in failures
of calls torpc_binding_set_auth_info(), typically by the CDS clerk.

The workaround is to do only one iteration of these tests at a time on any subnet.

Test Cellname configured

gds_sec c=ie/o=digital

switch_mt c=ie/o=digital

switch_st c=ie/o=digital

switch_DNS snidec.sni.com

6.2.3.4 Running the Admin Tests

The Administration test driver accepts options that specify which particular suite of tests
to run. The driver is invoked as follows:

local_TET.admin test_suite

wheretest_suiteis one of the scenarios listed in thetet_scenfile. The principal scenarios
are:

all All admin tests

gdscp GDSCP test suite

cadm Cacheadm testsuite

dsa DSA testsuite

scheme Schema testsuite

shadow Shadow testsuite

subtree Subtree testsuite

gdssetup GDS Setup test suite

gds_sec GDS Security test suite

For example:

%% ./local_TET.admin gdscp
%% ./local_TET.admin subtree

January 17, 1997 6−7

DCE Testing Guide

6.2.3.5 Running the API Tests

For the API test driver, test suites are specified by switches followed by values. The
driver also will print a ‘‘help’’ message when this is specified with the-h switch.

The driver is invoked as follows:

local_TET.api [-c] [-h] [-l] -s test_suite

where:

-c Specifies that XOMS Convenience functions be used (this is the default
whenall is specified as thetest_suite; see below).

-h Specifies that a help message be displayed.

-l Specifies that API test logs not be removed after test run.

-s test_suite Specifies thetest_suiteto run;test_suiteis one of the following:

xds_all_ST All single-threaded XDS tests

xds_all_MT All multi-threaded XDS tests

xds_all All XDS tests (single- and multi-
threaded)

xom_all_ST All single-threaded XOM tests

xom_all_MT All multi-threaded XOM tests

xom_all All XOM tests (single- and multi-
threaded)

xoms_all_ST All single-threaded XOMS tests

xoms_all_MT All multi-threaded XOMS tests

xoms_all All XOMS tests (single- and multi-
threaded)

switch_all_ST All single-threaded SWITCH tests

switch_all_MT All multi-threaded SWITCH tests

switch_all_DNS All typeless SWITCH tests

switch_all All SWITCH tests (single- and multi-
threaded and typeless)

mhs_all All MHS tests

all_no_switch All of the above except switch tests

all All of the above

For example:

%% ./local_TET.api -h
%% ./local_TET.api -s switch_all_ST

6−8 January 17, 1997

DCE Global Directory Service

%% ./local_TET.api -s xds_all

6.2.3.6 How to Interpret Test Results

Two kinds of output are generated by the GDS functional tests run under TET:

• The TET journals, found at

$TET_ROOT/functional/directory/gds/results

and:

$TET_ROOT/functional/directory/xds/results

Journals produced by TET provide a synopsis of what happened during a test’s
execution. Details about the kind of information contained in the journals may be
found in the TET documentation in the source tree, at

dce-root-dir/dce/src/test/tet/doc

In general, the journals contain statements that indicate whether the testcase passed,
failed, or did something else.

The TET_filter.* scripts have been provided to help you organize the journal
information into a more manageable format. The formats of the reports output by the
filters vary, but each is self-explanatory. You run the filter by specifying the relative
path to the journal file you wish to filter; for example:

%% tools/filter_TET.api results/0001e/journal

This will produce a file calledjournal.log in your current working directory.

• The Test-Specific output files, found at

$OUTDIR

These files are not necessary for determining the pass/fail status of the test. They
contain supplementary information not contained in the journal file; this information
may be useful for debugging test problems, or simply as further verification that a
test has passed.

The number, content, and format of these files are all specific to the test being
executed.

6.3 The XDS Test Tool xt_test

The following sections describe the procedures necessary to use the XDS test tool,
xt_test, which can be used to run individual test cases. Note that the API test driver
should be used to run suites of tests; this driver usesxt_test to invoke the individual
tests. See ‘‘Running the API Tests’’, earlier in this chapter.

January 17, 1997 6−9

DCE Testing Guide

Thext_test program is an interpretive Directory test driver using the XDS/XOM API. It
allows the construction of testcases using an interpreted notation which follows closely
the form of the XDS interface, without the disadvantages of compilation. The XOM
public objects used are hard-wired into the filext_parms.h. As a result, the creation of
new testcases using existing data is easy; however, alteration to the data or additions to it
require recompilation and linking.

Thext_test tool is invoked as follows:

xt_test { -i testcase| -a testcases\
| -t testcases} [-o logfile] \
[-n number] [-c] [-v] [-0]

Where the flags and parameters have the following meanings:

-i testcase Specifies that a single testcase (named by the testcase file parameter) be
run.

-a testcases Specifies that the parameter be interpreted as the name of a file
containing a list of testcase file names, each of which is to be run in turn.

If no parameter is present, the filenameTestcasesis used.

-t testcases Specifies that the parameter be interpreted as the name of a file
containing a list of testcase file names, which are to be run in parallel
using threads, except for the first and last entries in the list, which are to
be run in single-threaded mode before and after, respectively, the
testcases specified between them.

Option -t is available only if the client and tester are built with
THREADSAFE defined.

-o logfile Specifies the logfile name (ifD2_LOG_DIR is defined, the default is
$D2_LOG_DIR/xt_test.log; otherwise the default is
$HOME/xt_test.log).

-n number Specifies the number of iterations (the default is 1).

-c Specifies conversion of objects to string and back (convenience library).
A subset of XOM objects is converted to a string, which is logged, and
then back to an object.om_get() is performed on this object to test its
syntactic validity. The subset of objects is that which is recognised by
the standard version of the XOM Object Information filexoischema.

Note that the-c flag is required when running convenience library
(xoms) testcases.

-v Specifies verbose output as an aid to debugging the tester itself;
additional output is logged.

-0 Prints version information and exits.

Whenxt_test is invoked with no parameters, or with invalid parameters, it produces a
brief message describing the usage options.

Before using the tester, GDS must be configured and activated. Since there are scripts to
do this when runnning tests under TET, the simplest way to configure GDS is to run
some tests under TET before usingxt_test. The Admin tests scheme could be used, since

6−10 January 17, 1997

DCE Global Directory Service

they run quickly.

6.3.0.1 XDS/XOM/XMH/Switch Tests

The following sections describe the XDS/XOM tests.

6.3.0.1.1 General

Thexom, xoms, xds, switch andmhs testcases are found at:

dce-root-dir/dce/src/test/functional/directory/xds/ts/xom/lib
dce-root-dir/dce/src/test/functional/directory/xds/ts/xoms/lib
dce-root-dir/dce/src/test/functional/directory/xds/ts/xds/lib
dce-root-dir/dce/src/test/functional/directory/xds/ts/switch/lib
dce-root-dir/dce/src/test/functional/directory/xds/ts/mhs/lib

respectively.

The non-threaded tests in each suite are divided into four groups, whose expected result
is always to pass:

basic Basic functionality tests

valid More advanced tests, expecting success

invalid More advanced tests, expecting failure

stress Tests of capacity limits

(These tests are slow.)

Assessing the results of the threads tests is not always as straightforward as for the other
tests, since the parallel-running tests can influence each other. There are four groups of
threads tests:

threads_as in which all actions are expected to succeed

threads_af in which all actions are expected to fail

threads_os in which one success is expected

threads_up in which the outcome is unpredictable

The first two cases are easily interpreted: the outcome will be either success or failure of
the test’s action, which (if it is the outcome expected) will be equivalent to the test’s
passing. Thus all these tests should pass.

The third case requires an inspection of the outcomes of all the tests, and confirmation
that only one action has succeeded. Since startup and shutdown should also succeed, the
expected (successful) result consists in three threads passing and the rest failing.

In the last group, success or failureper seis not so important, since this depends on the
non-deterministic interleaving of the tests: the purpose of these tests is to show whether

January 17, 1997 6−11

DCE Testing Guide

the directory system is robust enough not to crash or deadlock when confronted with a
complex mix of simultaneous interacting requests.

In summary, the desired outcomes are:

threads_as All tests will pass

threads_af All tests will pass

threads_os Three tests will pass, the rest fail

threads_up There will be no hanging or crashing (passes/failures
unimportant)

6.3.0.1.2 RunningIndividual Threads Tests

Each thread testcase consists of four parts. For example, for testthis1v, there exist four
files:

• STARTthis1v

• BODYthis1v

• SHUTDOWNthis1v

• T10this1v

To run a test, for exampleT10list1v, do the following:

xt_test -t T10list1v

and the other three parts will be called implicitly.

In general, the names of runnable threads tests start with an initial capital ‘‘T’’, followed
by a number indicating how many threads will be created, and ending with the name of
the test itself.

6.3.1 Examples

Following are some examples ofxt_testusage.

• To run the testcase fileread1v:

xxtt__tteesstt --ii rreeaadd11vv

• To run the testcase files named in fileTestcasessequentially:

xxtt__tteesstt --aa

• To run the testcase files named in filemy_testssequentially:

xxtt__tteesstt --aa mmyy__tteessttss

6−12 January 17, 1997

DCE Global Directory Service

• To run the threaded testcase fileT10add_entry37i:

xxtt__tteesstt --tt TT1100aadddd__eennttrryy3377ii

6.3.2 MAVROS Compiler Tests

The source files for the test drivers, input files, and reference output files for the
MAVROS tests are located in the

dce-test-dir/test/directory/gds/mavrostest

directory.

Running the MAVROS compiler test consists of executing thetest_mvr.sh script. The
script executes the test program to verify the coding routines can be executed correctly.
The test_mvr.shshell script executes the test programs in theinstall tree. Bothtest_mvr
andoidt are executed. If these programs execute correctly, thetest.errlog (for test_mvr)
andoidt.errlog (for oidt) error logs will be empty.

Note: Once llib-ltest.ln is up to date, lint is not actually executed. After
reexecutingtest_mvr.sh, lint.log may be empty even though there arelint
errors in the code.

6.3.3 Testing GDS Intercell Operation

This section contains the steps followed to hand-test using GDS for intercell
communications. The typical test scenario involves two single-machine cells configured
with X.500 names; in the steps given below, these machines are named ‘‘prague’’ and
‘‘gemini’’. The cell names used are, respectively:

//......//cc==uuss//oo==oossff//oouu==ddccee//ccnn==pprraagguuee
//......//cc==uuss//oo==oossff//oouu==ddccee//ccnn==ggeemmiinnii

The cell located on ‘‘prague’’ will be considered the foreign cell, and the cell located on
‘‘gemini’’ will be considered the local cell.

1. Configure the foreign cell, with GDA.

2. Configure the local cell, with GDA.

3. Start GDS on the local cell.

4. Administer the DUA Cache in the local cell withgdssysadm, as follows:

a. Prime cache with client address (option 5):

TT--sseelleeccttoorr:: Client
NNSSAAPP:: TCP/IP!internet=127.0.0.1+port=21010

January 17, 1997 6−13

DCE Testing Guide

b. Prime cache with name of default DSA (option 1):

nnaammee:: cc==uuss//oo==oossff//oouu==ddccee//ccnn==ggeemmiinnii/ /ccnn==ggeemmiinnii--ddssaa

Select ‘‘DSA-Type’’ from the attribute list and provide the following
values:

ddssaa--ttyyppee:: default/local’
TT--sseelleeccttoorr:: Server
PPSSAAPP:: TCP/IP!internet=127.0.0.1+port=21011

5. Get UUIDs and towers of foreign cell.

Logon to the foreign machine and type:

cdscp show cell as gds

You will get output that looks like this:

SSHHOOWW
CCEELLLL //......//cc==uuss//oo==oossff//oouu==ddccee//ccnn==pprraagguuee

AATT 11999944--0099--2288--1155::0011::0022
NNaammeessppaaccee UUuuiidd == 66ee2222bb5599ff--ddaadd00--1111ccdd--aa44aacc--00000000cc00aa11ddee5566

CClleeaarriinngghhoouussee UUuuiidd == 66dd1177bb1155ee--ddaadd00--1111ccdd--aa44aacc--00000000cc00aa11ddee5566
CClleeaarriinngghhoouussee NNaammee == //......//cc==uuss//oo==oossff//oouu==ddccee//ccnn==pprraagguuee//pprraagguuee__cchh

RReepplli iccaa TTyyppee == MMaasstteerr
TToowweerr == nnccaaccnn__iipp__ttccpp::113300..110055..55..8833[[]]
TToowweerr == nnccaaddgg__iipp__uuddpp::113300..110055..55..8833[[]]

6. Create object for foreign cell in DSA of local cell:

a. Logon to the local DSA on the local cell.

.b. Create all superior objects; for example:

cc==uuss//oo==oossff//oouu==ddccee

c. Create object for the foreign cell:

cc==uuss//oo==oossff//oouu==ddccee//ccnn==pprraagguuee
aapppplli iccaatti ioonn--pprroocceessss

Select ‘‘CDS-Cell’’ and ‘‘CDS-Replica’’ from the attribute list and
provide the following values:

CDS-Cell Cut and paste namespace UUID

Root directory UUID is same as namespace UUID

Name of cell is root directory name

CDS-Replica Replica type is MASTER

Cut and paste clearinghouse UUID

6−14 January 17, 1997

DCE Global Directory Service

Cut and paste clearinghouse name

Cut and paste towers

7. Have the cells exchange keys.

On the local cell,dce_login, enterrgy_edit, and type the following:

rrggyy__eeddiit t==>> cell /.../c=us/o=osf/ou=dce/cn=haven
EEnntteerr ggrroouupp nnaammee ooff tthhee llooccaall aaccccoouunntt ffoorr tthhee ffoorreeiiggnn cceelll l: : none
EEnntteerr ggrroouupp nnaammee ooff tthhee ffoorreeiiggnn aaccccoouunntt ffoorr tthhee llooccaall cceelll l: : none
EEnntteerr oorrgg nnaammee ooff tthhee llooccaall aaccccoouunntt ffoorr tthhee ffoorreeiiggnn cceelll l: : none
EEnntteerr oorrgg nnaammee ooff tthhee ffoorreeiiggnn aaccccoouunntt ffoorr tthhee llooccaall cceelll l: : none
EEnntteerr yyoouurr ppaasssswwoorrdd:: enter local cell cell_admin password
EEnntteerr aaccccoouunntt i idd ttoo lloogg iinnttoo ffoorreeiiggnn cceelll l wwiit thh:: cell_admin
EEnntteerr ppaasssswwoorrdd ffoorr ffoorreeiiggnn aaccccoouunntt:: enter foreign cell cell_admin password
EEnntteerr eexxppiirraatti ioonn ddaattee [[yyyy//mmmm//dddd oorr ’’nnoonnee’’]]:: (none)

8. Verify GDS intercell operation.

Test unauthenticated access. Type:

cdscp show dir /.../c=us/o=osf/ou=dce/cn=prague’

You should perform this command not as root, but as an unauthenticated system
user. Typeklist to verify that you in fact have no credentials.

9. Test authenticated access.

dce_loginand issue the samecdscpcommand as in the previous step.

6.4 GDS Runtime Output and Debugging Output

The GDS component outputs server information of all kinds via the DCE serviceability
component. TheOSF DCE Administration Guide, Chapter 5, Section 5.5 describes how
to control the various kinds of information (including trace output) available from GDS
via serviceability.

6.4.1 Test Plans

Refer to Chapter 1 of theOSF DCE Release Notesfor the location of the DCE test plans
on the DCE distribution tape.

January 17, 1997 6−15

Chapter 7. DCE Distributed Time Service

7.1 Overview

The DCE Distributed Time Service (DTS) synchronizes the clocks on computer systems
connected by a network. DTS uses the client/server model and provides a command-
driven management interface for configuration and management functions. An
Application Programming Interface (API) is provided for application developers to write
programs that use DTS services. Finally, DTS provides a Time-Provider Interface to
obtain Coordinated Universal Time (UTC) from time-provider devices, as well as several
example time provider implementations.

The UTC-based time structure in DTS uses 128-bit binary numbers to represent the time
value internally. These binary timestamps consist of the time in terms of 100-nanosecond
units since 00:00:00:00, October 15, 1582, the count of 100-nanosecond units of
inaccuracy applied to the preceding time, the time differential factor expressed as the
signed number of minutes east or west of Greenwich mean time, and the DTS version
number. The inaccuracy represents the upper bound on all nonfaulty sources of
inaccuracy (for example, clock drift, resolution of discrete computer clock, software
communication path lengths, and so on). The clerks and servers compute a correct time
from time values obtained from several servers or from a time provider. The
synchronization is accomplished by intersecting intervals. This algorithm provides fault
detection and withstands the failures of a small number of servers.

7.2 Setup, Testing, and Verification

The following types of DTS tests are shipped with DCE:

• API tests

January 17, 1997 7−1

DCE Testing Guide

• Synchronization tests

• Control program tests

• Time conversion tests

• Kernel (or user-mode) tests

These tests are described in more detail in following sections. Results from tests
described in the test plan are also included.

The DTS test directory contains three subdirectories:control, commonandservice. The
first, control, contains a script which testsdtscp command line syntax. The second,
common, contains the tests. The third,service, containsdtss-graph.c, the graph tool for
displaying the test environment.

Before executing the test cases, you must configure DTS for testing, using the
instructions found in the following section of this chapter. You can run tests on the
configurations described in that section.

7.2.1 Installing DTS Functional Testswith dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guide.dcetest_config
will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocal) to that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/test/component_name/

directory, where thetest/component_nameelements of this path are equivalent to the
test/component_nameelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locationfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the DTS functional
tests, this path should be the location, on your machine, of:

dce-root-dir/dce/install

—which is the DCEinstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of theOSF DCE Release Notes).

Thus,dcetest_configwill install the DTS functional tests at:

/dcetest/dcelocal/test/time/

where /dcetest/dcelocal is the link to whatever path you supplied as the install
destination.

The advantage in usingdcetest_configto install the functional tests is that it will install
all that is needed andonly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlyinstall (if you choose) functional tests withdcetest_config; for
test configuration and execution you must follow the instructions in the sections below.

7−2 January 17, 1997

DCE Distributed Time Service

Refer to Chapter 11 of this guide for further information on usingdcetest_config.

7.2.2 Building the Tests

The tests are delivered as source: you must build the executables on your system. To do
so, you must pick up the appropriate headers to define structures such astimespec,
timeval, andutc_t. Depending on the platform to which you are porting, you may have
to change the include files. Kernel structures can differ from non-kernel structures of the
same name, so you will have to keep straight which structures correspond with which
symbols. For example, you may have to modifytest_kernel.c in the common
subdirectory to define_TIMESPEC_T_ and include <utctime.h>. In addition, you may
have to include <sys/time.h> instead of <time.h>. Once you start to build the tests,
these constraints will become obvious; if the wrong files are included, you are likely to
get compiler warnings.

7.2.3 DTS Setup

Before running many DTS tests, you must first configure a DCE cell. Refer to the
following chapters of theOSF DCE Administration Guide—Introductionfor information
on configuring a DCE cell:

• Overview of The DCE Configuration Script

• Phase One: Initial Cell Configuration

• Phase Two: Configuring a DCE Client and Other DCE Services

7.2.4 API Tests

Therantest_api.cfile in the

dce-root-dir/dce/src/test/time/common

directory generates random test cases for the API. The program stops and displays
information if a failure is found.

Note that these tests do not require to be executed in a DCE cell; only a built and
installedlibdce (DCE library) is needed.

The test is invokes as follows:

rantest_api [count]

wherecountis an integer specifying how many iterations the test should execute.

January 17, 1997 7−3

DCE Testing Guide

The following compiler arguments, which are defined incommon/Makefile:

• -Dunix

• -DSYSTEM_FIVE

generate test invocations of the standard C library functionsgmttime() and localtime(),
respectively.

Note: Certain operating systems have a bug in thelocaltime(3) code which
manipulates the Daylight Savings Time switch on the last Sunday of
October 1974. The presence of this bug will cause a failure in the
rantest_api test for that date. See the comments under#ifdef
NOV1974_BUGin rantest_api.cfor further information.

7.2.5 Synchronization Testing

In order to perform useful synchronization testing, you should have at least threedtsd
servers running (in a running DCE cell).

Thedtscp control program commandset synch trace truetells the time service daemon
dtsd (see theMakefiles undercontrol andservice) to write the input and output values
for each synchronization to:

dcelocal/var/adm/time/dts-inacc.log

A separate program,dtss-graph, located in the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/time/service

directory (wheremachineis your system type), processes the trace into a PostScript file
of a graph of the synchronization. See theMakefile under:

dce-root-dir/dce/src/test/time/service

The dtss-graph command allows the user to see a large number of synchronizations
quickly and in detail. The last page of the output includes statistics describing the
interaction between the tracing node and all the servers it queried during the test.

To use these tools to perform synchronization testing, do the following:

1. Set up a test environment that includes one or more (preferably three) servers.

2. Enable the graph trace (using thedtscp control program commandset synch trace
true) on a sample of the nodes, including at least one client and one server. This
causes DTS to write a trace file for thedtss-graphcommand in:

dcelocal/var/adm/time/dts-inacc.log

If there is a time-provider in the test, the test should include a trace from the
daemon connected to the time-provider. (Note that DTS starts a new trace file each
time the service restarts.)

3. Process the traces withdtss-graph when the test run is complete. Enterdtss-
graph -help for options.

7−4 January 17, 1997

DCE Distributed Time Service

4. Print the graphs on a PostScript printer and examine the output.

7.2.6 dtscp Testing

The test_dtscp.kshscript is a functional test which runsdtscp commands and compares
the resulting output to the contents of an ‘‘expected results’’ file.

The test consists of the following parts, all located in the

dce-root-dir/dce/src/test/time/control

directory:

test_dtscp.ksh Test driver script.

dtscp.ksh The test script.

test_dtscp_clerk.templ Expected results template fordtscpclerk.

test_dtscp_server.templ Expected results template fordtscpserver.

The test is invoked as follows:

test_dtscptype[remote_hostname] [machine_type]

— wheretypeis eitherserver or clerk , depending on what type of DTS machine the test
is being executed on, server or clerk; andmachine_typeis AIX , OSF1, or HPUX.

When invoked, the test edits the template files with local information such as the
machine’s hostname, clock adjustment rate, and the next TDF change. This information
is placed in a file namedtest_dtscp_clerk.expor test_dtscp_server.exp, depending on
whether the clerk or server form of the test is running. (The contents of this file is used to
determine the expected results when the remote test is executed.)

The test will report whether the expected matches the actual output, and will record any
differences between the two in a file namedtest_dtscp.diff. test_dtscp.kshwill also test
commands which have variable output (such as the current time) and report any failures.
The actual results of running the test will be placed in a file namedtest_dtscp.act.

Note that the server test should be run with a server that has just been started, with no
time provider, in a cell with no other DTS servers running. The clerk test should be run
with a clerk that has just been started, in a cell with noglobal servers, and at least one
local server running.

Sample output from a clerk test:

SSTTAARRTT DDCCEE tti immee ffuunncctti ioonnaall t teesstt:: ddttssccpp..kksshh;; DDAATTEE:: TThhuu OOcctt 2211 1111::5533::4411 EEDDTT 11999933
TThhee vvaalluuee ooff NNOODDEE__TTYYPPEE iiss cclleerrkk
BBeeggiinn tteesstt ooff ddttssccpp ccoommmmaanndd ssttrruuccttuurree ((TThhuu OOcctt 2211 1111::5533::4433 EEDDTT 11999933))
YYoouu aarree rruunnnniinngg tthhiiss tteesstt oonn aa ddttss cclleerrkk ((rriigghhtt??))
AAccttuuaall oouuttppuutt i iss iinn ffi il lee tteesstt__ddttssccpp..aacctt
EExxppeecctteedd oouuttppuutt i iss iinn ffi il lee tteesstt__ddttssccpp__cclleerrkk..eexxpp
CCoommppaarree aaccttuuaall oouuttppuutt ttoo eexxppeecctteedd oouuttppuutt
AAccttuuaall oouuttppuutt mmaattcchheess eexxppeecctteedd oouuttppuutt

January 17, 1997 7−5

DCE Testing Guide

EExxeeccuuttee vvaarriiaabbllee ccoommmmaannddss
PPAASSSSEEDD,, TTeesstt 11 ""TTEESSTT__DDTTSSCCPP"" :: tteesstt rraann ssuucccceessssffuulll lyy
EENNDD DDCCEE tti immee ffuunncctti ioonnaall t teesstt:: ddttssccpp..kksshh;; DDAATTEE:: TThhuu OOcctt 2211 1111::5599::1166 EEDDTT 11999933

Sample output from a server test:

SSTTAARRTT DDCCEE tti immee ffuunncctti ioonnaall t teesstt:: ddttssccpp..kksshh;; DDAATTEE:: TThhuu OOcctt 2211 1122::1100::3399 EEDDTT 11999933
TThhee vvaalluuee ooff NNOODDEE__TTYYPPEE iiss sseerrvveerr
BBeeggiinn tteesstt ooff ddttssccpp ccoommmmaanndd ssttrruuccttuurree ((TThhuu OOcctt 2211 1122::1100::4422 EEDDTT 11999933))
YYoouu aarree rruunnnniinngg tthhiiss tteesstt oonn aa ddttss llooccaall sseerrvveerr ((rriigghhtt??))
AAccttuuaall oouuttppuutt i iss iinn ffi il lee tteesstt__ddttssccpp..aacctt
EExxppeecctteedd oouuttppuutt i iss iinn ffi il lee tteesstt__ddttssccpp__sseerrvveerr..eexxpp
AAccttuuaall oouuttppuutt mmaattcchheess eexxppeecctteedd oouuttppuutt
EExxeeccuuttee vvaarriiaabbllee ccoommmmaannddss
PPAASSSSEEDD,, TTeesstt 11 ""TTEESSTT__DDTTSSCCPP"" :: tteesstt rraann ssuucccceessssffuulll lyy
EENNDD DDCCEE tti immee ffuunncctti ioonnaall t teesstt:: ddttssccpp..kksshh;; DDAATTEE:: TThhuu OOcctt 2211 1122::1155::2222 EEDDTT 11999933

7.2.7 Additional DTS Testing

The following subsections describe how to run and interpret the output of some
additional tests.

7.2.7.1 Timezone Conversion Test

The DTS timezone conversion test (test_zonecvt) is invoked as follows:

test/time/common/test_zonecvt < time/common/zonecvt.dat

Note that you must install all of the files built for/etc/zoneinfoin order to run this test
(however, a running DCE cell isnot required). The files should be located at:

dceshared/etc/zoneinfo

wheredcesharedis a link that dce_configwill try to create from/etc/zone/info (note
however that your operating system may already have something at this location and if it
doesdce_configwill not overwrite it).

How To Set up DTS to use Local Zone Information

By default, DTS uses the GMT time zone, so time information you get from either

dtscp show current time

7−6 January 17, 1997

DCE Distributed Time Service

or the API functionutc_gettime()will be in GMT.

The default time zone information used will be that inlocaltime; dce_configwill usually
link this name to the correct zone, so that (for example)/etc/zoneinfo/localtimeon an
HP-UX machine will have been linked to/etc/zoneinfo/US/Eastern. If this has not been
done, simply set theTZ environment variable to the desired zone. For example:

TZ=US/Eastern

or:

TZ=EST5EDT

for a POSIX system.

If necessary, you can obtain the full distribution oflocaltime from:

ftp.uu.net:usenet/comp.sources.unix/volume18/localtime3/partXX.Z

whereXX runs from 01 to 07.

When using API functions, remember to calltzset()before anything else.

To change the localtime to a new zone, you can usezic with the-l option.

7.2.7.2 Kernel Library Tests

The following tests:

• test_kernel

• test_kernel-kernel

• test_kernel-user

are built from source in the

dce-root-dir/dce/src/test/time/common

directory. The tests have similar output. The first,test_kernel, links in libdce. The
test_kernel-kernel test links in libutc-kernel.a and runs in kernel mode; the
test_kernel-usertest links inlibutc-user.a and runs in user mode.

Note that your platform must support both the kernel-mode and the user-mode DTS
libraries in order for all three versions of this test to be built. See ‘‘Building and
Linking’’ earlier in this chapter.

January 17, 1997 7−7

DCE Testing Guide

7.2.7.3 DTS Hand Tests

The text file

dce-root-dir/dce/src/test/time/hand-tests

consists of instructions for performing, by hand, further DTS functional testing. These
tests are intended to be run by hand in the configurations specified.

7.2.8 Test Run Examples

Some annotated examples of test runs follow.

test_kernel

>> rreessoolluutti ioonn == 33997700000000 nnaannoosseeccss
>> ddrriif ftt == 11//2200000000
>> ffrreeqquueennccyy == 11000000000000000000 nnaannoosseecc // sseecc

This test checks various pieces of information that the kernel knows and DTS needs. The
3.97 milliseconds shown is the correct clock tick for the DECstation 3100. (The clock
ticks at 256 hz = 3.90625, but since the kernel actually uses micro-seconds, once a
second there’s an extra 64 micro-seconds added to keep the clock correct; thus the
longest tick is: 3.906 + 0.064 = 3.970). The drift is equal to 1 part in 20,000. The
frequency of 1,000,000,000 nanosecs/sec indicates that no clock training is occuring
(yet). Note that the first two numbers will be different on different platforms.

>> 11999922--0066--0099 2222::0044::4400..004455553388
>> 11999922--0066--0099 2222::0044::4400..004455553377000000 ++//-- 00 0000::0000::0000..005522779988990000 ((GGMMTT))
>> 11999922--0066--0099 1177::0044::4400..004455553377000000 ++//-- 00 0000::0000::0000..005522779988990000 ((GGMMTT--55::0000 == --1188000000))
>> 11999922--0066--0099 2222::0044::4400..004499444433000000 ++//-- 00 0000::0000::0000..005522779988990000 ((GGMMTT))
>> 11999922--0066--0099 1177::0044::4400..004499444433000000 ++//-- 00 0000::0000::0000..005522779988990000 ((GGMMTT--55::0000 == --1188000000))

This section shows the output of three system calls: one togettimeofday(), and two to
utc_gettime(). They should give the same answer to within a few milliseconds. (If two
calls toutc_gettime()should monotonically increase, they do.)

>> 11999922--0066--0099 2222::0044::4400..006688997733000000 ++//-- 00 0000::0000::0000..005522779999990000 ((GGMMTT))
>> 11999922--0066--0099 1177::0044::4400..006688997733000000 ++//-- 00 0000::0000::0000..005522779999990000 ((GGMMTT--55::0000 == --1188000000))
>> 11999922--0066--0099 2222::0044::4400..008888550044
>> SSeetttti inngg tti immee ffoorrwwaarrdd 11 sseeccoonndd
>> LLeeaapp sseeccoonndd sseett ttoo:: 11999922--0066--0099 2222::0044::4455..008888550044000000 ++//-- 00 0000::0000::0000..000000000000000000 ((GGMMTT))
>> 11999922--0066--0099 2222::0044::4411..008888550044
>> 11999922--0066--0099 2222::0044::4411..008844559977000000 ++//-- 00 0000::0000::0000..000044002211000000 ((GGMMTT))
>> 11999922--0066--0099 1188::0044::4411..008844559977000000 ++//-- 00 0000::0000::0000..000044002211000000 ((GGMMTT--44::0000 == --1144440000))

7−8 January 17, 1997

DCE Distributed Time Service

This section show aset of the time forward 1 second. Note that the time did in fact go
forward about one second (from 40 to 41).

>> 11999922--0066--0099 2222::0044::4444..110088003355
>> 11999922--0066--0099 2222::0044::4444..110044112277000000 ++//-- 00 0000::0000::0000..000044117711000000 ((GGMMTT))
>> 11999922--0066--0099 1188::0044::4444..110044112277000000 ++//-- 00 0000::0000::0000..000044117711000000 ((GGMMTT--44::0000 == --1144440000))
>> 11999922--0066--0099 2222::0044::4477..111155884477
>> 11999922--0066--0099 2222::0044::4477..111111993399000000 ++//-- 00 0000::0000::0011..000044332222000000 ((GGMMTT))
>> 11999922--0066--0099 1188::0044::4477..111111993399000000 ++//-- 00 0000::0000::0011..000044332222000000 ((GGMMTT--44::0000 == --1144440000))
>> 11999922--0066--0099 2222::0044::4477..112277556644

This section verifies that the inaccuracy increases, due to drift, and also the second
should be increased by one second because of the (possible) leap second.

>> AAddjjuusstti inngg tti immee bbaacckkwwaarrddss 00..11 sseeccoonndd
>> LLeeaapp sseeccoonndd sseett ttoo:: 11999922--0066--0099 2222::0044::5522..112277556644000000 ++//-- 00 0000::0000::0000..000000000000000000 ((GGMMTT))
>> 11999922--0066--0099 2222::0044::4477..112277556655
>> 11999922--0066--0099 2222::0044::4477..112233665577000000 ++//-- 00 0000::0000::0000..110033997711000000 ((GGMMTT))
>> 11999922--0066--0099 1188::0044::4477..112233665577000000 ++//-- 00 0000::0000::0000..110033997711000000 ((GGMMTT--44::0000 == --1144440000))
>> 11999922--0066--0099 2222::0044::5500..110099221144
>> 11999922--0066--0099 2222::0044::5500..110055330066000000 ++//-- 00 0000::0000::0000..007744667755000000 ((GGMMTT))
>> 11999922--0066--0099 1188::0044::5500..110055330066000000 ++//-- 00 0000::0000::0000..007744667755000000 ((GGMMTT--44::0000 == --1144440000))
>> 11999922--0066--0099 2222::0044::5533..009900886633
>> 11999922--0066--0099 2222::0044::5533..008866995555000000 ++//-- 00 0000::0000::0011..004455334400000000 ((GGMMTT))
>> 11999922--0066--0099 1188::0044::5533..008866995555000000 ++//-- 00 0000::0000::0011..004455334400000000 ((GGMMTT--44::0000 == --1144440000))

This section executes anadjust and verifies that the inaccuracy decreases. The
inaccuracy decreases during anadjust under the assumption that the clock is being made
more correct.

>> EEnnddiinngg aaddjjuussttmmeenntt pprreemmaattuurreellyy
>> 11999922--0066--0099 2222::0044::5533..009988559966
>> 11999922--0066--0099 2222::0044::5533..009944668899000000 ++//-- 00 0000::0000::0011..004455226622000000 ((GGMMTT))
>> 11999922--0066--0099 1188::0044::5533..009944668899000000 ++//-- 00 0000::0000::0011..004455226622000000 ((GGMMTT--44::0000 == --1144440000))
>> 11999922--0066--0099 2222::0044::5533..111100331144
>> 11999922--0066--0099 2222::0044::5533..110066440077000000 ++//-- 00 0000::0000::0011..004455226633000000 ((GGMMTT))
>> 11999922--0066--0099 1188::0044::5533..110066440077000000 ++//-- 00 0000::0000::0011..004455226633000000 ((GGMMTT--44::0000 == --1144440000))
>> 11999922--0066--0099 2222::0044::5533..111188112266

This section stops the adjustment and verifies that inaccuracy starts increasing again.

>> AAddjjuusstti inngg tti immee bbaacckkwwaarrddss 00..11 sseeccoonndd
>> LLeeaapp sseeccoonndd sseett ttoo:: 11999922--0066--0099 2222::0044::5588..111188112266000000 ++//-- 00 0000::0000::0000..000000000000000000 ((GGMMTT))
>> TTDDFF cchhaannggee sseett ttoo :: 11999922--0066--0099 2222::0055::0033..000000000000000000 ++//-- 00 0000::0000::0000..000000000000000000 ((GGMMTT))
>> 11999922--0066--0099 2222::0044::5533..111188112277
>> 11999922--0066--0099 2222::0044::5533..111144221199000000 ++//-- 00 0000::0000::0000..110033997711000000 ((GGMMTT))
>> 11999922--0066--0099 1177::0044::5533..111144221199000000 ++//-- 00 0000::0000::0000..110033997711000000 ((GGMMTT--55::0000 == --1188000000))
>> AAddjjuussttmmeenntt sshhoouulldd hhaavvee ccoommpplleetteedd..
>> 11999922--0066--0099 2222::0066::5522..441177999933
>> 11999922--0066--0099 2222::0066::5522..441144008855000000 ++//-- 00 0000::0000::0000..226688550088440000 ((GGMMTT))
>> 11999922--0066--0099 1188::0066::5522..441144008855000000 ++//-- 00 0000::0000::0000..226688550088440000 ((GGMMTT--44::0000 == --1144440000))

January 17, 1997 7−9

DCE Testing Guide

>> 11999922--0066--0099 2222::0066::5522..444455006622
>> 11999922--0066--0099 2222::0066::5522..444411115544000000 ++//-- 00 0000::0000::0000..226688227755440000 ((GGMMTT))
>> 11999922--0066--0099 1188::0066::5522..444411115544000000 ++//-- 00 0000::0000::0000..226688227755440000 ((GGMMTT--44::0000 == --1144440000))

This section allows the adjustment to complete by itself and verifies that the inaccuracy
starts increasing again. It also verifies that the timezone changes back from -5:00 to
-4:00.

>> EEnnddiinngg aaddjjuussttmmeenntt aaggaaiinn
>> 11999922--0066--0099 2222::0066::5522..445522779955
>> 11999922--0066--0099 2222::0066::5522..444488888888000000 ++//-- 00 0000::0000::0000..226688119988440000 ((GGMMTT))
>> 11999922--0066--0099 1188::0066::5522..444488888888000000 ++//-- 00 0000::0000::0000..226688119988440000 ((GGMMTT--44::0000 == --1144440000))
>> 11999922--0066--0099 2222::0066::5522..446600660077
>> 11999922--0066--0099 2222::0066::5522..445566770000000000 ++//-- 00 0000::0000::0000..226688119988440000 ((GGMMTT))
>> 11999922--0066--0099 1188::0066::5522..445566770000000000 ++//-- 00 0000::0000::0000..226688119988440000 ((GGMMTT--44::0000 == --1144440000))

This section confirms that ending theadjust (after it has run out) does not cause any
problems, and that the inaccuracy increases (or stays the same).

7.3 DTS Runtime Output and Debugging Output

The DTS component outputs server information of all kinds via the DCE serviceability
component. The following sections describe how to control the various kinds of
information (including debugging output) available from DTS via serviceability.

7.3.1 Normal DTS Server Message Routing

There are basically two ways to control normal DTS server message routing:

• At startup, through the contents of a routing file (which are applied to all components
that use serviceability messaging).

• At startup, via the-w option todtsd.

• Dynamically, through thedcecp logobject.

The following sections describe each of these methods.

7.3.1.1 Routing File

If a file called

dce-local-path/svc/routing

7−10 January 17, 1997

DCE Distributed Time Service

exists when DTS is brought up (i.e., whendtsd is executed or when the cell is started
throughdce_config), the contents of the file (if in the proper format) will be used as to
determine the routing of DTS serviceability messages.

The value ofdce-local-pathdepends on the values of twomake variables when DCE is
built:

DCEROOT its default value is:/opt

DCELOCAL its default value is:$DCEROOT/dcelocal

Thus, the default location of the serviceabilityrouting file is normally:

/opt/dcelocal/svc/routing

However, a different location for the file can be specified by setting the value of the
environment variableDCE_SVC_ROUTING_FILE to the complete desired pathname.

The contents of the routing file consist of formatted strings specifying the routing desired
for the various kinds of messages (based on message severity). Each string consists of
three fields as follows:

severity:output_form:destination[output_form:destination. . .]

Where:

severity specifies the severity level of the message, and must be one of the
following:

• FATAL

• ERROR

• WARNING

• NOTICE

• NOTICE_VERBOSE

(The meanings of these severity levels are explained in detail in Chapter
4 of theOSF DCE Application Development Guide — Core Components
volume, in the section entitled ‘‘Specifying Message Severity’’.)

output_form specifies how the messages of a given severity level should be
processed, and must be one of the following:

• BINFILE

Write these messages as binary log entries

• TEXTFILE

Write these messages as human-readable text

• FILE

Equivalent toTEXTFILE

• DISCARD

Do not record messages of this severity level

• STDOUT

January 17, 1997 7−11

DCE Testing Guide

Write these messages as human-readable text to standard output

• STDERR

Write these messages as human-readable text to standard error

Files written asBINFILE s can be read and manipulated with a set of
logfile functions. See Chapter 4 of theOSF DCE Application
Development Guide — Core Componentsvolume, mentioned above, for
further information.

Theoutput_formspecifier may be followed by a two-number specifier of
the form:

.gens.count

Where:

gens is an integer that specifies the number of files (i.e., generations)
that should be kept

count is an integer specifying how many entries (i.e., messages) should
be written to each file

The multiple files are named by appending a dot to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specified bycount, the file is
closed, the generation number is incremented, and the next file is
opened. When the maximum generation number files have been created
and filled, the generation number is reset to 1, and a new file with that
number is created and written to (thus overwriting the already-existing
file with the same name), and so on, as long as messages are being
written. Thus the files wrap around to their beginning, and the total
number of log files never exceedsgens, although messages continue to
be written as long as the program continues writing them.

destination specifies where the message should be sent, and is a pathname. The field
can be left blank if theoutput_formspecified isDISCARD, STDOUT,
or STDERR. The field can also contain a%ld string in the filename
which, when the file is written, will be replaced by the process ID of the
program that wrote the message(s). Filenames maynot contain colons or
periods.

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings as space-separated

output_form:destination

strings.

For example,

FFAATTAALL::TTEEXXTTFFIILLEE:://ddeevv//ccoonnssoollee
WWAARRNNIINNGG::DDIISSCCAARRDD::----
NNOOTTIICCEE::BBIINNFFIILLEE..5500..110000:://ttmmpp//l loogg%%lldd SSTTDDEERRRR::--

Specifies that:

7−12 January 17, 1997

DCE Distributed Time Service

• Fatal error messages should be sent to the console.

• Warnings should be discarded.

• Notices should be written both to standard error and as binary entries in files located
in the /tmp directory. No more than 50 files should be written, and there should be no
more than 100 messages written to each file. The files will have names of the form:

/tmp/logprocess_id.nn

whereprocess_idis the process ID of the program originating the messages, andnn
is the generation number of the file.

7.3.1.2 Routing by the dcecp log Object

Routing of DTS server messages can be controlled in an already-started cell through the
dcecp log object. The name used to manipulate the routes is the server entry name,
which is usually:

hosts/machine_name/dts-entity

See thelog.8dce reference page in theOSF DCE Command Referencefor further
information.

7.3.2 Debugging Output

Debugging output from DTS can be enabled (provided that DTS has been built with
DCE_DEBUG defined) by specifying the desired debug messaging level and route(s) in
the

dce-local-path/svc/routing

routing file (described above), or by specifying the same information in the
SVC_DTS_DBGenvironment variable, before bringing up DTS. Debugging output can
also be enabled and controlled through thedcecp logobject.

Note that, unlike normal message routing, debugging output is always specified on the
basis of DCE component/sub-component (the meaning of ‘‘sub-component’’ will be
explained below) and desired level.

The debug routing and level instructions for a component are specified by the contents of
a specially-formatted string that is either included in the value of the environment
variable or is part of the contents of the routing file.

The general format for the debug routing specifier string is:

"component:sub_comp.level,. . .:output_form:destination6
[output_form:destination. . .] "

January 17, 1997 7−13

DCE Testing Guide

where the fields have the same meanings as in the normal routing specifiers described
above, with the addition of the following:

component specifies the component name

sub_comp.level specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

A star (‘‘* ’’) can be used to specify all sub-components. The sub-
component list is parsed in order, with later entries supplementing earlier
ones; so the global specifier can be used to set the basic level for all
sub-components, and specific sub-component exceptions with different
levels can follow (see the example below).

‘‘Sub-components’’ denote the various functional modules into which a component has
been divided for serviceabilitymessaging purposes. For DTS, the sub-components are as
follows:

general General server administration

events Events received and acted upon

arith Math operations

ctlmsgs Control messages received

msgs Messages received

states Server state transitions

threads Thread interactions

config Server/cell configuration

sync Server/synchronization interactions

For example, the string

"dts:*.1,events.3:TEXTFILE.50.200:/tmp/DTS_LOG

sets the debugging level for all DTS sub-components (exceptevents) at 1;events’s level
is set at 3. All messages are routed to/tmp/DTS_LOG. No more than 50 log files are to
be written, and no more than 200 messages are to be written to each file.

The texts of all the DTS serviceability messages, and the sub-component list, can be
found in the DTS sams file, at:

dce-root-dir/dce/src/time/common/dts.sams

For further information about the serviceabilitymechanism and API, see Chapter 4 of the
OSF DCE Application Development Guide — Core Componentsvolume, ‘‘Using the
DCE ServiceabilityApplication Interface’’.

7−14 January 17, 1997

DCE Distributed Time Service

7.3.3 Test Plans

Refer to Chapter 1 of theOSF DCE Release Notesfor the location of the DCE test plans
on the DCE distribution tape.

January 17, 1997 7−15

Chapter 8. DCE Security Service

8.1 Overview

The DCE Security Service manages the rights and identities of users within a given cell.
It does so primarily by representing and certifying that identity to applications running
on separate systems in the environment

Some local system functions are also provided in an effort to preserve the location
transparency of the distributed environment. By supplanting the conventional machine
login and account management utilities with replacements that consult the network user
registry, users are free to use any system in the environment, provided that the local
administrator does not restrict access. In this way, systems become sharable resources
related to objects in the file or name system.

The DCE Security Service consists of the following cooperating subcomponents:

• Registry Service

The Registry Service manages user, group, and account information and stores
administrative policies regarding the characteristics of accounts that can access the
distributed system. The Registry Service is composed of a set of client services to
add, manipulate, and delete entries in the server’s registry database. The Kerberos
database, containing the secret keys of all registered principals, is contained in the
registry database. You can replicate the registry database within a cell, and any
changes to the master registry are propagated to the replicas. With this single logical
registry, a user can log in and authenticate from any system in the cell.

• Authentication Service

The Authentication Service is an encryption-based authentication protocol that uses a
modification of the Needham-Schroeder authentication algorithm.

The Authentication Service allows principals defined as accounts in the registry to
exchange credentials and establish mutually authenticated communications. The
Authentication Service is the network service that supplies the simple tickets and

January 17, 1997 8−1

DCE Testing Guide

session keys necessary for such communications. DCE’s Authentication Service is
analogous to Kerberos’ Key Distribution Center (KDC).

• Access Control List (ACL) facility

All objects in DCE can have an ACL. The ACL facility consists of a single ACL
editor tool (acl_edit) and a set of APIs for ACL manipulation. Each DCE component
implements its own ACL managers to process and interpret the ACL when access to
the object is requested.

• Privilege Service

The Privilege Service is a certification authority that provides a trusted mechanism to
derive authorization information about principals. Authorization information
includes a principal’s identity expressed as a universal unique identifier (UUID) and
the principal’s group memberships. The Privilege Service packages this information
into a privilege attribute certificate (PAC), which is then sealed in a Kerberos V5
ticket’s authorization data area. After the target principal receives and verifies the
ticket, the unsealed authorization data is trusted and used to make access decisions.

The Privilege Service and the ACL facility provide authorization services to the cell.

The servers — the registry server, the authentication server, and the privilege server —
are encompassed within one daemon, calledsecd.

8.2 Setup, Testing, and Verification

The following types of DCE Security Service tests are shipped with DCE:

• Basic functionality tests

• Theupdateandquery tests

• Command tests

• API tests

These tests are described in more detail in the following sections.

Before executing the test cases, you must configure the DCE Security Service for testing
using either the DCE configuration script

dce-root-dir/dce/install/machine/opt/dce1.2.2/etc/dce_config

or the instructions found in the next section of this chapter. You can run the tests on the
configurations described in that section.

8.2.1 Installing DCESecurity Functional Tests with dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guide.dcetest_config

8−2 January 17, 1997

DCE Security Service

will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocal) to that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/test/component_name/

directory, where thetest/component_nameelements of this path are equivalent to the
test/component_nameelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locationfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the DCE Security
functional tests, this path should be the location, on your machine, of:

dce-root-dir/dce/install

—which is the DCEinstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of theOSF DCE Release Notes).

Thus,dcetest_configwill install the Security functional tests at:

/dcetest/dcelocal/test/security/

where /dcetest/dcelocal is the link to whatever path you supplied as the install
destination.

The advantage in usingdcetest_configto install the functional tests is that it will install
all that is needed andonly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlyinstall (if you choose) functional tests withdcetest_config; for
test configuration and execution you must follow the instructions in the sections below.

Refer to Chapter 11 of this guide for further information on usingdcetest_config.

8.2.2 Basic Security Setup

Before running the test, configure your machine as a DCE client machine, or configure
your machine as a DCE Security Server machine and run the test there. To configure the
DCE Security Service for basic testing, do the following:

1. Usingmkdir , create the/krb5 directory on your machine.

2. Use thedce_configscript to install the necessary files on your machine. You may
install the Security Server code, the security client code, or both. Note that the
dce_configscript places the executables in

dcelocal/bin

and creates symbolic links to/usr/bin. Therefore, you should not need to add any
paths to your$PATH environment variable to execute the tests.

3. Createdcelocal/dce_cf.db.

This file is used by the Security Service to find the machine name and the name of
the cell. This file should be in the following format:

January 17, 1997 8−3

DCE Testing Guide

cceelll lnnaammee //......// cellname
hhoossttnnaammee hhoossttss// machine

wherecellnameis the name of your cell andmachineis the IP host name of your
machine.

4. Create the master registry database.

The sec_create_dbtool is used to create the initial database. This database is
populated with the default principals and accounts needed to bootstrap the system.
The accounts are created with the default password "-dce-." An alternative may be
specified with the-password option to sec_create_db. This tool creates the
database in the directory:

dcelocal/var/security/rgy_data

Run sec_create_dbas the privileged user (root) so that the database is protected
appropriately.

Thesec_create_dbcommand must be issued with the-mynameswitch to identify
the CDS name of the server entry for this server. This name can be anything, but
by convention is:

/.../cellname/subsys/dce/security/master

• To create the database, enter

sec_create_db -myname subsys/dce/security/master

at the command line.

At that point,sec_create_dbwill issue the prompt:

EEnntteerr kkeeyysseeeedd ffoorr iinniit ti iaall ddaattaabbaassee mmaasstteerr kkeeyy::

In response, enter any character string, to a maximum length of 1024 characters.

This string seeds a random key generator, which generates a random master key
used to encrypt keys in the database. The master key is stored in

dcelocal/var/security/.mkey

and can be read and written only by the privileged user (root).

A default keytab file,/krb5/v5srvtab, is created to store the server keys created at
this time

Thesec_create_dbtool also creates the file

dcelocal/etc/security/pe_site

which contains the name of the machine running thesecd. This file contains one
or more lines with the name of the target cell and the RPC string binding for a
server providing security services for that cell. It has the following format:

//......// cellname UUID@@nnccaaddgg__iipp__uuddpp:: XXX.XX.XXX.XXX[[]]

8−4 January 17, 1997

DCE Security Service

whereUUID is the cell’s security service object UUID andXXX.XX.XXX.XXXis
the host machine’s IP address.

This file provides access to security services in the absence of CDS. Therefore, if
you are setting up a client machine, be sure to copy this file from the Security
Server machine.

Note: The BIND_PE_SITEenvironment variable controls client use of
NSI. If the environment variable is set to any value other than 0, the
security code will not bother to make NSI calls. Set and export this
environment variable if your configuration does not include a
running CDS.

When running sec_create_dbmore than once on a host (for
example, when installing a new release), you must delete the old
registry database files and the default keytab file by entering:

rm -r dcelocal/var/security/rgy_data
rm /krb5/v5srvtab

at the command line.

If you fail to delete the rgy_data directory, you will see the
following error message

RReeggiissttrryy:: FFaattaall EErrrroorr -- aatt l li innee 442266 ooff ffi il lee rrggyy__ccrreeaattee..cc --
-- 00xx117711222200aabb -- ccaannnnoott ccrreeaattee ddaattaabbaassee ((ddccee // sseecc))

If you fail to deletev5srvtab, you will see the following error:

RReeggiissttrryy:: EErrrroorr -- EErrrroorr sseetttti inngg llooccaall hhoosstt’ ’ss kkeeyy ---- ttrryy
ddeelleetti inngg oolldd eennttrryy --
-- 00xx1177112222004488 -- SSppeecciif fi ieedd kkeeyy aallrreeaaddyy eexxiissttss iinn kkeeyy
ssttoorree ((ddccee // sseecc))

5. Run the servers.

The programsecdis the process that provides the Authentication Server, Privilege
Server, and Registry Server. This program must be run as the privileged user
(root) and must be run on a machine that contains the database created by
sec_create_db. In addition, the Authentication Server requiressyslogd to be
running on the local server machine.

Running the server with the-debugswitch causes it to run in the foreground. The
-verbose switch prints diagnostic and auditing information. This mode is
recommended for early integration testing. It is also recommended that you enable
syslogand examine the log while running the authentication server.

To do so, use the followingsyslog.confinformation:

*.mark.info /usr/spool/adm/syslog
*.err /usr/spool/adm/syslog

January 17, 1997 8−5

DCE Testing Guide

andtail the

/usr/spool/adm/syslog

output file.

6. Make sure thedced secvalservice is running.

7. Set up a Security client.

Use thedce_configscript to install the Security client executables.

Assume that a registry has been created and a Security Server started on host
‘‘laurel’’ which has IP address 15.22.144.215. Assume that the cell name is
‘‘/.../com/hp/apollo.’’

The contents of the

dcelocal/dce_cf.db

file should appear as follows:

cceelll lnnaammee //......//ccoomm//hhpp//aappoolll loo
hhoossttnnaammee hhoossttss//l laauurreell

The contents of the

dcelocal/etc/security/pe_site

file should appear as follows:

//......//ccoomm//hhpp//aappoolll loo UUID@@nnccaaddgg__iipp__uuddpp::1155..2222..114444..221155[[]]

To make host ‘‘hardy’’ a client, follow these steps:

1. On ‘‘hardy’’, create:

dcelocal/dce_cf.db

Its contents should appear as follows:

cceelll lnnaammee //......//ccoomm//hhpp//aappoolll loo
hhoossttnnaammee hhoossttss//hhaarrddyy

2. On ‘‘hardy’’, create:

dcelocal/etc/security/pe_site

Its contents should appear as follows:

//......//ccoomm//hhpp//aappoolll loo UUID@@nnccaaddgg__iipp__uuddpp::1155..2222..114444..221155[[]]

You may copy this file directly from the Security Server machine.

3. Return to the host ‘‘laurel’’. On ‘‘laurel’’, do the following:

• Run dce_login to login as a user with privileges to edit the registry
database. See the following section, ‘‘The dce_login Utility,’’ for more
information aboutdce_login.

8−6 January 17, 1997

DCE Security Service

• Run rgy_edit. Add the principal ‘‘hosts/hardy/self’’ and an account for
that principal. Remember the key (password) you specified for
‘‘hardy’s’’ account. See the ‘‘DCE Security Service’’ part of theOSF
DCE Administration Guide—Core Componentsfor instructions on how
to usergy_edit.

4. Return to the host ‘‘hardy,’’ and perform the following steps.

• Runrgy_edit unauthenticated (without usingdce_login). Use thektadd
command to add the key for ‘‘hosts/hardy/self.’’

• Make sure thedced secvalservice is running on ‘‘hardy’’.

Now you can run the security tests on either the server machine ‘‘laurel’’
(which is also a client) or on the client machine ‘‘hardy.’’

8.2.2.1 The dce_login Utility

The dce_login sample application allows users to obtain DCE credentials without
modifying their local OS state. This application constructs a credential cache that
supports authorization servicedceand then execs the user’s shell. The shell is inherited
from the parent process if theSHELL environment variable is set. Command usage is:

dce_login [user_name[password]]

If the user’s password or the user name is not specified on the command line,dce_login
will prompt you for the data.

You can usedce_login to login as a registry user with privileges to edit the registry
database. You will have to have these privileges for most of the tests described in this
chapter.

8.2.3 Basic Functionality Tests

These tests can be used to ensure that the basic functionality of the Security Service is
working properly.

8.2.3.1 The update Test

You must execute thedce_login command as a user with privileges to modify the
registry before running this test. If you configured your machine using thedce_config
script, then whatever user the script’scelladmin variable was set to has registry-
modifying privileges.

January 17, 1997 8−7

DCE Testing Guide

The

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/commands/rgy/update

test checks basic update functionality by adding some specified number of principals,
groups, and organizations to the registry database. Only PGO (principal, group,
organization) and account objects are checked; policy and property updates are not
checked.

To run theupdate test,cd to its directory and enter (on one line):

update -a | -r [-p principal -pw password] \
num_accts site [person_prefix [group_prefix [org_prefix]]] \
[-d | -drpc_debug_flags]

where:

-a Specifies that entries are to be added to the registry.

Note that either the-a or the-r flag mustbe specified.

-r Specifies that entries are to be removed from the registry.

Note that either the-r or the-a flag mustbe specified.

-p <principal> Specifies the principal name to be logged in.principal should be a
principal with registry-modifying privileges.

-pw <password> Specifies the password of the principal.

Note that eitherboth -p and -pw must be specified orneither
should be specified. In the latter case, the test will prompt for the
name and password of the principal.

-d Specifies the minimal level of debug output. This parameter is
optional.

-drpc_debug_flags Allows you to specify the amount of debug output desired. Some
usefulrpc_debug_flagssettings are the following:

0-3.5 Maximum error/anomalous condition
reporting and mutex checking (note that
this amount of output is often too verbose
for normal use, plus there is extra overhead
for mutex checking).

0-1.10, 2-3.4 Same reporting as the preceding text, but
drops some transmit/receive informational
messages.

0.10 Reports all error conditions plus a little
more; no mutex checking.

0.1 Reports error conditions only (same as
specifying-d).

num_accts Specifies the number of new accounts to add to the registry
database.

8−8 January 17, 1997

DCE Security Service

cellname Specifies the cell whose registry is to be updated. This cellname
should include the global prefix ‘‘/.../’’.

person_prefix Specifies a prefix for all update entries added to theperson
domain. The default prefix isup.da.te._.te.st/per.

group_prefix Specifies a prefix for all update entries added to thegroup
domain. The default prefix isupd_test/grp.

org_prefix Specifies a prefix for all update entries added to theorg domain.
The default prefix isupd_test/org.

For example, enter

update 100cellname

where100 is the number of new accounts andcellnameis the name of the cell.update
will then prompt you for your principal name and password. Note that if you are not
authorized to edit the registry (if you have not executeddce_loginto login as a user with
those privileges), then the test will fail. If the update is successful, the output looks like
the following:

OOppeenniinngg rreeggiissttrryy aatt ssiit tee //......// cellname
TTIIMMIINNGG:: AAccccoouunntt aadddd [[11..338800000000]]uusseerr++ssyyss [[2200..110000333344]] rreeaall t ti immee ((2200 iinn,, 2200 oouutt))
TTIIMMIINNGG:: ((PPeerr ccaalll l aaggggrreeggaattee)) [[00..006699000000]]uusseerr++ssyyss [[11..000055001177]] rreeaall t ti immee
TTIIMMIINNGG:: ((PPeerr ccaalll l ppeerriioodd 2200)) [[00..006699000000]]uusseerr++ssyyss [[11..000055001177]] rreeaall t ti immee
TTIIMMIINNGG:: AAccccoouunntt aadddd [[22..669900000000]]uusseerr++ssyyss [[3399..881177996633]] rreeaall t ti immee ((4400 iinn,, 4400 oouutt))
TTIIMMIINNGG:: ((PPeerr ccaalll l aaggggrreeggaattee)) [[00..006677225500]]uusseerr++ssyyss [[00..999955444499]] rreeaall t ti immee
TTIIMMIINNGG:: ((PPeerr ccaalll l ppeerriioodd 2200)) [[00..006655550000]]uusseerr++ssyyss [[00..998855888811]] rreeaall t ti immee
TTIIMMIINNGG:: AAccccoouunntt aadddd [[44..002200000000]]uusseerr++ssyyss [[6600..117744664433]] rreeaall t ti immee ((6600 iinn,, 6600 oouutt))
TTIIMMIINNGG:: ((PPeerr ccaalll l aaggggrreeggaattee)) [[00..006677000000]]uusseerr++ssyyss [[11..000022991111]] rreeaall t ti immee
TTIIMMIINNGG:: ((PPeerr ccaalll l ppeerriioodd 2200)) [[00..006666550000]]uusseerr++ssyyss [[11..001177883344]] rreeaall t ti immee
TTIIMMIINNGG:: AAccccoouunntt aadddd [[55..220000000000]]uusseerr++ssyyss [[8800..226622002266]] rreeaall t ti immee ((8800 iinn,, 8800 oouutt))
TTIIMMIINNGG:: ((PPeerr ccaalll l aaggggrreeggaattee)) [[00..006655000000]]uusseerr++ssyyss [[11..000033227755]] rreeaall t ti immee
TTIIMMIINNGG:: ((PPeerr ccaalll l ppeerriioodd 2200)) [[00..005599000000]]uusseerr++ssyyss [[11..000044336699]] rreeaall t ti immee
TTIIMMIINNGG:: AAccccoouunntt aadddd [[66..336600000000]]uusseerr++ssyyss [[110000..226622003322]] rreeaall t ti immee ((110000 iinn,, 110000 oouutt))
TTIIMMIINNGG:: ((PPeerr ccaalll l aaggggrreeggaattee)) [[00..006633660000]]uusseerr++ssyyss [[11..000022662200]] rreeaall t ti immee
TTIIMMIINNGG:: ((PPeerr ccaalll l ppeerriioodd 2200)) [[00..005588000000]]uusseerr++ssyyss [[11..000000000000]] rreeaall t ti immee
NNoo eerrrroorrss dduurriinngg uuppddaattee tteesstt

Note thatupdate also provides information about the time needed to perform blocks of
20 updates. This information varies among systems.

You can use thergy_edit tool to view the registry to verify that the correct number of
principals, groups, organizations, and accounts are added. See the ‘‘DCE Security
Service’’ part of theOSF DCE Administration Guide—Core Componentsfor instructions
on usingrgy_edit.

January 17, 1997 8−9

DCE Testing Guide

8.2.3.2 The query Test

You mustdce_loginbefore running this test. You do not need to have registry-modifying
privileges, but you must be authenticated to query the registry.

The

dce-root-dir/install/machine/dcetest/dce1.2.2/test/security/commands/rgy/query

test checks basic query functionality. It searches through the registry database,
performing every query operation. The data returned for a particular object is checked for
consistency when it can be returned using different query paths. Only PGO andaccount
objects are checked; policy and property queries are not made.

To run thequery test,cd to its directory and enter

query [-d | -drpc_debug_flags] [cellname]

where:

-d Specifies the minimal level of debug output. This parameter is
optional.

-drpc_debug_flagsAllows you to specify the amount of debug output desired. Some
usefulrpc_debug_flagssettings are the following:

0-3.5 Maximum error/anomalous condition reporting
and mutex checking (note that this amount of
output is often too verbose for normal use, plus
there is extra overhead for mutex checking).

0-1.10, 2-3.4 Same reporting as the preceding text, but drops
some transmit/receive informational messages.

0.10 Reports all error conditions plus a little more; no
mutex checking.

0.1 Report error conditions only (same as specifying
-d).

cellname Specifies the cell whose registry is to be queried. The default (if
cellnameis not specified) is that the registry of the cell from which
query is being run will be queried.

For example, entering

query cellname

performs thequery test forcellnamewith no RPC debug output. Ifcellname’s registry
has been updated successfully by 100 accounts,query displays the following:

CCoonnttaacctti inngg rreeggiissttrryy aatt ssiit tee //......// cellname
PPrroocceessssiinngg PPeeooppllee......

1100 2200 3300 4400 5500 6600 7700 8800 9900 110000
111100

8−10 January 17, 1997

DCE Security Service

PPrroocceessssiinngg GGrroouuppss......
1100 2200 3300

PPrroocceessssiinngg OOrrggss......
NNoo eerrrroorrss dduurriinngg qquueerryy tteesstt

8.2.4 ERA, Delegation, and Extended Login Tests

The ERA, Delegation, and Extended Login functional tests were new in DCE 1.1. They
are run under TET.

The test sources are located at:

dce-root-dir/dce/src/test/security/tet-tests

The following subsections explain how to build, install, and run the tests. For more
information on TET, see ‘‘Overview of TET Use’’ in Chapter 11.

8.2.4.1 Building and Installing

To build and install the tests, do the following:

1. Build TET (if you have not already done so):

cd dce-root-dir/dce/src/test/tet
build

2. As root, execute the following command, which will create an install area in/ (the
root directory), and install TET there:

build TOSTAGE=/ install_all

Note that in order to get theTOSTAGE value specified in the command line to
take effect, you must comment out the following line in the

dce-root-dor/dce/src/test/test.mk

file:

TTOOSSTTAAGGEE == $${{SSOOUURRCCEEBBAASSEE}}//....//i innssttaalll l/ /$${{ttaarrggeett__mmaacchhiinnee}}//ddcceetteesstt//ddccee11..22..22

Note also that TET (and the tests) can be installed elsewhere by supplying a
different value forTOSTAGE in the command line in the example above (and, for
the tests, in the following examples).

3. Build the ERA, Delegation, and Extended Login tests:

cd ../security/tet-tests
build

January 17, 1997 8−11

DCE Testing Guide

4. As root, execute the following command to install the tests:

build TOSTAGE=/ install_all

5. As root, do the following:

ln -s ../../tet/test /test/tet/test
mkdir /test/tet/tet_tmp_dir
chmod 777 /test/tet/tet_tmp_dir
mkdir /test/tet/test/security/results

8.2.4.2 Running the Tests

To run the tests, do the following:

1. Set the following environment variables:

TET_ROOT=/your_path_to_installed_tests/test/tet

If security replication is being tested, set the following environment variables:

SEC_TEST_REPLICATION=True
SEC_REPLICA_SITE_NAME= replica_name_of_the_slave_security_server

For example:

SEC_REPLICA_SITE_NAME=/.../r_d.com/subsys/dce/sec/rs_server_250_2

or:

SEC_REPLICA_SITE_NAME=ncacn_ip_tcp:15.22.144.248

If security replication is not being tested, set the following environment variable:

SEC_TEST_REPLICATION=False

2. Add the following to your execution path:

${TET_ROOT}/bin

3. dce_loginascell_admin.

4. To execute all of the security TET test cases, execute the following command:

tcc -e test/security

Specific test cases can be executed individually. For example:

8−12 January 17, 1997

DCE Security Service

tcc -e test/security sec_rgy_attr-tc

The following test cases are available:

• sec_rgy_attr

Tests to verify that the functions withinsec_rgy_attr.care working correctly.

• sec_rgy_attr_sch

Tests to verify that the functions withinsec_rgy_attr_sch.care working
correctly.

• pwd_expiration

Tests to verify that the localsec_pwd_mgmt_strength_chk_prvcyfunction is
functioning correctly.

This test case makes the following assumptions:

• The host machine is a DCE client.

• The tester isdce_login’d ascell_admin and that the password is-dce-.

• pwd_strength

Tests to verify that the localsec_pwd_mgmt_strength_chk_prvcyfunction is
functioning correctly.

This test case makes the following assumptions :

• Machine is a DCE client

• The Password Strength Server is running and exporting the
sec_pwd_mgmt_strength_chk_prvcyoperation.

• The Password Strength Server running is the sample server
(pwd_strengthd) provided with DCE 1.2.2.

• The tester isdce_login’d in ascell_admin.

• The PWD_STRENGTHD_STRING_BINDING TET configuration
variable has been set correctly.

• login

Tests to verify that the localsec_login functions associated with the new
EPAC/Delegation work are functioning correctly.

8.2.4.3 Verifying the Results

Following is an example of output from a successful run of all the tests on an HP-UX
platform. Note that oneFAILED message for thesec_pwd_mgmt_strength_chk_prvcy
test should be expected.

tcc -e test/security
jjoouurrnnaall f fi il lee nnaammee iiss:: // path_to_installed_tests/test/tet/test/security/results/0007e/journal

January 17, 1997 8−13

DCE Testing Guide

PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) iinntteeggeerr tteesstt
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) iinntteeggeerr tteesstt..
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff i inntteeggeerr tteesstt..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) tteesstt__vvooiidd
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) tteesstt__vvooiidd..
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff tteesstt__vvooiidd..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) tteesstt__aannyy
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) tteesstt__aannyy..
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff tteesstt__aannyy..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) tteesstt__pprriinnttssttrriinngg
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) tteesstt__pprriinnttssttrriinngg..
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff tteesstt__pprriinnttssttrriinngg..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) tteesstt__pprriinnttssttrriinngg__aarrrraayy
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) tteesstt__pprriinnttssttrriinngg__aarrrraayy..
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff tteesstt__pprriinnttssttrriinngg__aarrrraayy..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) tteesstt__bbyytteess
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) tteesstt__bbyytteess..
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff tteesstt__bbyytteess..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) tteesstt__ccoonnffi iddeenntti iaall__bbyytteess
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) tteesstt__ccoonnffi iddeenntti iaall__bbyytteess..
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff tteesstt__ccoonnffi iddeenntti iaall__bbyytteess..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) tteesstt__ii1188nn__ddaattaa
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) tteesstt__ii1188nn__ddaattaa..
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff tteesstt__ii1188nn__ddaattaa..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) tteesstt__uuuuiidd
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) tteesstt__uuuuiidd..
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff tteesstt__uuuuiidd..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) tteesstt__aattttrr__sseett
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) tteesstt__aattttrr__sseett..
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff tteesstt__aattttrr__sseett..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) tteesstt__bbiinnddiinngg
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) tteesstt__bbiinnddiinngg..
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff tteesstt__bbiinnddiinngg..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__uuppddaattee(()) tteesstt tthheemm aalll l
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) tteesstt tthheemm aalll l. .
PPAASSSSEEDD vveerriif fi iccaatti ioonn ooff tteesstt tthheemm aalll l. .
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) ffoorr 11 aattttrr iidd..
PPAASSSSEEDD sseecc__rrggyy__aattttrr__llooookkuupp__bbyy__iidd(()) ffoorr 00 aattttrr iiddss..
PPAASSSSEEDD sseecc__rrggyy__ssiit tee__ooppeenn__uuppddaattee(())
PPAASSSSEEDD sseecc__rrggyy__aattttrr__sscchh__ccrreeaattee__eennttrryy(())
PPAASSSSEEDD sseecc__rrggyy__aattttrr__sscchh__llooookkuupp__bbyy__iidd(())
PPAASSSSEEDD sseecc__rrggyy__aattttrr__sscchh__llooookkuupp__bbyy__nnaammee(())
PPAASSSSEEDD sseecc__rrggyy__aattttrr__sscchh__ccuurrssoorr__iinniit t(())
PPAASSSSEEDD sseecc__rrggyy__aattttrr__sscchh__ssccaann(())
PPAASSSSEEDD sseecc__rrggyy__aattttrr__sscchh__ccuurrssoorr__rreelleeaassee(())
PPAASSSSEEDD sseecc__rrggyy__aattttrr__sscchh__uuppddaattee__eennttrryy(())
PPAASSSSEEDD sseecc__rrggyy__aattttrr__sscchh__ddeelleettee__eennttrryy(())
PPAASSSSEEDD SSEECC__LLOOGGIINN__DDEELLEEGG:: sseecc__llooggiinn__bbeeccoommee__iinniit ti iaattoorr(())
PPAASSSSEEDD SSEECC__LLOOGGIINN__DDEELLEEGG:: sseecc__llooggiinn__ccrreedd__ggeett__iinniit ti iaattoorr(())
PPAASSSSEEDD SSEECC__LLOOGGIINN__DDEELLEEGG:: sseecc__ccrreedd__ggeett__ppaa__ddaattaa(())
PPAASSSSEEDD SSEECC__LLOOGGIINN__DDEELLEEGG:: sseecc__ccrreedd__ggeett__ddeelleeggaatti ioonn__ttyyppee(())

8−14 January 17, 1997

DCE Security Service

PPAASSSSEEDD SSEECC__LLOOGGIINN__DDEELLEEGG:: sseecc__llooggiinn__ccrreedd__iinniit t__ccuurrssoorr(())
PPAASSSSEEDD SSEECC__LLOOGGIINN__DDEELLEEGG:: sseecc__llooggiinn__ccrreedd__ggeett__ddeelleeggaattee(())
PPAASSSSEEDD SSEECC__LLOOGGIINN__DDEELLEEGG:: ((aattttrrss)) sseecc__llooggiinn__sseett__eexxtteennddeedd__aattttrrss(())
PPAASSSSEEDD SSEECC__LLOOGGIINN__DDEELLEEGG:: ((aattttrrss)) sseecc__llooggiinn__ccrreedd__ggeett__iinniit ti iaattoorr(())
PPAASSSSEEDD SSEECC__LLOOGGIINN__DDEELLEEGG:: ((aattttrrss)) sseecc__ccrreedd__iinniit ti iaalli izzee__aattttrr__ccuurrssoorr(())
PPAASSSSEEDD SSEECC__LLOOGGIINN__DDEELLEEGG:: ((aattttrrss)) sseecc__ccrreedd__ggeett__eexxtteennddeedd__aattttrrss(())
SSttaarrttuupp ffoorr sseecc__ppwwdd__mmggmmtt__ssttrreennggtthh__cchhkk__pprrvvccyy(()) tteessttss
FFAAIILLEEDD:: PPWWDD__SSTTRREENNGGTTHHDD__SSTTRRIINNGG__BBIINNDDIINNGG nnoott ddeeffi inneedd iinn tteetteexxeecc..ccffgg
SSttaarrttuupp ffoorr ppaasssswwoorrdd eexxppiirraatti ioonn tteessttss
ppwwdd__eexxppiirraatti ioonn,, tteesstt ppuurrppoossee 11,, l looggiinn aatttteemmpptt uussiinngg eexxppiirreedd ppaasssswwoorrdd
PPAASSSSEEDD ppaasssswwoorrdd eexxppiirraatti ioonn:: l looggiinn wwiit thh eexxppiirreedd ppaasssswwoorrdd
CClleeaannuupp ffoorr ppaasssswwoorrdd eexxppiirraatti ioonn tteessttss

_____________________________ 1.2.2,PKSS Tests (start) _____________________________

8.2.5 PKSS Functional Tests

The Public Key Storage Server (PKSS) is supplied with five functional tests that
specifically exercise different portions of the API. All tests begin with a call to
sec_pvtkey_pkss_opento obtain a handle to use the API, and all tests end with a
complementary call tosec_pvtkey_pkss_closeto detach from the API. Most of the tests
demonstrate that once inserted, a PKSS client can retrieve a record (that is, an
asymmetric key pair) from the PKSS database. Most of the tests also demonstrate that the
same record may be deleted. Note that all of the tests exercise the PKSS database as well
as PKSS client/server communication.

Module test_pkss_1.cxxis primarily intended to demonstrate that, given an asymmetric
key pair, the PKSS can store it, retrieve it, and delete it. It makes the following PKSS
API calls:

sec_pvtkey_pkss_open
sec_pvtkey_pkss_store
sec_pvtkey_pkss_get
sec_pvtkey_pkss_delete
sec_pvtkey_pkss_close

Module test_pkss_2.cxxis primarily intended to demonstrate that when requested by a
PKSS client, the PKSS server can generate a new asymmetric key pair on the client’s
behalf, retrieve it, and delete it. It makes the following PKSS API calls:

sec_pvtkey_pkss_open
sec_pvtkey_pkss_generate
sec_pvtkey_pkss_get
sec_pvtkey_pkss_delete
sec_pvtkey_pkss_close

Note thattest_pkss_2.cxxdiffers from test_pkss_1.cxxonly in who generates the new
asymmetric key pair.

Module test_pkss_3.cxxis primarily intended to demonstrate that, after asking the PKSS
server to generate a new asymmetric key pair on the client’s behalf, using the

January 17, 1997 8−15

DCE Testing Guide

management API one can:

1. Change the asymmetric key pair by supplying a new one; and

2. Change the asymmetric key pair by requesting that the PKSS server generate one.

It also demonstrates that it can retrieve the latest version of the asymmetric key pair and
delete it. It makes the following PKSS API calls:

sec_pvtkey_pkss_open
sec_pvtkey_pkss_generate
sec_pvtkey_pkss_update(mgmt client version)
sec_pvtkey_pkss_update_generate(mgmt client version)
sec_pvtkey_pkss_get
sec_pvtkey_pkss_delete
sec_pvtkey_pkss_close

Module test_pkss_4.cxxis primarily intended to demonstrate that, after asking the PKSS
server to generate a new asymmetric key pair on the client’s behalf, using the login client
API that client can:

1. Change that client’s asymmetric key pair by supplying a new one; and

2. Change that client’s asymmetric key pair by requesting that the PKSS server
generate one.

It also demonstrates that it can retrieve the latest version of the asymmetric key pair and
delete it. It makes the following PKSS API calls:

sec_pvtkey_pkss_open
sec_pvtkey_pkss_generate
sec_pvtkey_pkss_update(login client version)
sec_pvtkey_pkss_update_generate(login client version)
sec_pvtkey_pkss_get
sec_pvtkey_pkss_delete
sec_pvtkey_pkss_close

Note that test_pkss_4.cxxdiffers from test_pkss_3.cxxonly in who initiates the
asymmetric key pair change requests, either a PKSS login client or a PKSS management
client.

Module test_pkss_5a.cxxand test_pkss_5.cxxwork in tandem to demonstrate that a
PKSS management client can insert a record and a PKSS login client can retrieve the
record and modify it by supplying a new asymmetric key pair.

Module test_pkss_5a.cxxcalls:

sec_pvtkey_pkss_open
sec_pvtkey_pkss_store
sec_pvtkey_pkss_close

Module test_pkss_5.cxxcalls

sec_pvtkey_pkss_open
sec_pvtkey_pkss_get
sec_pvtkey_pkss_update(login client version)

The test sources are located in

8−16 January 17, 1997

DCE Security Service

dce-root-dir/src/test/security/api/pkss

In the build tree, the built objects can be found at:

dce-root-dir/obj/platform/test/security/api/pkss

8.2.5.1 Running the Tests

To run the tests, do the following:

1. In your sandbox, you should build TET, if you have not done so already:

%% cd sandbox/src/test/tet
%% build

Next, go into

sandbox/src/test/functional/security

to build the tests:

%% build

This will build images in the object treebut does notinstall the scripts or create a
usable test directory.

2. Run the ‘‘build install_all’’ pass:

%% cd sandbox/src/test/tet
%% build install_all TOSTAGE= full path to sandbox/install
%% cd sandbox/src/test/functional/security
%% build install_all TOSTAGE= full path to sandbox/install

All this will install the obj’s and scripts under

sandbox/install/test/tet

The tests will be run out of this directory. (Note that these directories are now
owned by root.)

3. Thetet_* files were installed under:

sandbox/install/test/tet/functional/security

4. Set up an environment for running tests as follows:

a. Become root.

b. Make sure thatpkssd(as well as the other DCE daemons) is running.

c. Do the following:

%% cd sandbox/install/test/tet
%% setenv PATHsandbox/install/alpha/test/tet/bin:$PATH
%% setenv PATHsandbox/install/test/tet/lib/ksh:$PATH

January 17, 1997 8−17

DCE Testing Guide

d. Set up some TET environment variables:

%% setenv TET_ROOTsandbox/install/test/tet
%% setenv TET_EXECUTE sandbox/install/test/tet/functional/security

5. To run the tests, choose from different scenarios in

sandbox/install/test/tet/functional/security/tet_scen

To run the first functional test for pkss, do:
tcc -e functional/security test-pkss1.sh

To run the second functional test for pkss, do:

tcc -e functional/security test-pkss2.sh

To run the third functional test for pkss, do:

tcc -e functional/security test-pkss3.sh

To run the fourth functional test for pkss, do:

tcc -e functional/security test-pkss4.sh

To run the fifth functional test for pkss, do:

tcc -e functional/security test-pkss5a.sh

and:

tcc -e functional/security test-pkss5.sh

_____________________________ 1.2.2,PKSS Tests (end) _____________________________

_________________________ 1.2.2,Certification API Tests (start) _________________________

8.2.6 Certification API Tests

This section describes how to run the Certification API tests on the reference platform
(IBM AIX). Where necessary, problems are mentioned that you may encounter in
running tests on platforms other than the reference platform.

Note: Before running the Certification API tests, it is important to apply changes
described in OT CRs 13665 and 13667 to your DCE1.2.2 code.

The tests can be run standalone (withouttcc, the TET controller program), or they can be
run usingtcc. The stand-alone tests are built under

dce-root-dir/dce/obj/platform/test/security/api/capi

8−18 January 17, 1997

DCE Security Service

where dce-root-dir is the top directory of your source distribution, andplatform is
‘‘rios’’, if you are running on the reference platform.

The test versions that can be run usingtcc are installed in

dcetest/dcelocal/test/tet

wheredcetest/dcelocalis the following path:

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

The Certification API tests are divided into three basic phases:

A. Testing Certification API with the registry retrieval policy (RRP).

B. Testing Certification API with the hierarchical retreival policy (HRP)
with CDS.

C. Testing Certification API with the HRP with a GDS server.

For each part, it is necessary to have a specific DCE or GDS server configuration before
running the tests. Below are described the exact configuration required and the steps
necessary to run these tests (either standalone or throughtcc).

8.2.6.1 Testing the Certification API with the Registry Retrieval Policy

You need to configure your machine as a DCE client or DCE server. The name of the
DCE cell is not important to these tests. However, it is required that yourcell_admin
principal name be ‘‘cell_admin’’ and that the password forcell_admin be ‘‘-dce-’’.

8.2.6.1.1 Running the Testsunder TET

There are two tests under this part:

• test-registry

• test-registry-second

To run these tests, do the following:

su (Become superuser)
cd dcetest/dceloca/test/tet
setenv TET_ROOT ‘pwd‘
setenv PATH ${PATH}:${TET_ROOT}/../test/test/bin
tcc -e functional/security test-registry

The last command creates a journal file. At the end of the journal file a summary of all
parts of the test that succeeded or failed will be listed.

You must also do the following:

tcc -e functional/security test-registry-second

January 17, 1997 8−19

DCE Testing Guide

This will create another journal file. At the end of the journal file, a summary of all parts
of this test that succeeded or failed will be listed.

8.2.6.1.2 Running the TestsStandalone

Alternatively, you can run without the overhead oftcc by doing the following

1. su (Become super user)

2. cd /root-dir/obj/platform/test/security/api/capi

3. dce_login -c cell_admin -dce-

Note: It is important to get certified credentials by specifying the-c switch.

4. rgy_edit < create_foo

5. dcecp <create_era

6. ./test_registry direct > first.log

7. kdestroy

8. dce_login cell_admin -dce-

Note: Credentials are this time not certified (no-c switch).

9. ./test_registry untrusted > second.log

10. rgy_edit < delete_foo

Checkfirst.log andsecond.logto verify test results.

8.2.6.2 Testing Hierarchical Policy Retrieval (HRP) with CDS

• The DCE cell name must be/.../dceaix2_cell.

The machine where you run the tests can be a DCE client or the DCE server
machine.

• Thecell_admin principal name must be ‘‘cell_admin’’

• Thecell_admin password must be ‘‘-dce-’’

8.2.6.2.1 Running the Testsunder TET

To run the tests under TET, do the following:

1. su (Become superuser on UNIX machines)

2. cddcetest/dcelocal/test/tet

8−20 January 17, 1997

DCE Security Service

3. setenv TET_ROOT ‘pwd‘

4. setenv PATH ${PATH}:${TET_ROOT}/../test/test/bin

5. tcc -e functional/security test-hierarchy

This will create a journal file. At the end of the journal file, a summary of all parts
of the test that succeeded or failed will be listed.

8.2.6.2.2 Running the TestsStandalone

Alternatively, you can run without the overhead oftcc by doing the following:

1. su (Become superuser)

2. cd root-dir/obj/platform/test/security/api/capi

3. dce_login cell_admin -dce-

4. ./trycase_a pc1 pc2 pc3 pc4 pc5 pc6 pc7 > hierarchy_cds.log

Afterwards, checkhierarchy_cds.log for a summary of all testcase components that
succeeded or failed.

8.2.6.2.3 Possible Problems

If the journal or log file indicates failure, check whether you have applied changes to
modules in

src/directory/gds/dua/switch

as specified in OT CRs 13665 and 13667. If necessary, rebuild and install the tests.

If the tests fail even after you have applied these fixes, the reason may be that the XDS-
CDS API on your platform does not allow ‘‘Attribute/Value’’ pairs to be added to CDS
directory entries. If this is the case, it is necessary to change the filespc1, pc2, pc3, pc4,
pc5, pc6, andpc7. Each of these files is present in two directories:

dcetest/dcelocal/test/tet/functional/security/ts/capi/testcases
root-dir/obj/platform/test/security/api/capi/testcase

If you are usingtcc, you need to modify these files under the first directory (as described
below); otherwise, modify them under the second directory.

Change the string ‘‘X500’’ to ‘‘ CDS’’ in all lines in files pc1, pc2, pc3, pc4, pc5, pc6,
andpc7 that begin with one of the following strings:

• ‘‘ca’’

• ‘‘cross’’

• ‘‘user’’

• ‘‘urevoke’’

January 17, 1997 8−21

DCE Testing Guide

• ‘‘carevoke’’

For example, in the filepc1, the following lines:

ccaa::11__00__00__00..cceerrtt::XX550000:://......//ddcceeaaiixx22__cceelll l/ /ccaappii/ /aa//bb
uusseerr::00__44__00__00..cceerrtt::XX550000:://......//ddcceeaaiixx22__cceelll l/ /ccaappii/ /aa//cc

must be changed to:

ccaa::11__00__00__00..cceerrtt::CCDDSS:://......//ddcceeaaiixx22__cceelll l/ /ccaappii/ /aa//bb
uusseerr::00__44__00__00..cceerrtt::CCDDSS:://......//ddcceeaaiixx22__cceelll l/ /ccaappii/ /aa//cc

Make the same changes in any similar lines inpc2, pc3, pc4, pc5, pc6andpc7.

After modifying these files, rebuild the tests and run them as described above.

8.2.6.3 Testing Hierarchical Policy Retrieval (HRP) with GDS Server

It is necessary to configure your machine either as a GDS server or as a GDS client in
order to run these tests. The configuration parameters are as follows:

• The GDS namespace must be capable of storing entries below the DN:

/C=us/O=dec/OU=dceaix2

Thus, you must create this entry when you configure GDS. Refer to theOSF DCE
GDS Administration Guide and Referencefor information on configuring GDS.

• The schema for the GDS server must be updated.

To perform this update, you must become root, invoke thegdsditadm program, log
on to the default DSA, and select ‘‘2’’ (Schema Administration). This should bring
you to Mask 9, which is the common starting point for each of the following changes:

1. Allow for creation of at least three-levelOU entries under:

/C=us/O=dec/OU=dceaix2

The default schema shipped with GDS allows only a single/OU=RDN within
an Organizational Unit object. The tests useDNs containing up to 3 levels of
OU.

To allow this, you must add rules to the schema SRT as follows:

Select 4 (Add SRT entry) to add the following rules:

RRuullee NNuummbbeerr 20
SSuuppeerriioorr RRuullee NNuummbbeerr 4
AAccrroonnyymmnnss ooff NNaammiinngg AAttttrriibbuutteess OU
SSttrruuccttuurraall OObbjjeecctt CCllaassss OU

RRuullee NNuummbbeerr 21
SSuuppeerriioorr RRuullee NNuummbbeerr 20
AAccrroonnyymmnnss ooff NNaammiinngg AAttttrriibbuutteess OU

8−22 January 17, 1997

DCE Security Service

SSttrruuccttuurraall OObbjjeecctt CCllaassss OU

RRuullee NNuummbbeerr 22
SSuuppeerriioorr RRuullee NNuummbbeerr 21
AAccrroonnyymmnnss ooff NNaammiinngg AAttttrriibbuutteess OU
SSttrruuccttuurraall OObbjjeecctt CCllaassss OU

RRuullee NNuummbbeerr 23
SSuuppeerriioorr RRuullee NNuummbbeerr 22
AAccrroonnyymmnnss ooff NNaammiinngg AAttttrriibbuutteess OU
SSttrruuccttuurraall OObbjjeecctt CCllaassss OU

RRuullee NNuummbbeerr 24
SSuuppeerriioorr RRuullee NNuummbbeerr 23
AAccrroonnyymmnnss ooff NNaammiinngg AAttttrriibbuutteess OU
SSttrruuccttuurraall OObbjjeecctt CCllaassss OU

2. Allow for adding Auxiliary Object ClassesSAU andCA to the Organizational
Unit object class. This requires you to modify the Object Class Table (OCT).

Go back to Mask 9, select 10 (Modify OCT entry), and selectOU as the Object
Class Acronym.

In the Menu presented after you have done this, change the Auxiliary Object
Classes Field as follows:

AAuuxxiil li iaarryy OObbjjeecctt CCllaasssseess:: SAU CA________________

3. Modify theSAU andCA object classes so that adding Certificates, CRLs, and
Cross-certificates is optional.

Go back to Mask 9, select 10 (Modify OCT entry), and selectSAU as the
Object Class Acronym.

In the Menu presented after you have done this, change the following two
fields:

MMaannddaattoorryy AAttttrriibbuutteess:: _______________________________
OOpptti ioonnaall AAttttrriibbuutteess:: UC_____________________________

Now removeUC from Mandatory Attributes and add it to Optional Attributes.
Perform this step for Object ClassCA as follows:

Go back to Mask 9, select 10 (Modify OCT entry), and selectCA as the Object
Class Acronym.

In the Menu presented after you have done this, change the following two
fields:

MMaannddaattoorryy AAttttrriibbuutteess:: __
OOpptti ioonnaall AAttttrriibbuutteess:: CCCCPP CCAACC CCRRLL AARRLL________________________________

RemoveCAC, CRL , andARL from Mandatory Attributes and add them to
Optional Attributes.

January 17, 1997 8−23

DCE Testing Guide

4. Modify the Attribute Table (AT) to allow use of ASN.1 encoding for the five
certificate attribute (CAC, UC, CRL , ARL , andCCP) types as follows:

Go back to Mask 9, select 14 (Modify AT entry), and selectCAC as the Object
Class Acronym.

In the Menu presented after you have done this, change the Attribute Syntax
field to the following:

AAttttrriibbuuttee SSyynnttaaxx:: ASN1 Syntax

Repeat these steps for Object ClassesUC, CRL , ARL , andCCP.

After you have made these changes, commit them by choosing selection 1 (Store
Schema) in the Mask 9 menu screen.

8.2.6.3.1 Running the Testsunder TET

To run the tests under TET, perform the following steps:

1. su (Become super user on UNIX machines)

2. cd dcetest/dcelocal/test/tet

3. setenv TET_ROOT ‘pwd‘

4. setenv PATH ${PATH}:${TET_ROOT}/../test/test/bin

5. tcc -e functional/security test-hierarchy-second

This will create a journal file. At the end of the journal file, a summary of all parts of this
test that succeeded or failed will be listed.

8.2.6.3.2 Running the TestsStandalone

Alternatively, you can run withouttcc by doing the following:

1. su (Become super user)

2. cd root-dir/obj/platform/test/security/api/capi

3. ./trycase_a xc1 xc2 xc3 xc7 > hierarchy_xds.log

Checkhierarchy_xds.log for a summary of all testcase components that succeeded or
failed.

_________________________ 1.2.2,Certification API Tests (end) _________________________

____________________________ 1.2.2,Kerberos Tests (start) ____________________________

8−24 January 17, 1997

DCE Security Service

8.2.7 Kerberos 5 Functional Tests

The following security functional tests were developed as part of the Kerberos 5
integration work.

All the tests are coded to run under TET, and were developed to run in a single-machine
cell environment. The first two tests use TET’s C-binding API and the second two use
TET’s TCL-binding APIs.

8.2.7.1 Sample Client Test

This test was developed to run in a single-machine cell environment. It uses TET’s C-
binding API.

Before building the test, you must update the

dce1.2.2-root-dir/dce/src/test/functional/security/tetexec.cfg

file with the following lines:

KKRRBB55__SSAAMMPPLLEE__PPOORRTT==sample_server port#
KKRRBB55__SSAAMMPPLLEE__SSEERRVVEERR__HHOOSSTT==sample_server host

After you have made the above changes and built the test, it can be invoked as follows:

cd dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security sclient

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional_security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

sclient Specifies the name of the test (TET scenario) to be run.

January 17, 1997 8−25

DCE Testing Guide

8.2.7.2 User-to-user Test

This test was developed to run in a single-machine cell environment. It uses TET’s C-
binding API

Before building the test, you must update the

dce1.2.2-root-dir/dce/src/test/functional/security/tetexec.cfg

file with the following information:

KKRRBB55__UUUU__PPOORRTT==user-to-user port#
KKRRBB55__UUUU__SSEERRVVEERR__HHOOSSTT==user-to-user_server host

After you have made the above changes and built the test, it can be invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security uu-client

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

uu-client Specifies the name of the test (TET scenario) to be run.

8.2.7.3 Rsh Test

This test was developed to run in a single-machine cell environment. It uses TET’s
TCL-binding APIs.

Before building the test, you must update the

dce1.2.2-root-dir/dce/src/test/functional/security/lib/test_setup.tcl

8−26 January 17, 1997

DCE Security Service

file with the following information:

cceelll l aaddmmiinn’’ss
sseett eennvv((KKRRBB55__CCEELLLL__AADDMMIINN)) cell_admin name
sseett eennvv((KKRRBB55__CCEELLLL__AADDMMIINN__PPWW)) cell_admin pw

tteesstt uusseerr nnaammee hhaass ttoo bbee lleessss tthhaann 88 cchhaarr ffoorr ssaatti issffyyiinngg AAIIXX lli immiit taatti ioonnss
sseett eennvv((KKRRBB55__TTEESSTTEERR)) test user name
sseett eennvv((KKRRBB55__TTEESSTTEERR__PPWW)) test user pw

After you have made these changes and built the test, it can be invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security rsh

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

rsh Specifies the name of the test (TET scenario) to be run.

8.2.7.4 Rlogin Test

This test was developed to run in a single-machine cell environment. It uses TET’s
TCL-binding APIs.

Before building the test, you must update the

dce1.2.2-root-dir/dce/src/test/functional/security/lib/test_setup.tcl

file with the following information:

January 17, 1997 8−27

DCE Testing Guide

cceelll l aaddmmiinn’’ss
sseett eennvv((KKRRBB55__CCEELLLL__AADDMMIINN)) cell_admin name
sseett eennvv((KKRRBB55__CCEELLLL__AADDMMIINN__PPWW)) cell_admin pw

tteesstt uusseerr nnaammee hhaass ttoo bbee lleessss tthhaann 88 cchhaarr ffoorr ssaatti issffyyiinngg AAIIXX lli immiit taatti ioonnss
sseett eennvv((KKRRBB55__TTEESSTTEERR)) test user name
sseett eennvv((KKRRBB55__TTEESSTTEERR__PPWW)) test user pw

After you have made these changes and built the test, it can be invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security rlogin

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

rlogin Specifies the name of the test (TET scenario) to be run.

8.2.7.5 ASN.1 Test

This test was developed to run in a single-machine cell environment.

The test is invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security asn.1

where:

/dcetest/dcelocal Represents the path

8−28 January 17, 1997

DCE Security Service

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

asn.1 Specifies the name of the test (TET scenario) to be run.

8.2.7.6 kinit Test

This test was developed to run in a single-machine cell environment.

The test is invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security kinit

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

kinit Specifies the name of the test (TET scenario) to be run.

January 17, 1997 8−29

DCE Testing Guide

8.2.7.7 ccache Test

This test was developed to run in a single-machine cell environment.

The test is invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security ccache

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

ccache Specifies the name of the test (TET scenario) to be run.

8.2.7.8 keytab Test

This test was developed to run in a single-machine cell environment.

The test is invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security keytab

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC

8−30 January 17, 1997

DCE Security Service

System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

keytab Specifies the name of the test (TET scenario) to be run.
____________________________ 1.2.2,Kerberos Tests (end) ____________________________

___________________________ 1.2.2,Public Key Tests (start) ___________________________

8.2.8 Public Key Login API Tests

The source for all of these tests is located under:

dce1.2.2-root-dir/dce/src/test/functional/security/ts/client/login/pk_login

8.2.8.1 Exportability Check Test

This test checks that there are nosec_pvtkeyor sec_bsafesymbols in alibdce built for
export.

The test is invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security export_check

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

January 17, 1997 8−31

DCE Testing Guide

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

export_check Specifies the name of the test (TET scenario) to be run.

8.2.8.2 Kerberos Public Key Cache Test

This test tests the Kerberos public keycache.

The test is invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security rsec_pk

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

rsec_pk Specifies the name of the test (TET scenario) to be run.

8.2.8.3 sec_psm_ API Test

The test is invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security sec_psm

8−32 January 17, 1997

DCE Security Service

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

sec_psm Specifies the name of the test (TET scenario) to be run.

8.2.8.4 Public Key API Test

The public key API test is invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security sec_pubkey

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

sec_pubkey Specifies the name of the test (TET scenario) to be run.

January 17, 1997 8−33

DCE Testing Guide

8.2.8.5 Private Key API Test

The private key API test is invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security sec_pvtkey

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

sec_pvtkey Specifies the name of the test (TET scenario) to be run.

8.2.8.6 Registry Public Key API Test

The test of Registry public key functionality is invoked as follows:

cd /dcetest/dcelocal/test/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 functional/security sec_rgy

where:

/dcetest/dcelocal Represents the path

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for example,platform is rios for the IBM RISC
System/6000 running AIX).

8−34 January 17, 1997

DCE Security Service

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thefunctional/security
directory) for the test results journal file.

-vRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

sec_rgy Specifies the name of the test (TET scenario) to be run.
___________________________ 1.2.2,Public Key Tests (end) ___________________________

8.2.9 GSSAPI Tests

The GSSAPI test program, the source code for which is located at:

dce-root-dir/src/test/security/api/gssapi/test-gssapi.c

is not compiled as part of an ODE DCE build. It must be compiled manually, against an
installed DCE environment.

To build and run the GSSAPI tests, do the following:

1. Compiletest-gssapi.cas a normal DCE application.

2. Create two DCE principal accounts (for example,test1andtest2).

3. Usergy_edit’s ktadd command to create a keytable (calledkeytab in the example
below) containingtest2’s key.

4. Usedce_loginto login as thetest1principal.

5. Run the test program as follows:

%% test-gssapi { -i |test1_principal test2_principal keytable} [-l]

where:

-i (‘‘interactive’’) requests a menu of individual separately-runnable tests.

-l (‘‘long-form’’) specifies that additional logging information be sent to standard
output.

Once invoked, the above command will:

• run the specified test(s)

• determine whether the GSSAPI is exportable or not (i.e., whether it has been
compiled to support privacy protection)

• print out various progress messages during execution

• print out either a final success or failure message

January 17, 1997 8−35

DCE Testing Guide

8.2.10 Commands Tests

Theacl_edit.shandrgy_edit.shshell scripts test DCE Security Service commands.

8.2.10.1 The acl_edit Tests

Because the tests are not put into an install tree like the source executables, these tests
can be cumbersome to execute. This section includes explicit instructions for executing
theacl_edit tests directly from the

dce-root-dir/dce/install

tree. You may find it easier to copy or link all of the control files, located in the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/control

directory, as well as all shell scripts and test case executables, located in the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/moretests

directory, and the test case drivertestsh, located in the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/testsh

directory. You must execute each test case from the directory in which its control file
resides. The general syntax for tests run by thetestshdriver is:

path-to-testsh-doutput-level-Ipath-to-test-execscontrol-file

If you have copied or linked all of the relevant files into a single directory, the command
for running a test case reduces to:

testsh -doutput-level-I. control-file

The

dce-root-dir/dce/install/machinedcetest/dce1.2.2/test/security/api/moretests/acl_edit.sh

shell script runs tests for theacl_edit command. Theacl_edit tests are structured in the
same way as the RPC and IDL unit tests except for the fact that there is no shell script
driver to invoketestsh.

To run theacl_edit.shtests, do the following:

1. Change to the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/moretests

directory and enter:

chmod +x *.sh

8−36 January 17, 1997

DCE Security Service

to make sure that necessary shell scripts are executable.

2. dce_loginas a user with privileges to modify the registry.

If you configured your machine using thedce_configscript, then whatever user the
script’scelladmin variable was set to has registry-modifying privileges.

3. Change to the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/moretests

directory and enter:

acl_edit_setup.sh

This script creates an account for ‘‘flintstone.none.none’’ in the registry. This
account has the password ‘‘yabadabado.’’ The script then modifies theuser_obj
entry on the ACL on this account so that user ‘‘flintstone’’ may modify the ACL.

4. dce_loginas ‘‘flintstone’’:

dce_login flintstone yabadabado

Change to the

dce-root-dir/dce/install/machinedcetest/dce1.2.2/test/security/api/control

directory and enter:

../testsh/testsh -d [output_level] -I../moretests acl_edit.tsh >output_file

where:

-d Specifies an output level for all test programs. Using the-d
option with nooutput_levelinteger returns a message only
when a test fails.

output_level Specifies an output level for all test programs. The
following list shows the valid integer values for
output_leveland the output levels they specify:

1 Prints message on failure.

2 Prints message on success.

3 Prints message on warning.

32 Prints message on trace.

33 Prints message on trace with failure.

34 Prints message on trace with success.

63 Prints debug messages during test case
execution.

The log information generated inoutput_filevaries with theoutput_levelspecified, but
test run and execution results are obvious in the log.

January 17, 1997 8−37

DCE Testing Guide

8.2.10.2 The Local Registry Test

You must log in as as a user with privileges to modify the registry before running the test.
If you configured your machine using the dce_config script, then whatever user the
script’s celladminvariable was set to has registry-modifying privileges. The following
examples assume thatcelladminis set tocell_admin and the password forcell_admin is
-dce-.

Note: This test uses the programbinlogin, which in turn uses the call
sec_login_valid_and_cert_ident(), which is a privileged operation. Hence
the need for Step 4 outlined below.

To run the local registy test do the following:

1. Login as the privileged user (root) on the system.

2. dce_login cell_admin -dce-

3. This test uses thesec_admin command to stopsecd so the location of the
sec_admincommand must exist in yourPATH environment variable.

4. Change to the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/moretests

directory, and execute the following commands:

chmod +x *.sh
chmod u+s binlogin

(Note that you may not have to do thechmod u+s binlogin if you are already
logged in as root.)

5. Change directory to

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/control

and type the following:

../testsh/testsh -d[output_level] -I../moretests local_rgy.tsh

8.2.10.3 The Locksmith Test

There is no automated script for testing locksmith functionality. Instead, the tests have to
be done manually as described below. Furthermore, the tests use theacl_edit test for
which the setup must be done as described in Section 8.2.11.1, ‘‘The acl_edit Tests,’’
Steps 1, 2, and 3.

Note: This test uses thesec_admincommand to stopsecd, so the location of the
sec_admin command must exist in yourPATH environment variable.
Whensecdis started in the locksmith mode, it runs in the foreground.

8−38 January 17, 1997

DCE Security Service

Test 1: Testing the Basic Locksmith Mode

1. Kill secdusing the scriptkill_secd.sh.

2. Restartsecdin locksmith mode as follows:

secd -locksm locksmith-principal

3. dce_loginasflintstone

dce_login flintstone yabadabado

4. Run theacl_edit test.

Test 2: Testing the -rem option

This test requires a cell to be configured with at least one client machine and one server
machine. To test, do the following.

On the server:

1. Kill secdusing the scriptkill_secd.sh.

2. Restartsecd using the -remoption as follows:

secd -locksm locksmith-principal -rem

On the client:

1. Verify that principals other than locksmith-principal can stilldce_login.

2. dce_loginasflintstone

dce_login flintstone yabadabado

3. Run theacl_edit test.

Test 3: Testing without -rem option

This test requires a cell to be configured with at least one client machine and one server
machine. To test, do the following.

On the server:

1. Kill secdusing the scriptkill_secd.sh.

2. Restartsecdwithout the-rem option as follows:

secd -locksm locksmith-principal

On the client:

1. Verify that the locksmith-principal cannotdce_login.

2. Verify that other principals (e.g.,cell_admin) can stilldce_login.

January 17, 1997 8−39

DCE Testing Guide

Test 4: Testing the -lockpw option

1. Kill secdusing the scriptkill_secd.sh

2. Restartsecdwith the-lockpw option as follows:

secd -locksm principal -lockpw

3. Verify that the principal can onlydce_loginwith the password set by the-lockpw
option.

8.2.10.4 The rgy_edit Tests

You mustdce_loginas a user with privileges to modify the registry before running this
test. If you configured your machine using thedce_configscript, then whatever user the
script’scelladmin variable was set to has registry-modifying privileges. There is no.tsh
control file for thergy_edit tests.

The

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/moretests/all_rgy_edit.sh

shell script runs tests for thergy_edit command.

To run thergy_edit tests, do the following:

1. Change directory to the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/moretests

directory and enter:

chmod +x *.sh

to make sure that all of thergy_edit test scripts are executable.

2. In the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/moretests

directory, enter:

all_rgy_edit.sh -d[output_level] >output_file

where:

-d Specifies an output level for all test programs. Using the-d
option with nooutput_levelinteger returns a message only
when a test fails.

output_level Specifies a specific output level for all test programs. The
following list shows the valid integer values for
output_leveland the output levels they specify:

8−40 January 17, 1997

DCE Security Service

1 Prints message on failure.

2 Prints message on success.

3 Prints message on warning.

32 Prints message on trace.

33 Prints message on trace with failure.

34 Prints message on trace with success.

63 Prints debug messages during test case
execution.

The log information generated inoutput_filevaries with theoutput_levelspecified, but
test run and execution results are obvious in the log.

8.2.11 API Tests

The API tests in the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/moretests

directory are structured similarly to theacl_edit tests; also similarly, there is no shell
script driver to invoketestshfor these tests. See the section describing theacl_edit tests
for information on how the test cases using thetestshdriver are structured and hints on
how to make executing them easier.

Note: This section gives explicit instructions for executing the API tests directly
from the

dce-root-dir/dce/install

tree.

The sec_aclAPI test assumes that the principal with registry modifying privileges is
cell_admin and that the password is-dce-. If either of these is different, then the script
sec_acl.tshmust be modified. Currently only subtest case 10 insec_acl.tshneeds to be
modified.

Note: Some tests use the programbinlogin, which in turn uses the call
sec_login_valid_and_cert_ident(), which is a privileged operation. Hence
the need for Step 3 outlined below.

To run the API tests, do the following:

1. Make sure you are starting with a clean registry. It is not necessary to re-create the
registry after each individual API suite is run.

2. Run thedce_login tool to login as the registry principal ‘‘cell_admin’’ or the
registry privileged user so that the test process (which inherits your credentials)
has the necessary privileges. To run thepasswd_import test, you need to define a
variableCELLADMIN to either ‘‘cell_admin’’ or the registry privileged user.

January 17, 1997 8−41

DCE Testing Guide

3. Before running the passwd_import test ensure that:

• The location of the passwd_import command exists in yourPATH
environment variable.

• The registry is clean.

• The variableCELLADMIN is defined to be eithercell_admin or the registry
privileged user.

4. Change to the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/moretests

directory, and execute the following commands:

cchhmmoodd ++xx **..sshh
cchhmmoodd uu++ss bbiinnllooggiinn

(Note that you may not have to do thechmod u+s binlogin if you are already
logged in as root.)

5. Change to the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/moretests

directory, and enter:

sh rgy_setup.sh

This script sets up necessary accounts in the registry.

6. Also in the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/moretests

directory, enter:

sh key_mgmt_setup.sh

This script creates keyfiles necessary for the key management API tests.

7. To actually run the tests, change to the

dce-root-dir/dce/install/machine/dcetest/dce1.2.2/test/security/api/control

directory and enter:

../testsh/testsh -d [output_level] -I../moretests \
control_file > output_file

where:

-d Specifies an output level for all test programs. Using the-d
option with nooutput_levelinteger returns a message only
when a test fails.

output_level Specifies an output level for all test programs. The
following list shows the valid integer values for

8−42 January 17, 1997

DCE Security Service

output_leveland the output levels they specify:

1 Prints message on failure.

2 Prints message on success.

3 Prints message on warning.

32 Prints message on trace.

33 Prints message on trace with failure.

34 Prints message on trace with success.

63 Prints debug messages during test case
execution.

control_file Specifies what control file to use. All files in the

dce-root-dir/install/machine/dcetest/dce1.2.2/test/security/api/control

directory which have a.tsh extension are valid control files.
Refer to the table at the end of this chapter to find which
control file will test a given API.

The log information generated inoutput_filevaries with theoutput_levelspecified, but
test run and execution results are obvious in the log.

8.2.11.1 Registry Group Override Tests

The Registry Group Override tests are found in:

dce-root-dir/dce/src/test/functional/security/grp_override

There are two tests:

• grp_override.c

This test exercises a non-documented functional API that supports group overrides.
The new, documented, routinesec_rgy_pgo_get_by_eff_unix_num()is also tested
here.

• passwd_export_grp_override.c

This test ensures thatpassswd_export correctly conveys overriden registry
information to/etc/group.

Note that the DCE 1.2.2 versions of these tests donot run under TET, although some of
the files and some aspects of the tests’ directory structure may make it appear as if they
do.

To build the tests under ODE (see Chapter 11 of the DCE 1.2.2 version of theOSF DCE
Porting and Testing Guidefor more information on ODE), change directory to

dce-root-dir/dce/src/test/functional/grp_override/ts

and runbuild . To run the tests, change directory to the

January 17, 1997 8−43

DCE Testing Guide

dce-root-dir/dce/obj/platform/test/functional/security/grp_override/ts

directory,dce_loginascell_admin, and execute:

./grp_override
./passwd_export_grp_override

No failure messages should appear in output.

8.2.11.2 Additional API Test Information

The following table shows the available suites of API tests along with the control file that
will execute all of the tests for each suite:

Control File Function Tested

all_login.tsh sec_login

all_pgo.tsh sec_rgy(PGO management)

all_acct.tsh sec_rgy(account management)

all_auth_pol.tsh sec_rgy(auth policy management)

all_policy.tsh sec_rgy(policy management)

all_props.tsh sec_rgy(properties management)

all_key_mgmt.tsh sec_key(key management)

all_misc_test.tsh sec_rgy(miscellaneous interfaces)

site_bind.tsh sec_rgy(site bind)

site_mgmt.tsh sec_rgy(site management)

sec_acl.tsh sec_acl

id_map.tsh sec_id

local_rgy.tsh sec_login(local registry)

passwd_import.tsh passwd_import

passwd_override.tsh password_override

most_sec.tsh Most of the .tsh files besidesacl_edit.tsh, rgy_edit.sh,
local_rgy.tsh, passwd_import.sh, passwd-override.tsh
andunix.tsh.

unix.tsh unix (UNIX interfaces)

Additional API test information is available insecp.gpsmlin the

dce-root-dir/doc/testplans/security

directory.

8−44 January 17, 1997

DCE Security Service

8.2.12 Use of the ‘‘compile_et’’ Program

The following command is used in testing.

• compile_et

This command is used to create message catalogs from error table files. It is part of
Kerberos and is used by Security and DFS. Its source directory is:

dce-root-dir/dce/src/security/krb5/comerr

Error table files (usually ending with a.et) are input tocompile_et, and a.h and a.msf
are output. The.h file is included in source code to have macros defined for each error
code and the.msf is used as input togencatto create message catalog files.

The following is excerpted from the filesrc/security/h/sad_err.et:

TThhiiss ssyymmbboolli icc mmeessssaaggee ssoouurrccee ffi il lee ((SSMMSSFF)) ddeeffi inneess tthhee eerrrroorrss pprroodduucceedd bbyy
tthhee sseeccuurriit tyy aaddmmiinn ttoooollss.. TThhee ffi irrsstt ttookkeenn oonn eeaacchh lli innee iiss tthhee ssyymmbboolli icc
nnaammee ooff aann eerrrroorr.. TThhee rreesstt ooff tthhee lli innee iiss tthhee tteexxtt tthhaatt ddeessccrriibbeess tthhaatt
eerrrroorr.. AAnn SSMMSSFF iiss lli ikkee aann XXPPGG mmeessssaaggee ssoouurrccee ffi il lee ((MMSSFF)) eexxcceepptt
tthhaatt ssyymmbboolli icc mmeessssaaggee iiddeenntti if fi ieerrss aarree uusseedd iinnsstteeaadd ooff nnuummbbeerrss..

Example lines from the.et file are as follows

eecc eekk__nnuulll l__hhaannddllee,, ""UUnnaabbllee ttoo aalll looccaattee hhaannddllee ((RReeggiissttrryy EEddiit t KKeerrnneell))""
eecc eekk__bbaadd__ffoorrmmaatt,, ""DDaattaa ssttrriinngg ffoorrmmaatt nnoott vvaalli idd ffoorr tthhee ssppeecciif fi ieedd

ffi ieelldd ((RReeggiissttrryy EEddiit t KKeerrnneell))""
eecc eekk__rreeqquuiirreedd__ffi ieelldd,, ""KKeerrnneell ooppeerraatti ioonn iinnvvookkeedd oonn iinnccoommpplleettee ddaattaa

sseett ((RReeggiissttrryy EEddiit t KKeerrnneell))""

The .h file produced contains lines as follows:

##ddeeffi innee eekk__nnuulll l__hhaannddllee ((338866441122554455LL))
##ddeeffi innee eekk__bbaadd__ffoorrmmaatt ((338866441122554466LL))
##ddeeffi innee eekk__rreeqquuiirreedd__ffi ieelldd ((338866441122554477LL))

The .msf file is used as input togencat to generate message catalogs. Its contents have
the following appearance:

11 UUnnaabbllee ttoo aalll looccaattee hhaannddllee ((RReeggiissttrryy EEddiit t KKeerrnneell))
22 DDaattaa ssttrriinngg ffoorrmmaatt nnoott vvaalli idd ffoorr tthhee ssppeecciif fi ieedd ffi ieelldd

((RReeggiissttrryy EEddiit t KKeerrnneell))
33 KKeerrnneell ooppeerraatti ioonn iinnvvookkeedd oonn iinnccoommpplleettee ddaattaa sseett ((RReeggiissttrryy

EEddiit t KKeerrnneell))

January 17, 1997 8−45

DCE Testing Guide

8.2.13 Test Plans

Refer to Chapter 1 of theOSF DCE Release Notesfor the location of the DCE test plans
on the DCE distribution tape.

8−46 January 17, 1997

Chapter 9. DCE Audit Service

This chapter contains porting and testing information for the DCE Audit Service.

9.1 Audit Service Overview

Audit plays a critical role in distributed systems, where there is widespread sharing of
data and resources, as well as the use of remote systems management facilities. Adequate
audit facilities are necessary for detecting and recording critical events in a distributed
application.

Audit is a key component of DCE and is provided by the DCE Audit Service. It has the
following features:

• An audit daemon is provided which performs the logging of audit records based on
specified criteria.

• Application Programming Interfaces (APIs) are provided which can be used as part
of application server programs to actuate the recording of audit events. These APIs
can also be used to create tools that can analyze the audit records.

• An administrative command interface to the audit daemon is provided which directs
the daemon in selecting the events that are going to be recorded based on certain
criteria.

• An event classification mechanism is used to logically group a set of audit events,
allowing for ease of administration.

• The display of audit records can be directed to logs or to the console.

January 17, 1997 9−1

DCE Testing Guide

9.2 Testing and Verification

The test cases provided for the DCE Audit Service test the audit API and the command
line interface.

There are three types of audit test cases:

• API Tests

These test the audit logging and analysis APIs.

• Command Tests

These test the use ofdcecpto control the audit daemon.

• Event Class File Tests

These test the configurability of event classes.

Each of these types and their corresponding test cases are described in the following
sections. Eight audit test cases are shipped with DCE.

9.2.1 Description of the Audit API Test Cases

In the API test cases, the audit and logging APIs are first tested together independently of
the filters. The filter mechanism is then tested by invoking the audit logging API
functions. Finally, the audit logging API functions are invoked, specifying the audit
daemon as the target of audit records.

The audit analysis API functions are used to prove the correctness of test results.

Following are the API test cases and their descriptions:

api_log Invokes the logging APIs without using filters.

api_filter Invokes the logging APIs and use filters.

api_log_to_daemon Invokes the logging APIs without using filters, and logs
to the audit daemon (that is, the central audit trail file).

In the Command test cases, the audit daemon is started and stopped using different
combinations of command line parameters. All other features are tested by having the
audit daemon audit its own control interface operations by linking the audit library with
the audit daemon, and starting the daemon using the-a option.

The DCE Control Program (dcecp) is used to check how the audit daemon handles filters
and the audit trail file.

Following are the Command test cases and their descriptions:

cp_filter Issuesdcecp commands that display and manipulate
filters.

cp_auditd Issuesdcecp commands that display and modify the
attributes of the audit daemon, as well as well as to

9−2 January 17, 1997

DCE Audit Service

enable or disable audit logging, or stop the daemon.

auditd_startup Starts the audit daemon using the different options of the
auditd command.

auditd_acl Checks that the default ACL of the audit daemon object
contains the specified ACL entries.

9.2.2 Description of the Event Class Test Case

In this test case, an event is added to an event class file. The test case then verifies that
the event generates an audit record when the event class is selected by a filter.

The event is then excluded from the event class. The test case verifies that the event does
not generate an audit record when the same filter is used.

The name of the test case isec_filter.

9.2.3 Installing theAudit functional tests with dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guide.dcetest_config
will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocal) to that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/test/component_name/

directory, where thetest/component_nameelements of this path are equivalent to the
test/component_nameelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

The DCE Audit functional tests are available via option 8 (‘‘Audit’’) of the ‘‘DCE Test
Installation (Functional Tests’’ menu. The TET binaries are available via option 3
(‘‘TET’’) of the DCE Test Installation menu.

Note thatdcetest_configwill prompt you for the locationfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the Audit functional
tests, this path should be the location, on your machine, of:

dce-root-dir/dce/install

—which is the DCEinstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of theOSF DCE Release Notes).

Thus,dcetest_configwill install the Audit functional tests at:

/dcetest/dcelocal/test/tet/functional/security/audit

where /dcetest/dcelocal is the link to whatever path you supplied as the install
destination.

January 17, 1997 9−3

DCE Testing Guide

The advantage in usingdcetest_configto install the functional tests is that it will install
all that is needed andonly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlyinstall (if you choose) functional tests withdcetest_config; you
must use TET to run the tests. Information on running the individual tests can be found in
the following sections.

Refer to Chapter 11 of this guide for further information on usingdcetest_config. See
‘‘Overview of TET Use’’ in Chapter 11 for general information on TET.

9.2.4 Audit Test Configuration Requirements

All Audit test suites are run from the TET environment. Before running the Audit test
suites, ensure that:

• You are logged in as root.

• The DCE cell is up and running; that is, that the DCE daemons (secd, cdsd, and the
DCE client daemons) have been started.

• The Audit daemon (auditd) is not running.

• You are not authenticated in the cell. The tests are designed to be run using the
machine principal.

• In the CDS namespace, the Audit ACL object

.:/hosts/hostname/audit-server

does not contain server binding entries (i.e., theRPC_ObjectUUIDs attribute for
both entries should be null). If it does contain such entries, you should remove the
object from the namespace before running the tests.

Note that since the test suites are run under TET, many of the configuration requirements
are taken care of in the test code.

9.2.5 Running the Audit Test Cases

To run the audit test cases, enter the following command:

tcc -e functional/security/audit

The test results can be viewed from the journals that TET creates in the

/dcetest/dcelocal/test/tet/functional/security/audit/results

directory. The journal is located in a numbered directory, where the number represents a
test run. A numbered directory and journal is created for each invocation of thetcc
command (for example,0001e, 0002e, and so on).

9−4 January 17, 1997

DCE Audit Service

Following is an example of an Audit TET journal which shows the test cases that
succeeded and those that failed:

00||11..1100 1122::5599::1188 1199994400552255||UUsseerr:: wweeiisszz ((00)) TTCCCC SSttaarrtt,, CCoommmmaanndd LLiinnee::

dce-install-path//i innssttaalll l/ /rri iooss//ddcceetteesstt//ddccee11..11//tteesstt//tteett//bbiinn//ttcccc --ee ffuunncctti ioonnaall/ /sseeccuurriit tyy//aauuddiit t

2200|| dce-install-path//i innssttaalll l/ /rri iooss//ddcceetteesstt//ddccee11..11//tteesstt//tteett//ffuunncctti ioonnaall/ /sseeccuurriit tyy//aauuddiit t//tteetteexxeecc..ccffgg 11||CCoonnffi igg SSttaarrtt

3300||| |TTEETT__VVEERRSSIIOONN==11..1100

3300||| |TTEETT__OOUUTTPPUUTT__CCAAPPTTUURREE==FFaallssee

3300||| |TTEETT__RREESSCCOODDEESS__FFIILLEE==tteett__ccooddee

3300||| |TTEETT__EEXXEECC__IINN__PPLLAACCEE==FFaallssee

3300||| |TTEETT__NNSSIIGG==3311

3300||| |TTEETT__SSIIGG__IIGGNN==3344

4400||| |CCoonnffi igg EEnndd

7700||| |""SSttaarrtti inngg AAUUDDIITT TTeesstt SSuuiit tee""

1100||00 //ttss//aappii__ffi il lt teerr//aappii__ffi il lt teerr 1122::5599::1188||TTCC SSttaarrtt,, sscceennaarriioo rreeff 1111--11

1155||00 11..99 11||TTCCMM SSttaarrtt

552200||00 00 1188226655 11 11||SSTTAARRTT DDCCEE aauuddiit t ffuunncctti ioonnaall t teesstt::

dce-install-path//i innssttaalll l/ /rri iooss//ddcceetteesstt//ddccee11..11//tteesstt//tteett//tteett__ttmmpp__ddiirr//2244114466aa//aappii__ffi il lt teerr//aappii__ffi il lt teerr;; \\

DDAATTEE:: WWeedd MMaayy 2255 1122::5599::2222 EEDDTT 11999944

440000||00 11 11 1122::5599::4488||I ICC SSttaarrtt

220000||00 11 1122::5599::4488||TTPP SSttaarrtt

552200||00 11 1188226655 11 22||SSTTAARRTT:: aappii__ffi il lt teerr11 ssttaarrtteedd

552200||00 11 1188226655 11 33||PPAASSSS:: aappii__ffi il lt teerr0011 ppaasssseedd

552200||00 11 1188226655 11 44||PPAASSSS:: aappii__ffi il lt teerr0022 ppaasssseedd

552200||00 11 1188226655 11 55||EERRRROORR:: aappii__ffi il lt teerr0033 ffaaiil leedd

552200||00 11 1188226655 11 66||PPAASSSS:: aappii__ffi il lt teerr0044 ppaasssseedd

552200||00 11 1188226655 11 77||PPAASSSS:: aappii__ffi il lt teerr0055 ppaasssseedd

552200||00 11 1188226655 11 88||PPAASSSS:: aappii__ffi il lt teerr0066 ppaasssseedd

552200||00 11 1188226655 11 99||PPAASSSS:: aappii__ffi il lt teerr0077 ppaasssseedd

552200||00 11 1188226655 11 1100||PPAASSSS:: aappii__ffi il lt teerr0088 ppaasssseedd

552200||00 11 1188226655 11 1111||PPAASSSS:: aappii__ffi il lt teerr0099 ppaasssseedd

552200||00 11 1188226655 11 1122||PPAASSSS:: aappii__ffi il lt teerr1100 ppaasssseedd

552200||00 11 1188226655 11 1133||PPAASSSS:: aappii__ffi il lt teerr1111 ppaasssseedd

222200||00 11 00 1133::0044::5588||PPAASSSS

441100||00 11 11 1133::0044::5588||I ICC EEnndd

552200||00 00 1188226655 11 11||EENNDD DDCCEE aauuddiit t ffuunncctti ioonnaall t teesstt::

dce-install-path//i innssttaalll l/ /rri iooss//ddcceetteesstt//ddccee11..11//tteesstt//tteett//tteett__ttmmpp__ddiirr//2244114466aa//aappii__ffi il lt teerr//aappii__ffi il lt teerr;; \\

DDAATTEE:: WWeedd MMaayy 2255 1133::0055::1166 EEDDTT 11999944

8800||00 00 1133::0055::1199||TTCC EEnndd

7700||| |""CCoommpplleetteedd AAUUDDIITT TTeesstt SSuuiit tee""

990000||1133::0055::1199||TTCCCC EEnndd

January 17, 1997 9−5

DCE Testing Guide

9.2.6 Test Plans

Refer to theOSF DCE Release Notesfor the location of the DCE test plans on the DCE
distribution tape.

9.3 Audit Runtime Output and Debugging Output

The Audit component outputs server information of all kinds via the DCE serviceability
component. The following sections describe how to control the various kinds of
information (including debugging output) available from Audit via serviceability.

9.3.1 Normal Audit Server Message Routing

There are basically two ways to control normal Audit server message routing:

• At startup, through the contents of a routing file (which are applied to all components
that use serviceability messaging).

• Dynamically, through thedcecp logobject.

The following sections describe each of these methods.

9.3.1.1 Routing File

If a file called

dce-local-path/var/svc/routing

exists when Audit is brought up, the contents of the file (if in the proper format) will be
used as to determine the routing of Audit serviceability messages.

The value ofdce-local-pathdepends on the values of twomake variables when DCE is
built:

DCEROOT its default value is:/opt

DCELOCAL its default value is:$DCEROOT/dcelocal

Thus, the default location of the serviceabilityrouting file is normally:

/opt/dcelocal/var/svc/routing

However, a different location for the file can be specified by setting the value of the
environment variableDCE_SVC_ROUTING_FILE to the complete desired pathname.

9−6 January 17, 1997

DCE Audit Service

The contents of the routing file consist of formatted strings specifying the routing desired
for the various kinds of messages (based on message severity). Each string consists of
three fields as follows:

severity:output_form:destination[output_form:destination. . .]

Where:

severity specifies the severity level of the message, and must be one of the
following:

• FATAL

• ERROR

• WARNING

• NOTICE

• NOTICE_VERBOSE

(The meanings of these severity levels are explained in detail in Chapter
4 of theOSF DCE Application Development Guide — Core Components
volume, in the section entitled ‘‘Specifying Message Severity’’.)

output_form specifies how the messages of a given severity level should be
processed, and must be one of the following:

• BINFILE

Write these messages as binary log entries

• TEXTFILE

Write these messages as human-readable text

• FILE

Equivalent toTEXTFILE

• DISCARD

Do not record messages of this severity level

• STDOUT

Write these messages as human-readable text to standard output

• STDERR

Write these messages as human-readable text to standard error

Files written asBINFILE s can be read and manipulated with a set of
logfile functions. See Chapter 4 of theOSF DCE Application
Development Guide — Core Componentsvolume, mentioned above, for
further information.

Theoutput_formspecifier may be followed by a two-number specifier of
the form:

.gens.count

Where:

January 17, 1997 9−7

DCE Testing Guide

gens is an integer that specifies the number of files (i.e., generations)
that should be kept

count is an integer specifying how many entries (i.e., messages) should
be written to each file

The multiple files are named by appending a dot to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specified bycount, the file is
closed, the generation number is incremented, and the next file is
opened. When the maximum generation number files have been created
and filled, the generation number is reset to 1, and a new file with that
number is created and written to (thus overwriting the already-existing
file with the same name), and so on, as long as messages are being
written. Thus the files wrap around to their beginning, and the total
number of log files never exceedsgens, although messages continue to
be written as long as the program continues writing them.

destination specifies where the message should be sent, and is a pathname. The field
can be left blank if theoutput_formspecified isDISCARD, STDOUT,
or STDERR. The field can also contain a%ld string in the filename
which, when the file is written, will be replaced by the process ID of the
program that wrote the message(s). Filenames maynot contain colons or
periods.

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings as space-separated

output_form:destination

strings.

For example,

FFAATTAALL::TTEEXXTTFFIILLEE:://ddeevv//ccoonnssoollee
WWAARRNNIINNGG::DDIISSCCAARRDD::----
NNOOTTIICCEE::BBIINNFFIILLEE..5500..110000:://ttmmpp//l loogg%%lldd SSTTDDEERRRR::--

Specifies that:

• Fatal error messages should be sent to the console.

• Warnings should be discarded.

• Notices should be written both to standard error and as binary entries in files located
in the /tmp directory. No more than 50 files should be written, and there should be no
more than 100 messages written to each file. The files will have names of the form:

/tmp/logprocess_id.nn

whereprocess_idis the process ID of the program originating the messages, andnn
is the generation number of the file.

9−8 January 17, 1997

DCE Audit Service

9.3.1.2 Routing by the dcecp log Object

Routing of Audit server messages can be controlled in an already-started cell through the
dcecp logobject. See thelog.8dcereference page in theOSF DCE Command Reference
for further information.

9.3.2 Debugging Output

Debugging output from Audit can be enabled (provided that Audit has been built with
DCE_DEBUG defined) by specifying the desired debug messaging level and route(s) in
the

dce-local-path/var/svc/routing

routing file (described above), or by specifying the same information in the
SVC_AUD_DBG environment variable, before bringing up Audit. Debugging output
can also be enabled and controlled through thedcecp logobject.

Note that, unlike normal message routing, debugging output is always specified on the
basis of DCE component/sub-component (the meaning of ‘‘sub-component’’ will be
explained below) and desired level.

The debug routing and level instructions for a component are specified by the contents of
a specially-formatted string that is either included in the value of the environment
variable or is part of the contents of the routing file.

The general format for the debug routing specifier string is:

"component:sub_comp.level,. . .:output_form:destination6
[output_form:destination. . .] "

where the fields have the same meanings as in the normal routing specifiers described
above, with the addition of the following:

component specifies the component name

sub_comp.level specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

A star (‘‘* ’’) can be used to specify all sub-components. The sub-
component list is parsed in order, with later entries supplementing earlier
ones; so the global specifier can be used to set the basic level for all
sub-components, and specific sub-component exceptions with different
levels can follow (see the example below).

‘‘Sub-components’’ denote the various functional modules into which a component has
been divided for serviceability messaging purposes. For Audit, the sub-components are
as follows:

January 17, 1997 9−9

DCE Testing Guide

general General server administration

esl Event selection list (filters) management

evt Audit record management

trl Audit trail management

msgs Debugging messages

For example, the string

"aud:*.1,trl.3:TEXTFILE.50.200:/tmp/AUD_LOG

sets the debugging level for all Audit sub-components (excepttrl) at 1; trl ’s level is set
at 3. All messages are routed to/tmp/AUD_LOG . No more than 50 log files are to be
written, and no more than 200 messages are to be written to each file.

The texts of all the Audit serviceability messages, and the sub-component list, can be
found in the Audit sams file, at:

dce-root-dir/dce/src/security/audit/libaudit/aud.sams

For further information about the serviceabilitymechanism and API, see Chapter 4 of the
OSF DCE Application Development Guide — Core Componentsvolume, ‘‘Using the
DCE ServiceabilityApplication Interface’’.

9−10 January 17, 1997

Chapter 10. DCE Distributed File Service

The DCE Distributed File Service (DFS) provides data sharing services for use within
the DCE environment by extending the local file system model to remote systems. It
provides the ability to store and access data at remote locations and utilizes the
client/server model common to other distributed file systems.

10.1 Overview

DFS consists of the following components:

• DCE Local File System (LFS), which can store the file system data on the disk.

Note: This component, alone among the DFS components, is optional. You
can retain your existing file system instead of DCE LFS and use DFS to
export that file system. However, there are advantages to bringing up
LFS in conjunction with DFS.

• The File Exporter, which exports data using Remote Procedure Call (RPC).

• The Token Manager, installed on DFS servers, which synchronizes access to
exported file systems on DFS servers.

• The Cache Manager, installed on DFS clients, which retrieves and stores data from
the File Exporter.

• The Token Cache Manager, installed on DFS clients, maintains liaisons with the
Token Manager, and controls server access to exported local filesystems.

• Fileset services, which handle administrative file system functions. These include
the following servers:

1. the Fileset Location Server, which supplies network locations for filesets.

2. the Fileset Server, which provides access to entire filesets for administrative
functions, such as moving and backing them up.

3. the Replication Server, which provides fileset replication on different machines
(for greater availability).

January 17, 1997 10−1

DCE Testing Guide

• The Basic Overseer (bos) service, which monitors other server processes and
facilitates system administration tasks.

• Scout, which gathers file server statistics.

• Backup, which provides a mechanism for backing up data stored on the file server.

Command interfaces are provided for these server processes and tools.

DFS lets users access a remote file by its location-independent DCE pathname. It then
finds the file, just as if it existed locally. Users do not have to know the physical location
of files. TheCache Manager, which runs on client machines, translates file system calls
into references to the client machine’s file system cache. If necessary, it then executes
RPCs to the file server machine containing the data.

The local file system (LFS) on the DFS server stores the master copy of filesystem data.
The File Exporter can export any Virtual File System (VFS) resident on the server
machine. DFS uses a token-based cache synchronization mechanism to maintain cache
consistency and provide single-site semantics.

DCE LFS is a log-based file system that supports filesets, access control lists, and
extended fileset features. These include copy-on-write clones, quotas, and multiple
filesets per partition.

The DCE LFS code is designed to run in the server’s kernel. It is based on a standard
UNIX disk partition, using the facilities of the kernel device driver. DCE LFS operations
are accessed through the system call layer, which calls the VFS switch.

10.2 Setup, Testing, and Verification

Since DFS interacts with various other DCE components, functional testing for it is not
necessarily simple, particularly with a port of DCE to a new platform. The detailed
operation of other DCE components may not be known, and there will not be a baseline
of component behavior under different conditions of usage and loading. Therefore,
testing interactions between DFS and the other components may indicate a need for
modifications in those other components as well as DFS, and necessitate a cyclical or
incremental approach to functional testing, as well as system test.

When you start testing DFS, a reference platform is particularly useful, since the code on
it has been tested to known standards of functionality and robustness. In addition, the
reference platform lets you address interoperability issues with a partner that works
correctly.

10.2.1 Installing DFS Functional Testswith dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guide.dcetest_config
will install the tests you select at the path you specify, and will create a softlink (called

10−2 January 17, 1997

DCE Distributed File Service

/dcetest/dcelocal) to that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/test/component_name/

directory, where thetest/component_nameelements of this path are equivalent to the
test/component_nameelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locationfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the DFS functional
tests, this path should be the location, on your machine, of:

dce-root-dir/dce/install

—which is the DCEinstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of theOSF DCE Release Notes).

Thus,dcetest_configwill install the DFS functional tests at:

/dcetest/dcelocal/test/file/

where /dcetest/dcelocal is the link to whatever path you supplied as the install
destination.

The advantage in usingdcetest_configto install the functional tests is that it will install
all that is needed andonly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlyinstall (if you choose) functional tests withdcetest_config; for
test configuration and execution you must follow the instructions in the sections below.

Refer to Chapter 11 of this guide for further information on usingdcetest_config.

10.2.2 Debugging Notes

DFS involves the interaction of many different programs, which operate on different
machines (servers, clients) in both kernel and user space. It uses the services of various
other DCE components, such as RPC, Threads, DTS and Security. It also uses the
services of non-DCE components, such as the native file services of at least one and
possibly more host platforms.

Therefore, porting DFS to a new platform presents a broad set of challenges. The
subcomponents must be built and integrated in a distributed and possibly heterogeneous
environment, interactively with other development efforts. Porting and development
work in different areas of DCE can proceed asynchronously, and the DFS port effort
must bridge changes in the software environment.

January 17, 1997 10−3

DCE Testing Guide

10.2.2.1 Running Tests on the HP/UX Platform

Note following before running the DFS functional tests on the HP/UX platform:

• You should not use/bin/sh, but rather the/bin/posix/shshell, when running the DFS
functional tests. Otherwise errors will occur as a result of the way/bin/sh handles
arguments when function calls are made.

• Thediff command supplied with HP/UX 9.0.1 will not perform

diff -r

correctly under certain circumstances, returning a non-zero exit code even when
there are no differences in the directory trees specified. Functional tests such aslow
andfs which use thediff command will incorrectly report failures.

10.2.2.2 Distributed Development Environments

Often, multiple versions of a particular source file are in use simultaneously, which
complicates the debugging process when responsibilities are divided among developers.
Distributed development environments, such as OSFOpen Development Environment
(ODE), packaged with the DCE sources, can support this type of work. The source
control software included in such environments provides a handle for managing
distributed development with tracing tools to find the filenames, file revisions and line of
code affecting a particular variable or data object.

If you define theAFSL_USE_RCS_ID preprocessor directive on the command line
when compiling a file,osi_assertfailures return the source code file, its version number,
the assertion’s line number, and (if possible) the results of the assertion. Otherwise, the
compiler’s version of the filename is returned.

The DFS code implements the file and version information with Revision Control System
(RCS). RCS is available from the Free Software Foundation. It is packaged with theOSF
Development Environment(ODE), which is provided on the DCE source tape.

However, the package is general enough that you can apply it to your own source code
control system, if you use a different development environment than ODE. To modify the
code which lets the AFSL_USE_RCS_ID construct return information in a form
appropriate to your source code control conventions, check and update the following
files under the

dce-root-dir/dce/src/file

directory:

config/stds.h osi/afsl_trace.c osi/osi.h

Note: The code in the

10−4 January 17, 1997

DCE Distributed File Service

dce-root-dir/dce/src/file/osi

directory contains various debugging aids for porting theosi layer. Some
of this code may be applicable to other portions of DFS.

10.2.2.3 Kernel Debugging Considerations

You need a kernel debugger as well as user space debugging facilities to bring up DFS
on your platform. At a minimum, such a debugger must be able to set breakpoints and
execute stack traces. Increasing the debugger’s capabilities and its integration into your
computational environment can improve your debugging efficiency. Specific desiderata
for a debugging environment include the following:

• Remote debugging, where the machine running the code differs from the machine
doing the testing.

• Source code debugging.

• Structure format conversion facilities (dumpers): DFS kernel code includes multiple
layers of nested structures. Written out in raw hexadecimal format, they can be
tedious to interpret. Format conversion facilities which cast the information into a
readable format, and trace out succeeding nested substructures, can speed the
debugging process significantly.

If your kernel debugging tools have any shortcomings, you may find that an investment
in improving them, particularly to provide the facilities listed above, will be repaid in
shortened debugging time as you bring up DFS.

Note: When you plan the porting process, you should evaluate the costs and
benefits of investing in improved development tools before you begin
working with DFS.

10.2.2.4 Debugging Facilities in the DFS Source Code

The DFS source code provides several built-in debugging tools, particularly in the

dce-root-dir/dce/src/file/osi

directory.

For example,osi_assert, which checks for internal consistency, and debugging-related
compiler switches can be found in

dce-root-dir/dce/src/file/osi/osi.h

If an osi_assertfails, the program uttering it restarts, typically dumping core. You may
wish to build a soft restart facility into your kernel code, so suchosi_assertfailures do
not cause a kernel panic. Doing so can speed up code development and testing. However,
in production systems,osi_assert failures are normally only associated with critical
problems and possible data corruption. You must decide how to handle such failures in

January 17, 1997 10−5

DCE Testing Guide

your final product.

Note that some debugging features must be ported separately for the different libraries in
which they run, once for kernel and once for user-space code.

10.2.2.5 Debug Levels

You can select the level of debugging feedback with a numerical value for
AFSL_DEBUG_LEVEL , defined in osi.h. Currently, three values of
AFSL_DEBUG_LEVEL are implemented:

0 Only critical code reports errors.

3 Consistency checks are reported if they are not computationally expensive. For
example, Boolean expressions of simple variables are checked, function calls or
complex macros are not.

5 All consistency checks are performed, regardless of expense.

You can tune the debugging level, including definition of intermediate levels for
AFSL_DEBUG_LEVEL , to suit your needs, depending where you are in the porting
process.

Because DFS code involves interaction among many modules on different machines,
expect to maintain a fairly high level of debugging reporting through most of the
development process. Typically,AFSL_DEBUG_LEVEL will remain at 5, even for
modules already built and separately functionally tested.

Once you have finished the debugging, and do not intend to trace operations again, do
not defineAFS_DEBUGor AFSL_DEBUG_LEVEL in:

dce-root-dir/dce/src/file/osi/osi.h

Then only critical osi_asserts, where failures are associated with possible data
corruption, are turned on.

10.2.3 Test Types

There are several functional test suites available for DFS. Some are packaged with DCE,
and some which are not, but are probably already present on your system. There are three
sets of tests of overall DFS functionality, namely:

• Basic tests, such as the NFS connectathon suite, which are not packaged with DCE.

• The low-level functionality tests, in the

dce-root-dir/dce/src/test/file/low

directory.

• More extensive tests, in the

10−6 January 17, 1997

DCE Distributed File Service

dce-root-dir/dce/src/test/file/fs

directory.

At least with the latter two sets of tests, you can modify the stress level by changing
various parameters, such as the sizes and numbers of objects created, listed, modified or
removed.

Besides testing basic DFS functionality, the

dce-root-dir/dce/src/test/file

directory has subdirectories for tests of specific functions associated with DFS.

10.2.3.1 Basic Testing with External Test Packages

If your platform also supports NFS, you can use tests packaged with it, particularly the
connectathontest suite, to check basic DFS functions, such as creating, deleting, listing,
reading and writing files and directories. Alternatively, you may be able to modify other
low-level external filesystem test suites to test DFS during the porting process.

10.2.3.2 The Standard DFS Test Suites

Once your implementation passes such basic tests, you can begin stress tests, from the

dce-root-dir/dce/src/test/file/low

and

dce-root-dir/dce/src/test/file/fs

directories.

These tests let you specify sizes and number of objects to be manipulated, and the mix of
operations on those objects, so you can increment the stress on your code along various
parameters. In addition, the context in which the tests are run, for example heterogeneous
machines or split servers, let you generate a matrix of performance stresses.

Beside the basic tests listed above, the following types of function-specific DFS tests are
shipped with DCE:

• DFS kernel modification tests

• DCE Local File System tests

• DFS server process tests

• DFS command interface tests

• DFS administrative tool tests

These tests are contained in subdirectories of the

January 17, 1997 10−7

DCE Testing Guide

dce-root-dir/dce/src/test/file

directory and are described in the DFS Test Plan.

Before executing the test cases, you must configure DFS for testing, using the
instructions in the following section of this chapter (‘‘DFS Test Setup’’). You can run
tests on the configurations described in that section.

Because some DFS code runs in kernel space, many of the interfaces cannot be called
directly in order to test them. Therefore, testcases have been written using user interfaces
that in turn access and exercise the kernel space code. In addition, tests are included to
exercise those subroutines not tested through traditional UNIX interfaces.

User-level code is tested using shell scripts that exercise the interfaces.

10.2.4 DFS Test Setup

Before running any DFS tests, you must first configure a DCE cell. Refer to theOSF
DCE Administration Guide—Introductionfor information on configuring a DCE cell,
specifically Chapter 6 ‘‘Overview of The DCE Installation and Configuration Script,’’
Chapter 7 ‘‘Phase One: Initial Cell Configuration,’’ and Chapter 8 ‘‘Phase Two:
Configuring a DCE Client and Other DCE Services.’’

10.2.5 DCE Distributed File Service Tests

The following sections describe functional tests for the DCE Distributed File System.
These tests are packaged on the distribution tape, in the

dce-root-dir/dce/src/test/file/

directory. In addition, many of the DFS source subdirectories include test programs for
individual functions and and subcomoponents.

Note: Before building and running the test programs packaged with the DFS
sources, check them for platform and operating system dependencies.
They may need to be modified to operate correctly in your target
environment, and to exercise ported code.

In addition to the DFS system call tests described in the section immediately following,
other following sections describe a number of development level tests which are built in
the individual subcomponent directories. These can be used to test various phases of
your port. Included are tests for the token manager, aggregate operations, free pool
management, system calls, and others.

For information on DFS system testing, refer to the ‘‘DFS System Tests’’ section of
Chapter 12 (‘‘DCE System Testing’’) of this guide.

10−8 January 17, 1997

DCE Distributed File Service

10.2.5.1 System Call Tests

The

dce-root-dir/dce/src/test/file/low

and

dce-root-dir/dce/src/test/file/fs

subdirectories contain testcases for testing the file system-related system calls affected
by DFS. Once your ported DFS code passes all tests in these two subdirectories, it can
provisionally be considered ready for integration with other DCE functions.

10.2.5.1.1 The low Tests

The tests in

dce-root-dir/dce/src/test/file/low

are C programs with shell script drivers that use DFS to exercise low-level system calls.
Brief descriptions of thelow tests are listed below.

Note: Tests 2 and 4 are not listed. They exist, but are computationally expensive
and are not considered necessary for testing DFS functionality.

These tests are specific to UNIX platforms. If you are porting to a different
operating system, you will have to rewrite them, using your target
environment’s system calls.

Test 1 Performsstat() calls to check for existence of two test files, one of 16
bytes, one of half a megabyte. Does repeatedopen()s andclose()s on
each file, then repeated cycles ofopen()-write() -read()-close() on
each. It then performs cycles oflseek()and open()-read()-close() on
as many as three files. Does not check data.

Test 3 Performs sequential and randomwrite()s to a file, then aclose()
followed by fsync(). Then itopen()s andread()s the file, and compares
the data with what it wrote.

Test 5 Writes out a file, marches through the file with successive read() and
lseek() calls. Compares the first byte of each buffer for data integrity.

Test 6 File and directory manipulation: Performsmkdir() andchdir() system
calls. Usesopendir() and readdir() to confirm that what it created
actually exists.

Test 7 Creates symbolic links, performslstat()s on them.

Test 8 Creates different files with all permission modes, opens, renames, and
unlinks them. Checks whether the modes stay correct onopen().

Test 9 Creates a file, manipulates its mode and time withchmod(), fchmod()
with the file open, andutimes(). It then checks the file’s status with
stat(), and unlinks the file.

January 17, 1997 10−9

DCE Testing Guide

Test 10 File descriptor status manipulation: creates a file,open()s it, performs
fcntl_setsand fcntl_gets on it, does someread()s andwrite()s. It then
calls fcntl_sets again. Then if truncates the file withftruncate().
Finally, it checks the file’s status flags withstat(), and unlinks the file.

Test 11 Deadlock testing: a parent process forks a child, then both processes
lock and unlock a file.

Test 12 Creates a file, reads and writes vectors of data to it withreadv() and
writev() .

RTest 1 Tests thechroot command.

RTest 2 Tests thechowncommand.

Information on running these tests can be found in:

dce-root-dir/dce/src/test/file/low/READ_ME

10.2.5.1.2 The fs Tests

The tests in

dce-root-dir/dce/src/test/file/fs

are shell scripts that execute a number of common UNIX commands relating to files.
These tests exercise the Cache Manager and Protocol Exporter functionality, as well as
verify that UNIX filesystem semantics are maintained. These tests check that the DFS
implementation adjudicates filesystem contention among multiple processes, as happens
in a multi-user environment. They are summarized below. (Note that test 5 has been
removed from the suite.)

As with the low-level tests described above, these tests are specific to UNIX systems,
and will have to be rewritten for other target environments.

err1 Tests file error conditions by issuing incorrect commands. For instance,
this test attempts tocp to a directory,cd to a file, and perform invalid
chmod andchgrp commands.

Test 1 Run up to 9 simultaneous copies of a program, which modify different
parts of the same file at the same time.

Test 2 Creates a new subdirectory, then spawns multiple processes which
performs various standard file operations in that subdirectory.

Test 3 Performs hundreds of file creations and removals in the current directory,
then checks that all the correct files (and no others) are present at the end
of the process.

Test 4 Concatenates files: multiple processescat sets sixteen 1K files into 16K
files, then repeat the process with the larger files, forming 256 kilobyte
files.

Test 6 Tests process contention: one process attempts to delete a file while
another has the file open.

10−10 January 17, 1997

DCE Distributed File Service

Test 7 Tests directory management integrity: creates a directory structure
containing a variable number of directories, each of which contains a
variable number of 16-kilobyte files. The tree is repeatedly created and
then removed.

RTest 1 Checks thechgrp, chmod andchowncommands.

Information on running these tests can be found in:

dce-root-dir/dce/src/test/file/fs/READ_ME

_______________________ 1.2.2,added DFS Delegation tests (start) _______________________

10.2.6 Delegation Tests

Delegation tests are located in the

dce-root-dir/dce/src/test/file/delegation.system

directory. Information on setting up and running these tests can be found in:

dce-root-dir/dce/src/test/file/delegation.system/README

These tests do not run under TET.
_______________________ 1.2.2,added DFS Delegation tests (end) _______________________

______________________ 1.2.2,added Multihome Server tests (start) ______________________

10.2.7 Multihome Server Tests

The Multihome Server Tests are located in the

dce-root-dir/dce/src/test/file/cmmhs

directory. Information on setting up and running these tests can be found in:

dce-root-dir/dce/src/test/file/cmmhs/README

These tests do not run under TET.
______________________ 1.2.2,added Multihome Server tests (end) ______________________

__________________ 1.2.2,added File Exporter Authorization tests (start) __________________

10.2.8 File Exporter Authorization Tests

The File Exporter Authorization Tests are located in the

January 17, 1997 10−11

DCE Testing Guide

dce-root-dir/dce/src/test/file/cmfxauth

directory. Information on setting up and running these tests can be found in:

dce-root-dir/dce/src/test/file/cmfxauth/README

These tests do not run under TET.
__________________ 1.2.2,added File Exporter Authorization tests (end) __________________

10.2.8.1 DFS Cache Consistency Tests

The DFS cache consistency tests are located in:

dce-root-dir/dce/src/test/file/cache_mgr

Descriptions of the tests and instructions on how to run them can be found in:

dce-root-dir/dce/src/test/file/cache_mgr/README

10.2.8.2 UNIX Filesystem Tests

UNIX filesystem tests are located in:

dce-root-dir/dce/src/test/file/fs

Descriptions of the tests and instructions on how to run them can be found in:

dce-root-dir/dce/src/test/file/fs/README

10.2.8.3 DFS ACL Tests

The DFS ACL tests are located in:

dce-root-dir/dce/src/test/file/acl

Descriptions of the tests and instructions on how to run the tests can be found in:

dce-root-dir/dce/src/test/file/acl/README

10.2.8.4 DFS Token Manager Tests

These tests verify DFS token manager functionality and are contained in the

dce-root-dir/dce/src/file/tkm

10−12 January 17, 1997

DCE Distributed File Service

directory. Note that there is noREADME .

10.2.8.5 DFS Zero Link Count Tests

These tests verify the correctness of handling zero link count files in DFS and are
contained in the

dce-root-dir/dce/src/test/file/zlc

directory. The directory contains aREADME .

10.2.8.6 DFS Token State Recovery Tests

The DFS token state recovery hand tests are located in:

dce-root-dir/dce/src/test/file/tsr

Descriptions of the tests and instructions on how to run them can be found in:

dce-root-dir/dce/src/test/file/tsr/TSR_README

10.2.8.7 DFS File Exporter Stress Tests

The DFS file exporter stress tests are located in:

dce-root-dir/dce/src/test/file/fx

A descriptions of the test script and instructions on how to run the tests can be found in:

dce-root-dir/dce/src/test/file/fx/README

10.2.8.8 ubik Failure Recovery Tests

Theubik failure recovery hand tests are located in:

dce-root-dir/dce/src/test/file/ubik

Descriptions of the tests and instructions on how to run them can be found in:

dce-root-dir/dce/src/test/file/ubik/READ_ME

January 17, 1997 10−13

DCE Testing Guide

10.2.9 DCE Local File System Tests

The following sections describe tests for the DCE Local File System.

10.2.9.1 System Call Tests for LFS

The low andfs tests described in the ‘‘System Call Tests’’ section earlier in this chapter
can also be run on the DCE Local File System to test file system-related calls affected by
DCE LFS.

10.2.9.2 LFS Fileset Operations Tests

The fileset (‘‘ftutil’’) test tools for testing DCE LFS fileset operations are located in:

dce-root-dir/dce/src/test/file/fset

Instructions on running the tests can be found in:

dce-root-dir/dce/src/test/file/fset/README

10.2.9.3 LFS Authorization Salvage Test

The LFS authorization salvage hand test is located in:

dce-root-dir/dce/src/test/file

A description of the test and instructions on how to run it can be found in the comment at
the top of the

dce-root-dir/dce/src/test/file/salvage/AuthCheckTest

file. Test tools for the LFS salvager are located in

dce-root-dir/dce/src/test/file/ravage

and:

dce-root-dir/dce/src/test/file/scavenge

10.2.9.4 LFS ACL and LFS Recovery Tests

10−14 January 17, 1997

DCE Distributed File Service

The LFS ACL and LFS recovery and associated POSIX compliance tests are located in:

dce-root-dir/dce/src/test/file/recovery

A description of thecheckaggrtool, which is used by these tests, and which is located in
this directory, can be found in the comments at the top of

dce-root-dir/dce/src/test/file/recovery/checkaggr

and in:

dce-root-dir/dce/src/test/file/recovery/README.checkaggr

10.2.9.5 Other DCE LFS Tests

The tests in the following directories test additional functions specific to the DCE LFS:

• dce-root-dir/dce/src/file/episode/anode/test_anode.c

Described in:

dce-root-dir/dce/src/file/episode/vnops/README

and:

dce-root-dir/dce/src/file/episode/anode/README

• dce-root-dir/dce/src/file/episode/async/astest.c

• dce-root-dir/dce/src/file/episode/dir/test_dir.c

• dce-root-dir/dce/src/file/episode/vnops/test_vnodeops.c

Described in:

dce-root-dir/dce/src/file/episode/vnops/README

Many of these tests are porting tests that run in user space. It is recommended that these
tests only be used before placing your ported code into kernel space to help verify that
the basic function is working correctly. In most cases, the tests accept scripts that tell
them which subroutines or operations to perform in sequence. Functions covered include
the following:

• Initializing aggregates

• Creating aggregates

• Verifying aggregates

• Creating filesets

• Closing filesets

• Mounting and unmounting tests

• Checking mode bit settings and access times

• Testingvnodeoperations

January 17, 1997 10−15

DCE Testing Guide

• Testing locks (file andrecord)

10.2.10 DFS Server Process Tests

DFS server processes are exercised both by the cache manager and protocol exporter
operations described previously, and through DFS command tests. These tests are
described in the ‘‘DFS Command Interface Tests’’ section of this chapter.

10.2.10.1 Ubik Database-Replication Tests

A test server and client process,utst_server and utst_client, are provided for testing
replicated database functionality. These tests are described in the DFS Test Plan and are
in the

dce-root-dir/dce/src/test/file/ubik

directory. You must create entries in the CDS namespace in order to run these tests.

10.2.11 DFS Command Interface Tests

Tests for theboscommand are located in the

dce-root-dir/dce/src/test/file/bos

directory. Information on setting up and running these tests can be found in:

dce-root-dir/dce/src/test/file/bos/READ_ME

Tests for thecm command are located in the

dce-root-dir/dce/src/test/file/cm

directory. Information on setting up and running these tests can be found in:

dce-root-dir/dce/src/test/file/cm/README

The DFS Server Preference tests are located in the

dce-root-dir/dce/src/file/cm/test

directory. These tests verify correct operation of server preferences in DFS. The
directory contains aREADME that explains how to run the tests.

Tests for thefts commands are located in the

dce-root-dir/dce/src/test/file/fts

directory. Information on setting up and running these tests can be found in:

10−16 January 17, 1997

DCE Distributed File Service

dce-root-dir/dce/src/test/file/fts/README

The DFS Test Plan describes these tests and explains how to execute them. Theruntests
script for thecm andfts tests contains a number of variables which should be configured
for the environment being tested. For thefts tests, two DCE LFS aggregates should be
available to test against, and two more DCE LFS aggregates should be exported.

The fts tests for fileset replication are more effective if two fileserver machines are
available for use. However, basic replication can be tested with a single file server.

The DFS replication tests verify DFS fileset replication functionality. The tests are
contained in the

dce-root-dir/dce/src/test/file/rep

directory. The directory contains aREADME which describes the tests in detail and
explains how to run them.

10.2.12 DFS Administrative Tests

Tests for the DFS administrative tools are available in the

dce-root-dir/dce/src/test/file

directory. Details about the separate tests appear in the following sections.

10.2.12.1 Update Tests

Theupserver andupclient distribution tools should be tested with the

dce-root-dir/dce/src/test/file/update

tests. Comments at the beginning of

dce-root-dir/dce/src/test/file/update/uptest

explain how to run these tests.

10.2.12.2 Scout Tests

The Scout interactive monitoring tool is tested manually. Descriptions of the manual
tests are located in:

dce-root-dir/dce/src/test/file/scout/READ_ME

January 17, 1997 10−17

DCE Testing Guide

10.2.12.3 Backup System Tests

The DFS backup system is tested using the scripts in:

dce-root-dir/dce/src/test/file/backup

A comment at the top of the

dce-root-dir/dce/src/test/file/backup/runtests

script explains the necessary configuration and how to run the tests.

10.2.13 DFS Gateway Tests

Tests for the DFS Gateway are located in the

dce-root-dir/dce/test/file/gateway

directory. Details about the separate tests appear in the following sections.

10.2.13.1 Gateway Daemon Tests

Thedfsgwdshould be tested using the tests in:

dce-root-dir/dce/src/test/file/gateway/dfsgwd

Information on setting up and running these tests can be found in:

dce-root-dir/dce/src/test/file/gateway/dfsgwd/README

10.2.13.2 Gateway Administration Tests

Thedfsgwcommand line interface should be tested using the tests in:

dce-root-dir/dce/src/test/file/gateway/dfsgw

Information on setting up and running these tests can be found in:

dce-root-dir/dce/src/test/file/gateway/dfsgw/README

10.2.13.3 Gateway Client Tests

10−18 January 17, 1997

DCE Distributed File Service

dfs_loginanddfs_logoutshould be tested using the tests in:

dce-root-dir/dce/src/test/file/gateway/dfs_login

Information on setting up and running these tests can be found in:

dce-root-dir/dce/src/test/file/gateway/dfs_login/README

10.2.14 Test Plans

Refer to Chapter 1 of theOSF DCE Release Notesfor the location of the DCE DFS test
plans, describing the DFS test cases and how to execute them, on the DCE distribution
tape.

January 17, 1997 10−19

Chapter 11. TET and DCE Testing

Many of the DCE system tests have been modified to use the Test Environment Toolkit
(TET) version 1.10.

Source code for TET is provided in the source tree under

dce-root-dir/dce/src/test/tet

TET is built and placed in the release area as part of the default source tree build. The
X/Open release notes, specifications and user guides for TET can be found in the

dce-root-dir/dce/src/test/tet/doc

directory.

TET provides support for building, running and for cleaning up the test suites. However,
to provide better integration with OSF’s software process, TET is used only to execute
the tests, and ODE is used to build and install the test suites.

11.1 Installing TET

Once DCE has been built and installed, the system test directory should lie by default at:

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/systest

(for most of the tests that do not run under TET), and:

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet/system

(for the tests that do run under TET).

Thesystestdirectory contains the following:

• admin

Directory containing DCE Administrative automated tests and checklists.

• directory/gds

January 17, 1997 11−1

DCE Testing Guide

Directory containing DCE Global Directory Service system tests.

• profile.dcest

File containing definitions for environmental variables used by the system tests.

• dcetest_config

The DCE Test Installation and Configuration script.

• file Directory containing DFS system tests.

• tools Directory containing DCE system test tools used by system tests that are not
run under TET.

The tet/systemdirectory contains the following:

• I18N

DCE Internationalization system tests.

• audit

DCE Audit Service system tests.

• dced

DCE Host Daemon (dced) system tests.

• directory/cds

DCE Cell Directory Service system tests.

• profile.dcest.tet

File containing definitions for environmental variables used by the system tests.

• rpc

DCE RPC system tests. Note that this directory contains therpc.cds.3 system test,
which is notrun under TET.

• security

DCE Security Service system tests.

• svc

DCE Serviceabilitysystem tests.

• threads

DCE Threads system tests.

• time

DCE Distributed Time Service system test.

• tools

DCE system test tools.

For the remainder of this chapter, the name:

systest-root

11−2 January 17, 1997

TET and DCE Testing

will be used to signify the correct path on your system to thesystestdirectory in the DCE
install tree.

11.1.1 Using dcetest_config

dcetest_configis a menu-driven utility which can be used to do the following things:

• Install any of the DCE system tests.

• Install DCE functional tests, found in:

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/component_name

(for non-TET functional tests), and:

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet/functional/component_name

(for functional tests run under TET).

• Install TET

dcetest_configoperates much likedce_config, the script used to install and configure
DCE itself. As long as you are usingdcetest_configonly to install tests, there is no
requirement to have rundce_config; the only requirement is that DCE must have been
built. However, if you wish to execute tests for any component other than GDS, you must
of course have a DCE cell up and running—which means that you must have run
dce_config. For GDS testing, the only requirement is that GDS be installed on the test
systems.

You startdcetest_configby typing:

systest-root/dcetest_config[DEBUG]

(SpecifyingDEBUG will keep dcetest_configfrom clearing the screen when it changes
menus.)

You may find it necessary to make the following environment variable setting:

MORE= -W notite -e

to preventdcetest_configfrom prompting you to press a key to continue after each menu
is displayed.

The following sections describe the various uses ofdcetest_config.

11.1.2 Installing TETwith dcetest_config

To install TET, become root and start thedcetest_configscript. From thedcetest_config
Main Menu, select ‘‘1’’ to install.

January 17, 1997 11−3

DCE Testing Guide

Figure 11-1. Installing TET: Step 1

DDCCEE TTeesstt MMaaiinn MMeennuu

11.. IInnssttaalll l
22.. CCoonnffi igguurree

9999.. EExxiit t

sseelleecctti ioonn:: 1

After you have selected the ‘‘Install’’ menu option, the ‘‘Location of DCE Test Install
Binaries’’ menu will be displayed. You can install TET either from a filesystem or from
media.

Figure 11-2. Installing TET: Step 2

LLooccaatti ioonn ooff DDCCEE TTeesstt IInnssttaalll l BBiinnaarriieess

11.. FFiil leessyysstteemm
22.. MMeeddiiaa

9988.. RReettuurrnn ttoo pprreevviioouuss mmeennuu
9999.. EExxiit t

sseelleecctti ioonn:: 1

EEnntteerr tthhee ffuulll l ppaatthh ttoo tthhee DDCCEE bbiinnaarryy iinnssttaalll l t trreeee..
TThhiiss wwiil ll l bbee tthhee ddiirreeccttoorryy tthhaatt ccoonnttaaiinnss tthhee
......//<<BBUUIILLDD>>//i innssttaalll l/ /<<mmaacchhiinneettyyppee>>//ddcceetteesstt//ddccee11..22..22
ddiirreeccttoorryy:: /myproject/dce/mybuild/nb_ux/install/hp800/dcetest/dce1.2.2

EEnntteerr tthhee ppaatthh ttoo tthhee DDCCEE tteesstt ttrreeee llooccaatti ioonn..
TThhiiss wwiil ll l bbee tthhee ddiirreeccttoorryy tthhaatt wwiil ll l ccoonnttaaiinn aalll l t thhee tteessttss..
PPlleeaassee llooccaattee tthhiiss ddiirreeccttoorryy ssoommeewwhheerree ootthheerr tthhaann tthhee rroooott
ppaarrtti it ti ioonn,, i if f ppoossssiibbllee.. AA ssooffttl li innkk //ddcceetteesstt//ddcceellooccaall wwiil ll l bbee mmaaddee
ttoo tthhiiss llooccaatti ioonn..
ddiirreeccttoorryy:: /usr/dcetest

After you have specified the location information and typed<RETURN>, the ‘‘DCE
Test Installation Menu’’ will be displayed. Select ‘‘3’’ to install TET.

Figure 11-3. Completion of Installation

DDCCEE TTeesstt IInnssttaalll laatti ioonn MMeennuu

11−4 January 17, 1997

TET and DCE Testing

11.. FFuunncctti ioonnaall TTeessttss
22.. SSyysstteemm TTeessttss
33.. TTEETT

9988.. RReettuurrnn ttoo pprreevviioouuss mmeennuu
9999.. EExxiit t

sseelleecctti ioonn:: 3

As TET is being installed, you should see the following messages:

iinnssttaalll li inngg tteesstt//tteett//bbiinn
iinnssttaalll li inngg tteesstt//tteett//l li ibb

After TET has been installed, you will be returned to thedcetest_configMain Menu.

Figure 11-4. Return to Main Menu

DDCCEE TTeesstt MMaaiinn MMeennuu

11.. IInnssttaalll l
22.. CCoonnffi igguurree

9999.. EExxiit t

sseelleecctti ioonn:: 99

You have now installed TET.

January 17, 1997 11−5

DCE Testing Guide

11.1.3 Installing the DCE Functional Testswith dcetest_config

To install any or all of the DCE functional tests, you should select ‘‘1’’ in the
dcetest_configMain Menu:

Figure 11-5. Selecting Test Installation

DDCCEE TTeesstt MMaaiinn MMeennuu

11.. IInnssttaalll l
22.. CCoonnffi igguurree

9999.. EExxiit t

sseelleecctti ioonn:: 1

You will then be prompted for the location of the test binaries. You can install the tests
either from media (e.g., tape) or from a filesystem. In the following example, ‘‘1’’
(filesystem) has been selected; this causes the user to be prompted for the location of the
filesystem and, following that, for the path at which the tests are to be installed:

Figure 11-6. Supplying Test Location

LLooccaatti ioonn ooff DDCCEE TTeesstt IInnssttaalll l BBiinnaarriieess

11.. FFiil leessyysstteemm
22.. MMeeddiiaa

9988.. RReettuurrnn ttoo pprreevviioouuss mmeennuu
9999.. EExxiit t

sseelleecctti ioonn:: 1

EEnntteerr tthhee ffuulll l ppaatthh ttoo tthhee DDCCEE bbiinnaarryy iinnssttaalll l t trreeee..
TThhiiss wwiil ll l bbee tthhee ddiirreeccttoorryy tthhaatt ccoonnttaaiinnss tthhee
......//<<BBUUIILLDD>>//i innssttaalll l/ /<<mmaacchhiinneettyyppee>>//ddcceetteesstt//ddccee11..22..22
ddiirreeccttoorryy:: /myproject/dce/mybuild/nb_ux/install/hp800/dcetest/dce1.2.2

EEnntteerr tthhee ppaatthh ttoo tthhee DDCCEE TTeesstt ttrreeee llooccaatti ioonn..
TThhiiss wwiil ll l bbee tthhee ddiirreeccttoorryy tthhaatt wwiil ll l ccoonnttaaiinn aalll l t thhee tteessttss..
PPlleeaassee llooccaattee tthhiiss ddiirreeccttoorryy ssoommeewwhheerree ootthheerr tthhaann tthhee rroooott
ppaarrtti it ti ioonn,, i if f ppoossssiibbllee.. AA ssooffttl li innkk //ddcceetteesstt//ddcceellooccaall wwiil ll l bbee mmaaddee
ttoo tthhiiss llooccaatti ioonn..
ddiirreeccttoorryy:: /usr/dcetest

11−6 January 17, 1997

TET and DCE Testing

Following these steps, you will be returned to the Test Installation menu, where you can
now select ‘‘1’’ to actually install the tests:

Figure 11-7. Functional Test Installation Menu

DDCCEE TTeesstt IInnssttaalll laatti ioonn MMeennuu

11.. FFuunncctti ioonnaall TTeessttss
22.. SSyysstteemm TTeessttss
33.. TTEETT

9988.. RReettuurrnn ttoo pprreevviioouuss mmeennuu
9999.. EExxiit t

sseelleecctti ioonn:: 1

Note that if you have previously installed tests at the destination path that you have
given,dcetest_configwill warn you of this and give you the chance to go no further:

Figure 11-8. Previously Installed Tests

LLooccaatti ioonn ooff DDCCEE TTeesstt IInnssttaalll l BBiinnaarriieess

11.. FFiil leessyysstteemm
22.. MMeeddiiaa

9988.. RReettuurrnn ttoo pprreevviioouuss mmeennuu
9999.. EExxiit t

sseelleecctti ioonn:: 1

EEnntteerr tthhee ffuulll l ppaatthh ttoo tthhee DDCCEE bbiinnaarryy iinnssttaalll l t trreeee..
TThhiiss wwiil ll l bbee tthhee ddiirreeccttoorryy tthhaatt ccoonnttaaiinnss tthhee
......//<<BBUUIILLDD>>//i innssttaalll l/ /<<mmaacchhiinneettyyppee>>//ddcceetteesstt//ddccee11..22..22
ddiirreeccttoorryy:: /myproject/dce/mybuild/nb_ux/install/hp800/dcetest/dce1.2.2

TTeessttss hhaavvee pprreevviioouussllyy bbeeeenn iinnssttaalll leedd iinn //uussrr//ddcceetteesstt
DDoo yyoouu wwaanntt ttoo ccoonntti innuuee ssttoorriinngg tthhee tteessttss iinn tthhee ssaammee llooccaatti ioonn ((yy)) y

The final menu for functional test installation allows you to select one or all of the
functional suites for installation:

January 17, 1997 11−7

DCE Testing Guide

Figure 11-9. Installing Functional Tests

DDCCEE TTeesstt IInnssttaalll laatti ioonn ((FFuunncctti ioonnaall TTeessttss)) MMeennuu

11.. CCeelll l DDiirreeccttoorryy SSeerrvviiccee
22.. DDiissttrriibbuutteedd FFiil lee SSeerrvviiccee
33.. GGlloobbaall DDiirreeccttoorryy SSeerrvviiccee
44.. RReemmoottee PPrroocceedduurree CCaalll l
55.. SSeeccuurriit tyy
66.. TThhrreeaaddss
77.. DDiissttrriibbuutteedd TTiimmee SSeerrvviiccee
88.. AAuuddiit t
99.. DDCCEE CCoonnttrrooll PPrrooggrraamm

1100.. DDCCEE HHoosstt CCoonnffi igguurraatti ioonn SSeerrvveerr

9977.. AAlll l ooff tthhee aabboovvee
9988.. RReettuurrnn ttoo pprreevviioouuss mmeennuu
9999.. EExxiit t

sseelleecctti ioonn:: 7
iinnssttaalll li inngg tteesstt//tti immee
iinnssttaalll li inngg tteesstt//ssyysstteesstt//pprrooffi il lee..ddcceesstt
iinnssttaalll li inngg tteesstt//ssyysstteesstt//ddcceetteesstt__ccoonnffi igg

As was shown in the screen example above,dcetest_configwill install the tests at the
path you give it, and will create a softlink called/dcetest/dcelocalto that location. For
example, it would install the DTS functional tests at:

/dcetest/dcelocal/test/time/

where/dcetest/dcelocalis a link to the path:

/usr/dcetest

which you supplied as the install destination.

The advantage in usingdcetest_configto install the functional tests is that it will install
all that is needed andonly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

For instructions on how to run the installed functional tests, refer to the section on
functional testing in the appropriate component chapter of this guide.

11.1.4 Installing the DCESystem Tests with dcetest_config

Installing the DCE system tests is similar to functional test installation. From the Main
Menu, select ‘‘1’’:

Figure 11-10. Installing System Tests: Step 1

11−8 January 17, 1997

TET and DCE Testing

DDCCEE TTeesstt MMaaiinn MMeennuu

11.. IInnssttaalll l
22.. CCoonnffi igguurree

9999.. EExxiit t

sseelleecctti ioonn:: 1

You will then be prompted for the location of the to-be-installed tests, as well as the
location you wish them to be installed at:

Figure 11-11. Installing System Tests: Step 2

LLooccaatti ioonn ooff DDCCEE TTeesstt IInnssttaalll l BBiinnaarriieess

11.. FFiil leessyysstteemm
22.. MMeeddiiaa

9988.. RReettuurrnn ttoo pprreevviioouuss mmeennuu
9999.. EExxiit t

sseelleecctti ioonn:: 1

EEnntteerr tthhee ffuulll l ppaatthh ttoo tthhee DDCCEE bbiinnaarryy iinnssttaalll l t trreeee..
TThhiiss wwiil ll l bbee tthhee ddiirreeccttoorryy tthhaatt ccoonnttaaiinnss tthhee
......//<<BBUUIILLDD>>//i innssttaalll l/ /<<mmaacchhiinneettyyppee>>//ddcceetteesstt//ddccee11..22..22
ddiirreeccttoorryy:: /myproject/mybuild/nb_ux/install/hp800/dcetest/dce1.2.2

EEnntteerr tthhee ppaatthh ttoo tthhee DDCCEE TTeesstt ttrreeee llooccaatti ioonn..
TThhiiss wwiil ll l bbee tthhee ddiirreeccttoorryy tthhaatt wwiil ll l ccoonnttaaiinn aalll l t thhee tteessttss..
PPlleeaassee llooccaattee tthhiiss ddiirreeccttoorryy ssoommeewwhheerree ootthheerr tthhaann tthhee rroooott
ppaarrtti it ti ioonn,, i if f ppoossssiibbllee.. AA ssooffttl li innkk //ddcceetteesstt//ddcceellooccaall wwiil ll l bbee mmaaddee
ttoo tthhiiss llooccaatti ioonn..
ddiirreeccttoorryy:: /usr/dcetest

January 17, 1997 11−9

DCE Testing Guide

In the Test Installation Menu you can now select ‘‘2’’ to install the tests:

Figure 11-12. Installing System Tests: Step 3

DDCCEE TTeesstt IInnssttaalll laatti ioonn MMeennuu

11.. FFuunncctti ioonnaall TTeessttss
22.. SSyysstteemm TTeessttss
33.. TTEETT

9988.. RReettuurrnn ttoo pprreevviioouuss mmeennuu
9999.. EExxiit t

sseelleecctti ioonn:: 2

You will then be shown the System Test Installation Menu, from which you can select
one or all of the system tests for installation:

Figure 11-13. Installing System Tests: Step 4

DDCCEE TTeesstt IInnssttaalll laatti ioonn ((SSyysstteemm TTeessttss)) MMeennuu

11.. AAddmmiinn TTeessttss
22.. CCeelll l DDiirreeccttoorryy SSeerrvviiccee
33.. DDiissttrriibbuutteedd FFiil lee SSeerrvviiccee
44.. GGlloobbaall DDiirreeccttoorryy SSeerrvviiccee
55.. RReemmoottee PPrroocceedduurree CCaalll l
66.. SSeeccuurriit tyy
77.. TThhrreeaaddss
88.. DDiissttrriibbuutteedd TTiimmee SSeerrvviiccee
99.. AAuuddiit t

1100.. II1188NN
1111.. SSeerrvviicceeaabbiil li it tyy
1122.. DDCCEEDD

9977.. AAlll l ooff tthhee aabboovvee
9988.. RReettuurrnn ttoo pprreevviioouuss mmeennuu
9999.. EExxiit t

sseelleecctti ioonn:: 97

11−10 January 17, 1997

TET and DCE Testing

As dcetest_configinstalls the tests, it will display a series of messages updating you on
its progress:

Figure 11-14. Installing System Tests: Installation Messages

iinnssttaalll li inngg tteesstt//ssyysstteesstt//aaddmmiinn

iinnssttaalll li inngg tteesstt//tteett//ssyysstteemm//ddiirreeccttoorryy//ccddss

iinnssttaalll li inngg tteesstt//ssyysstteesstt//ffi il lee

iinnssttaalll li inngg tteesstt//ssyysstteesstt//ddiirreeccttoorryy//ggddss

iinnssttaalll li inngg tteesstt//tteett//ssyysstteemm//rrppcc

iinnssttaalll li inngg tteesstt//tteett//ssyysstteemm//sseeccuurriit tyy

iinnssttaalll li inngg tteesstt//tteett//ssyysstteemm//tthhrreeaaddss

iinnssttaalll li inngg tteesstt//tteett//ssyysstteemm//tti immee

iinnssttaalll li inngg tteesstt//tteett//ssyysstteemm//aauuddiit t

iinnssttaalll li inngg tteesstt//tteett//ssyysstteemm//II1188NN

iinnssttaalll li inngg tteesstt//tteett//ssyysstteemm//ssvvcc

iinnssttaalll li inngg tteesstt//tteett//ssyysstteemm//ddcceedd

iinnssttaalll li inngg tteesstt//tteett//ssyysstteemm//pprrooffi il lee..ddcceesstt..tteett

iinnssttaalll li inngg tteesstt//ssyysstteesstt//ddcceetteesstt__ccoonnffi igg

iinnssttaalll li inngg tteesstt//tteett//ssyysstteemm//ttoooollss

iinnssttaalll li inngg tteesstt//ssyysstteesstt//pprrooffi il lee..ddcceesstt

To install some subset of tests, simply select the appropriate choice in the System Test
Installation Menu instead of ‘‘97’’, until you have installed all the tests you want.

January 17, 1997 11−11

DCE Testing Guide

11.1.5 Configuring for System Test with dcetest_config

The configuration step for system testing is mainly a matter of specifying where logs and
temporary files are to be created by the tests. Select ‘‘2’’ from the Main Menu:

Figure 11-15. Configuring for System Test

DDCCEE TTeesstt MMaaiinn MMeennuu

11.. IInnssttaalll l
22.. CCoonnffi igguurree

9999.. EExxiit t

sseelleecctti ioonn:: 2

YYoouu nneeeedd ttoo ssppeecciif fyy tthhee ddiirreeccttoorryy wwhheerree tthhee llooggss wwoouulldd bbee ssttoorreedd..
PPlleeaassee llooccaattee tthhiiss ddiirreeccttoorryy ssoommeewwhheerree ootthheerr tthhaann tthhee rroooott
ppaarrtti it ti ioonn,, i if f ppoossssiibbllee.. AA ssooffttl li innkk wwoouulldd bbee eessttaabblli isshheedd ttoo
ppooiinntt ttoo tthhiiss ddiirreeccttoorryy ffrroomm //ddcceetteesstt//ddcceellooccaall/ /ssttaattuuss
EEnntteerr ddiirreeccttoorryy ttoo ssttoorree tthhee llooggss:: /dcetest/dcelocal/results

DDiirreeccttoorryy //ddcceetteesstt//ddcceellooccaall/ /rreessuullt tss ddooeess nnoott eexxiisstt......
DDoo yyoouu wwaanntt i it t i it t ttoo bbee ccrreeaatteedd ((yy)) y

YYoouu nneeeedd ttoo ssppeecciif fyy tthhee ddiirreeccttoorryy wwhheerree tthhee tteemmppoorraarryy ffi il leess
wwoouulldd bbee ssttoorreedd..
EEnntteerr ddiirreeccttoorryy ttoo ssttoorree tthhee tteemmppoorraarryy ffi il leess:: /usr/tmp

PPlleeaassee eennssuurree tthhaatt //uussrr//ttmmpp iiss ppeerriiooddiiccaalll lyy cclleeaanneedd......

You will be prompted for the paths at which you want logfiles and temporary files to be
created. Note thatdcetest_configwill create a soft link (called/dcetest/dcelocal/status)
to the directory you specify.

11−12 January 17, 1997

TET and DCE Testing

At the end of this step, you will be returned to the Main Menu:

Figure 11-16. End of Configuration

DDCCEE TTeesstt MMaaiinn MMeennuu

11.. IInnssttaalll l
22.. CCoonnffi igguurree

9999.. EExxiit t

sseelleecctti ioonn:: 99

You have now completed the configuration step, and can exit fromdcetest_config.

11.2 Using TET

The DCE system tests that are run under TET fall into two categories:

• Tests that are run directly by invoking TET itself

There is only one DCE system test in this category, namelyrpc.sec.2. The user
invokes TET (tcc), which runs thedcerpsecscript.

• Tests that are run by invoking arun.component_namescript. The following table
shows these tests:

TABLE 11-1. DCE System Test Suites and TET Scenarios

Component Test Suite Name Scenario Name___LL LL LL LL___
cds systest/directory/cds cdsserv

dcecdsacl6
hclcfg001
hclrel001___

I18N systest/I18N I8NSAN001
I8NSAN002___

audit systest/audit audstr001
audrel001___

svc systest/svc svccfg001
svccfg002
svccfg003
svccfg004___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

January 17, 1997 11−13

DCE Testing Guide

Component Test Suite Name Scenario Name___LL LL LL LL

svccfg005
svccfg006___

dced systest/dced dcdrel001
dcdrel002
dcdrel003___

rpc systest/rpc dcerpbnk
dcerpcrun
dcerpbnk_auth___

security systest/security dceseacl
dceseact
dcesepol
dcesestr
dcesergy
dlgcfg001
eraobj001
erarel001___

threads systest/threads dceth002
dcethmut
dcethrpc
dcethrpc_auth___

dts systest/time dcetmsyn___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

The following section gives a basic overview of TET operation. For more detailed
information consult the following documents:

• Test Environment Toolkit: Architectural, Functional, and Interface Specification

located at:

dce-root-dir/dce/src/test/tet/doc/tet_spec.ps

• Test Environment Toolkit: Programmer’s Guide

located at:

dce-root-dir/dce/src/test/tet/doc/tet_prog_guide.ps

Unformatted nroff source (using themm macro package) for each of the above
documents is also available in the directories in the

dce-root-dir/dce/src/test/tet/doc

directory.

The following sections describe the use of TET to invoke the DCE system tests.

In the examples given, it is assumed that the tests are being run in a DCE cell that
contains at least three machines configured as follows:

machine1: CDS Server, Security Server, Local Time Server — NTP provider

machine2: CDS Client, Security Client, Local Time Server

11−14 January 17, 1997

TET and DCE Testing

machine3: CDS Client, Security Client, Local Time Server

11.2.1 Overview of TET Use

Following is the structure of tests within the TET environment:

test suite contains a related group of test cases. Test cases are
grouped together in scenarios.

testcase A testcase is an independent executable (a shell script or
compiled C program) which contains one or more test
purposes. Test purposes are combined together into
invocable components within a testcase.

test purpose A test purpose is the component of the tests that report
PASS/FAIL results. Each test purpose is a shell of a C
function.

scenario A scenario is a collection of test cases that are executed
together. Scenarios are defined in thetet_scenfile at the
top of each test suite. Every test suite has an ‘‘all’’
scenario that runs all test cases within a test suite.

invocable component An invocable component (IC) consists of one or more
test purposes. There can be one or more IC per testcase.
An IC is the smallest group of test purposes that can be
executed independently. ICs are defined in data
structures that are located inside of each testcase.

Before any test cases can be run you must define theTET_ROOT environment variable
as follows:

TET_ROOT=/dcetest/dcelocal/test/tet

TET_ROOT defines the location of all the test suites and support utilities. When
combined,TET_ROOT and the test suite name will define the location of the top of the
test suite.

To run a test suite that uses TET you use thetcc command in the following form:

tcc -e [optional_switches] test_suite[scenario]

For the DCE system tests, the-e flag is required. It tellstcc to execute the specified test
suite.tcc has other modes that are not used by the DCE system tests.

There are many other switches that you may find useful, including:

-p tells tcc to print the name of each testcase as it executes it. This
is a good way to track the progress of the running tests.

-j filename tells tcc to write the journaled test results to the designated
filename.

January 17, 1997 11−15

DCE Testing Guide

-v variable=value Sets a TET variable to be used by the testcase. Default values for
TET variables are specified in thetetexec.cfgfile located in the
top of the test suite. Values specified on the command line
override the values in thetetexec.cfgfile. The variables that are
used by the specific test suites are documented in the sections
specific to each test suite.

For information on othertcc command line options, consult the TET specification.

test_suiteis the name of the test suite you wish to run. It also specifies the relative path
from TET_ROOT to the location of the test suite to be run.

scenariotells tcc which pieces of the test suite to run. If you do not specify a scenario,
the ‘‘all’’ scenario will be run. The scenarios for each test suite are defined in the
tet_scenfile at the top of the test suite tree.

When you runtcc the first thing that it will report is the location of thejournal file. The
journal file contains the results of the test scenario run. Each line in a journal file starts
with a number code indicating the type of information appearing on that line. For
example, lines that contain result codes start with ‘‘220’’. To get a quick view of the
results of a test run you can do the following:

grep "ˆ220" journal_file

—which will cause all the PASS/FAIL results from the journal file to be displayed. For
more details on possible errors and causes of failures you will have to read the details of
the results file.

Other important journal line codes are:

50 Identifies lines that contain test case execution error messages fromtcc.

200 Identifies lines marking the beginning of each test purpose.

220 Identifies lines marking the end of each test purpose and containing the result
from the test purpose.

520 Identifies lines that contain text printed by the test purpose.

11.2.2 Running DCE System Tests under TET

TET assumes when running DCE system tests that the following environment variables
have the following values:

TET_ROOT /dcetest/dcelocal/test/tet

This is the base directory for all tests which run under TET.

DCELOGDIR /dcetest/dcelocal/status

This is the base directory for DCE Functional and System test
output.

STTMPDIR /tmp

11−16 January 17, 1997

TET and DCE Testing

This is the base directory for temporary files.

11.2.2.1 DCE System Tests that can be Invoked with ‘‘Run’’ Scripts

The installed names of the scripts and tests that can be run from arun script are as
follows:

• $TET_ROOT/system/directory/cds/bin/run.cds

dcecdsacl6 CDS ACL Manager Test (formerlycds.acl.6)

cdsserv CDS Directory Service Stress Test (formerlycds.server.4)

• $TET_ROOT/system/directory/cds/bin/run.hcell

hclcfg001 Establishes intercell authentication with a list of cells using
rgy_edit.

hclrel001 Performs intercell testing to specified list of cells.

• $TET_ROOT/system/dced/ts/lib/run.dced

dcdrel001 dcedendpoint reliability test.

dcdrel002 dced server configuration and server execution service
reliability test.

dcdrel003 dcedhostdata, keytab, and ACL service reliability test.

• $TET_ROOT/system/rpc/bin/run.rpc

dcerpsec RPC-Security System Test

dcerpper RPC system test version of RPCperf functional tests

dcerpbnk RPC Object Registry, Threads, CDS, and Security Test

dcerpbnk_auth Authenticated RPC version ofdcerpbnk

dcerpcrun RPC Stress Test (formerlyrpc.runtime.1)

• $TET_ROOT/system/security/bin/run.sec

dceseacl Registry Access Control List (ACL) and Stress Test

dceseact Tests Additions and Deletes in the Security Registry

dcesepol Security policy option test

dcesergy Security Registry Login and Administration Stress Test
(formerlysec.rgy.7)

dcesestr Multiple-client Security Registry Stress Test

dlgcfg001 Delegation Configuration Test

dlgcfg002 Delegation Configuration Test

dlgstr001 Delegation Stress Test

January 17, 1997 11−17

DCE Testing Guide

eraobj001 Extended Registry Attributes ACL Test

erarel001 Extended Registry Attributes Stress Test

• $TET_ROOT/system/audit/bin/run.aud

audstr001 Audit Service Stress Test

audrel001 Audit Service Reliability Test

• $TET_ROOT/system/threads/bin/run.thr

dceth002 Threads Creation Test

dcethmut Threads Creation and Mutex Exclusion Test

dcethrpc RPC Server and Client Threads Test

dcethrpc_auth RPC Server and Client Threads Test — authenticated
version

• $TET_ROOT/system/time/bin/run.time

dcetmsyn Test DTS Local Synchronization with DTS Servers

• $TET_ROOT/system/svc/bin/run.svc

svccfg001 Serviceability Configuration Test 1

svccfg002 Serviceability Configuration Test 2

svccfg003 Serviceability Configuration Test 3

svccfg004 Serviceability Configuration Test 4

svccfg005 Serviceability Configuration Test 5

svccfg006 Serviceability Configuration Test 6

11.2.3 Using the ‘‘Run’’ Scripts: An Example

Note: You mustbe using the Korn shell (ksh) in order to run the DCE system
tests under TET, as described in this and the following sections.

To run DCE system tests which use TET and therun.component_namescripts, do the
following after installing the DCE systems tests and TET:

$$ cd /dcetest/dcelocal/test/tet/system
$$. profile.dcest.tet # Set up System Test Environment
$$ run.thr -l 2 dceth002 # Run dceth002 just as an example

The example shown above will run two iterations (-l 2) of dceth002, creating some
output in and under the standard directory, e.g.:

$DCELOGDIR/system/dceth002.hostname.931022124807

—wherehostnameis the name of the machine the test was invoked on, and the series of
concluding digits is a starting timestamp in the form ofyymmddhhmmss. The run script

11−18 January 17, 1997

TET and DCE Testing

you invoke will tell you the name of the directory to which it writes its output. The
contents of this directory will look something like the following:

$$ llss --llssFFRR $$DDCCEELLOOGGDDIIRR//ssyysstteemm//ddcceetthh000022.. hostname..993311002222112244880077
ttoottaall 66

22 ddrrwwxxrrwwxxrrwwxx 22 rroooott ssyysstteemm 551122 OOcctt 2222 1122::4499 ffaaiil l/ /
22 ddrrwwxxrrwwxxrrwwxx 22 rroooott ssyysstteemm 551122 OOcctt 2222 1122::4488 ppaassss//
22 --rrww--rrww--rrww-- 11 rroooott ssyysstteemm 332266 OOcctt 2222 1122::4499 ppaassss__ffaaiil l__lloogg

//ddcceetteesstt//ddcceellooccaall/ /ssttaattuuss//ssyysstteemm//ddcceetthh000022.. hostname..993311002222112244880077//ffaaiil l: :
ttoottaall 00

//ddcceetteesstt//ddcceellooccaall/ /ssttaattuuss//ssyysstteemm//ddcceetthh000022.. hostname..993311002222112244880077//ppaassss::
ttoottaall 44

44 --rrww--rrww--rrww-- 11 rroooott ssyysstteemm 11227766 OOcctt 2222 1122::4488 jjoouurrnnaall. .0000000011

When therun.thr script was invoked, a directory was created for TET journal files for
the iterations of the test that passed, and another was created for any failed iterations.
Thepass_fail_logcontains a header, one status line for each iteration, and a trailer. The
contents of thepass_fail_logfile from the example above would look something like the
following:

CCOOMMMMAANNDD:: rruunn..tthhrr --ll 22 ddcceetthh000022
PPLLAATTFFOORRMM:: hostname((oossff11ii338866))
TTEESSTT NNAAMMEE:: ddcceetthh000022
SSTTAARRTTEEDD AATT:: 1100//2222//9933--1122::4488::0077
NNEEWWEESSTT //OOPPTT//DDCCEELLOOCCAALL//BBIINN:: OOcctt 2211 2233::5555
1100//2222//9933--1122::4488::4422 PPAASSSS pathname of journal file
1100//2222//9933--1122::4499::4455 PPAASSSS <<jjoouurrnnaall. .0000000022 ddeelleetteedd>>
CCOOMMPPLLEETTEEDD:: 1100//2222//9933--1122::4499::4455

To view the results of the test, you would enter the following:

$$ run_summary.ksh $DCELOGDIR/system/dceth002.hostname.931022124807

—which will produce output something like the following (assuming that no errors
occurred during the test; if there were errors, they will be listed in the results as well):

hostname((oossff11ii338866))ddcceetthh000022:: ppaassss == 22,, ffaaiil l == 00
""rruunn..tthhrr --ll 22 ddcceetthh000022"" ccoommpplleetteedd aatt 1100//2222//9933--1122::4499::4455
//oopptt//ddcceellooccaall/ /bbiinn ccoommpplleettee:: OOcctt 2211 2233::5555
FFaaiil luurreess uunnddeerr //ddcceetteesstt//ddcceellooccaall/ /ssttaattuuss//ssyysstteemm//ddcceetthh000022.. hostname..9933110022221122448800

NNoonnee

For more information onrun_summary.ksh see ‘‘Checking Test Results’’ later in this
chapter.

Finally, to clean up when you had finished evaluating the results, you would enter:

$$ rm -r $DCELOGDIR/system/dceth002.hostname..993311002222112244880077

January 17, 1997 11−19

DCE Testing Guide

11.2.4 Prerequisites forRunning System Tests Using the ‘‘Run’’ Scripts

Eachrun.component_namescript contains some test-specific option processing code of
its own and a call to the

$TET_ROOT/system/tools/run_loops.ksh

script, which is used in common by all therun scripts. run_loops.ksh controls test
iteration, checks test output for pass/fail, reports totals, and writes the test output to a
standard location.

Before running any of the DCE system tests, note the following.

The DCE System Tests should be run in a standalone (i.e., a non-production) cell. The
tests place a heavy load both on DCE and on the host machines, and they do so for many
hours or days. Such behavior is generally considered incompatible with a production
environment. Furthermore, the only automatic way to finish cleaning up after running the
DCE System Tests is to shut down the cell. All DCE credentials are deleted, and the
unusable memory which accumulates in the DCE servers when these tests run is
reclaimed.

The cell in which the tests are to be run must be created with the default cell
administrator name (cell_admin) and password (-dce-). This is necessary because these
names are hardcoded in the tests themselves. Such a configuration is obviously
inappropriate for a cell intended for general use.

For the DCE system tests runnable underrun scripts, the following things must be true
before the tests can be successfully run:

• The /.rhosts or equivalent file on each machine in the test cell must include all
machines in the cell, since the DCE System Tests usersh or its equivalent to start
processes on other machines in the cell.

• All DCE System Test and TET software must have been installed bydcetest_config
on all machines in the DCE System Test cell. For instructions on how to do this, see
‘‘Installing TET and the DCE Functional and System Tests’’, earlier in this chapter.

• The DCE System Testsrequire the following environment variables to have the
following values:

TET_ROOT /dcetest/dcelocal/test/tet

STTMPDIR /tmp

Note that this must be true oneverysystem in the test cell. It is acceptable to achieve
arrange this via symbolic links. In any case, failure to do this will result in
unpredictable test behavior.

• A number of quotas and limits must be set and/or monitored in order to safely and
successfully run the DCE System Tests. All suchaccount-specific changes should be
done to the ‘‘root’’ account, which is the account from which DCE and all DCE
System Tests must be run.

• Substantial disk space is required to run the tests. The tests will fail and possibly
bring down both DCE and the system if the disks fill up. Disk usage varies greatly,
depending on test choice and run duration. Twenty megabytes of free space is

11−20 January 17, 1997

TET and DCE Testing

recommended as anabsolute minimumfor the disk holding the top-level directory for
DCE System Test output,

$DCELOGDIR/system

• Too little swap space is another potential problem. Some of the DCE servers grow
slowly as the DCE System Tests run. Again, the rate and degree of such behavior
depends on the platform used, which tests are run, and test run duration. Yous should
consult your platform’s system manuals and tune your machines for heavy memory
usage, including allocating large swap files.

• Note that CPU time limits are a problem for DCE servers. Set ‘‘root’’ time limits to
unlimited.

• Make sure you are using the Korn shell (ksh) and that you have sourced the

/dcetest/dcelocal/test/tet/system/profile.dcest.tet

file in your current shell before running any of the DCE System Tests. This will setup
the shell variables the tests need. The main variables defined are:

TET_ROOT /dcetest/dcelocal/test/tet

This is the base directory for all tests which run under TET.

DCELOGDIR /dcetest/dcelocal/status

This is the base directory for DCE Functional and System
test output.

STTMPDIR /tmp

This is the directory for creation of temporary files.

Note: Note that sourcingprofile.dcest.tet clears the ENV environment
variable, thus affecting the behavior of all lower level Korn shell
invocations. This will be a problem for any site that attempts toaccess
MANDATORY Korn shell definitions via theENV variable.

There is no requirement that the machines in the system test cell have the ‘‘root’’
accountdefault shell be the Korn shell (/bin/ksh). If the default shell is something
other thanksh, you need only invoke the Korn shell before sourcingprofile.dcest.tet.

11.2.5 Standard DCE System Test Output Location

Each time you run a system test with arun script, a new directory will be created in the
‘‘standard location’’. The standard output location for the DCE System Tests is:

$DCELOGDIR/system/testname.hostname.yymmddhhmmss

If DCELOGDIR is non-existent or empty, the default directory

/dcetest/dcelocal/status

will be used. No matter what directory name is specified byDCELOGDIR , the
run_loops.kshscript will append/systemto it.

January 17, 1997 11−21

DCE Testing Guide

Note that there is norun script option by whichDCELOGDIR can be specified or
overridden. You must either set the variable yourself to the desired pathname, or the

/dcetest/dcelocal/status

default directory must already exist when therun script is invoked.

The final directory name

testname.hostname.yymmddhhmmss

is designed to allow you to pick out a particular run by what you ran, where you ran it,
and when you started it. The fine granularity of this name enables you to direct the output
of multiple runs to a single collection point without worrying about name collisions.

Because all the normal output from one run of these tests is created under a single
directory, deleting the output of that run when you are finished with it is easily done with
a

rm -r dir_name

command.

The normal output of a test run is found in a structure of files underneath the standard
location. The directories and files found there are as follows:

• pass

Directory containing results of passed iterations.

• pass/journal.NNNNN

Pass journal files.

• fail

Directory containing results of failed iterations.

• fail/ journal.NNNNN

Failure journal files.

• pass_fail_log

Log file of all test iterations, both passed and failed.

The journal files are TET format journals.NNNNN is a digit group that represents the
iteration number of the test whose results are recorded. You should refer to the TET
documentation for the details of the format of these files. In general, the format is that
each line has a TET-defined header before and between a vertical bar pair, followed by
the test- or TET-generated text. Test-generated messages start on the line labelled with a
‘‘520’’ code. The following example shows part of the contents of a typical journal file;
the last two lines were generated by the test itself.

1100||00 //ttss//ccddss..sseerrvveerr..44//ccddsssseerrvv..kksshh 1144::1199::0033||TTCC SSttaarrtt,, sscceennaarriioo rreeff 3355--11
1155||00 11..99 11||TTCCMM SSttaarrtt
552200||00 00 2255887744 11 11||SSttaarrtti inngg tteesstt CCDDSSSSEERRVV
440000||00 11 11 1144::1199::0066||IICC SSttaarrtt
220000||00 11 1144::1199::0066||TTPP SSttaarrtt
552200||00 11 2255887744 11 22||TThhee tteesstt wwiil ll l eexxeeccuuttee ffoorr:: 990000 sseecc..

11−22 January 17, 1997

TET and DCE Testing

552200||00 11 2255887744 11 33||EExxeeccuutti inngg iinn cceelll l: : //......//ddccee33__cceelll l. .qqaaddccee..oossff..oorrgg

The TET journal files are always created and written in thefail directory and only moved
into thepassdirectory if and when the test iteration has passed. At least one passed test
iteration will have its journal file saved, assuming that any iterations passed at all. All
journals from failed iterations are left in thefail directory.

The pass_fail_log file is created by therun.component_namescript and has the
following format:

CCOOMMMMAANNDD:: command invoking the run
PPLLAATTFFOORRMM:: name of machine the test was run on((platform type))
TTEESSTT NNAAMMEE:: test name
SSTTAARRTTEEDD AATT:: time stamp recording when the run was started
NNEEWWEESSTT //OOPPTT//DDCCEELLOOCCAALL//BBIINN:: time stamp of when DCE was built

Pass/fail lines, one per iteration. Each line contains:
iteration completion timestamp
<tab>
PASS or FAIL keyword
<tab>
full journal file specification or delete message

CCOOMMPPLLEETTEEDD:: timestamp indicating when all iterations of run completed

The ‘‘COMPLETED’’ line at the end of the file shows that the requested testing was run
to normal completion, whether successful or not; i.e. that the run did not hang.

Each of the tests sends test-specific output to standard output. However, since all these
tests ultimately run underrun_loops.ksh, the text sent to standard output is always
surrounded by a series of standard lines of information, as in the following example:

SSttaarrtti inngg DDCCEETTHH000022 iit teerraatti ioonn 11 aatt 00 sseeccoonnddss eexxeeccuutteedd,, 1111//1122//9933--1144::3377::2222
jjoouurrnnaall f fi il lee nnaammee iiss::
//ddcceetteesstt//ddcceellooccaall/ /ssttaattuuss//ssyysstteemm//ddcceetthh000022.. hostname..993311111122114433771199//ffaaiil l/ /j joouurrnnaall. .0000000011

Output from DCETH002
Output from DCETH002
Output from DCETH002

PPAASSSSEEDD,, TTeesstt ""DDCCEETTHH000022__CC"":: TTeesstt rraann ssuucccceessssffuulll lyy..
CCoommpplleetteedd iit teerraatti ioonn 11 ssuucccceessssffuulll lyy aatt 1188 sseeccoonnddss..
JJoouurrnnaall f fi il lee mmoovveedd ttoo
//ddcceetteesstt//ddcceellooccaall/ /ssttaattuuss//ssyysstteemm//ddcceetthh000022.. hostname..993311111122114433771199//ppaassss//j joouurrnnaall. .0000000011

CCoommmmaanndd ""rruunn..tthhrr --ll 11 ddcceetthh000022"" ccoommpplleetteedd aatt 1111//1122//9933--1144::3377::4411
AAlll l i it teerraatti ioonnss oonn DDCCEETTHH000022 ccoommpplleetteedd wwiit thhoouutt eerrrroorr!!
SSeeee ssyynnooppssiiss ooff i it teerraatti ioonn ssttaattuuss iinn
//ddcceetteesstt//ddcceellooccaall/ /ssttaattuuss//ssyysstteemm//ddcceetthh000022.. hostname..993311111122114433771199//ppaassss__ffaaiil l__lloogg
oorr uussee $$TTEETT__RROOOOTT//ssyysstteemm//ttoooollss//rruunn__ssuummmmaarryy..kksshh ffoorr mmoorree iinnffoorrmmaatti ioonn..

There is a header and a trailer for each iteration of the test. Totals are output when all
iterations have completed. Other information includes the pass/fail status of each
iteration and of the test run as a whole.

January 17, 1997 11−23

DCE Testing Guide

11.2.6 Command Line Options Common to Some or All of the ‘‘Run’’
Scripts

The basicrun.component_namescript command line to invoke a DCE system test has
the following general form:

run.component_name {-l loops |-t hours} [other_opts] test_name [parameters]

Either the-l or -t flag is required, as is the test name. In DCE 1.1 the names of therun
scripts are as follows:

• run.cds

• run.rpc

• run.sec

• run.thr

• run.time

• run.hcell

• run.dced

• run.aud

• run.svc

The following command line options are common to some or all of the tests:

-h List test-specific options.

Causes the test-specific options for a test to be listed. Forrun.thr , you must specify the
test name as an argument to this option. Note that there is no test-specific help for
run.time . However, all therun scripts give basic help messages if invoked with no
arguments.

-l number Number of external loops (iterations) to run.

-t hours Time allowed for external loops (iterations) to run.

-L number Number of internal loops to run.

-T hours Time allowed for internal loops to run.

The above four flags specify in various ways the number of times or hours that the test is
to be run. An iteration count is most useful for quickly checking the test, e.g. invoking a
test with something like ‘‘-l 1’’ or ‘‘ -l 2’’ will allow you to quickly verify whether the
test is present, whether it runs, and so on.

For longer test runs it is more useful to specify a time rather than an iteration count; for
example ‘‘-t 60’’ for a Friday night-to Monday morning, 60 hour run. Thehours
parameter may contain a decimal point; e.g., ‘‘-t 1.5’’ is a valid specifier for a 90 minute
run. Note that therun scripts makeno time estimates. If at the conclusion of an iteration
only one second is left in a specified time interval, therun script will start another

11−24 January 17, 1997

TET and DCE Testing

iteration of the test. Note also that therun scripts make extensive use of the Korn shell
SECONDSvariable. You should not alter the tests in any way that affects this variable’s
value.

The -l and-t flags both controlexternal test iterations, that is, loops in which the entire
test is repeated, including:

• TET invocation

• creation of a new journal file

• test initialization

• invocation of the test itself

• cleanup

The -L and-T flags accept the same parameters as-l and-t. For tests for which they are
available, they controlinternal test looping, in other words: the number of times the test
itself is executed within a single invocation of TET (including journal file creation and
cleanup). The-L and -T options are available for the followingrun script/test
combinations:

run.cds cdsserv

run.rpc dcerpcrun

run.sec dcesergy

The -l and -t options are mutually exclusive, but either one or the other is required for
most tests. The-L and-T are likewise mutually exclusive, but for the tests listed above it
is acceptable to specify one internal loop control (-L or -T) along with the required
external iteration control (-l or -t).

-c Keep all journal files from successful iterations.

Normally, when a successful external iteration of the test is completed, the journal file is
deleted, and the only record of the iteration is a single line inpass_fail_lognoting that
the iteration passed, when it completed, and thatjournal.NNNNNwas deleted.

There are three possible reasons why a journal file will not automatically be deleted:

• The test iteration failed, in which case the journal file is saved in thefail
subdirectory.

• The journal file was for the first successful iteration (usuallyjournal.00001).

• The-c option was specified, in which case all journal files are kept.

-e number Maximum number of consecutive errors allowed before quitting
(default is 50)

-E number Total number of errors allowed before quitting (default is 500)

There is seldom any useful information to be gained from the contents of a large number
of failure journal files. Moreover, some failure modes can result in a large number of test
executions occurring in a very short time, possibly filling up the disk. In order to prevent
this, upper limits on test failures are imposed by therun scripts by default. You can use

January 17, 1997 11−25

DCE Testing Guide

the -e and -E flags to modify these limits. For example, a common expedient is to
specify ‘‘-e 1’’ which will cause the run to terminate as soon as one error is detected.

-m name(s) List of machine(s) for the test to use.

-M List of machine(s) to use should be read from <testname>.data.

Several tests require one or more additional machines for execution, and the-m option is
used to specify that information. Using the-m option to specify the machine the test is
invoked on is legal but reduces the usefulness of the test. Both multiple ‘‘-m name’’
groups or a single ‘‘-m name1 . . . nameN’’ are accepted.

The tests can also obtain the list of additional machines from thetestname.data file
associated with each test. The-M flag is used to tell therun script that the absence of the
-m option for a test that requires it is not an error. The use of the-M option is
discouraged, because it requires changing files whenever different machines are needed
to run a test. The-m and-M flags are mutually exclusive.

The tests that require a list of additional machines are the following:

run.sec dceseact, dcesepol, dcesestr

run.rpc dcerpbnk , dcerpcrun, dcerpper

run.thr dcethrpc , dcethrpc_auth

11.2.7 External and Internal Looping

In general, test ‘‘looping’’ can be classified into external loops (iterations) and internal
loops. A somewhat confusing collection of common and test-specific options exists for
controlling looping of the system tests.

There is no ‘‘best way’’ to run the system tests with respect to the division between
internal and external loops. Tests that support internal loops and/or execution threads
have default count parameters, and the user is thus not required to specify them.
However, explicit biasing may be done. See ‘‘Command Line Options Common to Some
or All of the ‘‘Run’’ Scripts’’ for more information.

Biasing towards more internal loops makes the tests more efficient testers of DCE
because they spend less time in initializing and cleaning up. Furthermore, since many
tests set up accounts and such, running for an equal length of time with higher internal
bias creates fewer accounts and causes the servers to grow less.

Biasing towards a greater proportional number of external iterations affords TET more
opportunities to indicate test success or failure, which is usually desirable in long runs.
However, if the bias on internal looping is too large, there is a risk of the test’s
credentials expiring. And, too, failures sometimes occur that affect several system tests at
once. Having too large a time granularity as a result of high internal bias makes it
difficult to correlate such failures. Thus keeping the internal loop time down is desirable
even though this adds to test overhead.

11−26 January 17, 1997

TET and DCE Testing

It is still desirable to avoid the extreme case where the test is biased completely
internally, for example as the following run would be:

run.cds -l 1 -T 48 cdsserv

The above command specifies that one external iteration ofcdsserv be run with a 48
hour internal duration. No matter what goes wrong during this run, there will only be a
single failure from TET as a record of it., and there will be a rather large journal file to
evaluate. A more balanced approach would be to run the test as follows:

run.cds -t 48 -T .25 cdsserv

—that is, with 48 hours’ worth of 15 minute runs.

There is also the question of how to increase the load on DCE during a system test run.
Increasing the internal loop bias increases the actual DCE work done per test executed,
but that approach suffers from diminishing returns. Running more tests simultaneously
on different machines in the test cell is the right way to make the servers busier.

Note: The DCE 1.1 system tests were known to have mutual interference
problems within a cell, causing test (not DCE) failures. These failures were
due to name collisions both in the filespace and in the DCE namespace.

The possibility of interference should be considered when planning
simultaneous DCE system test runs. Interference of some tests with
themselves has been noted where two or more copies of the test were run
simultaneously on the same machine or even in the same cell. However,
interference has not been noted with multiple, different tests run
simultaneously on different machines, one test per machine.

Using DCE DFS or NFS to create common areas for the DCE system tests
to use, especially directories for temporary files, makes the interference
problem significantly worse. However, the standard output location
provided by therun scripts is aknown safeexception.

11.2.7.1 Checking Test Results

A reporting script has been provided that produces a summary of all the DCE system test
run output collected in a single directory tree. To run it, enter:

run_summary.ksh directory

run_summary.ksh does a

find directory -name pass_fail_log

to find all the DCE system test run records underdirectory, and then summarizes and
displays the results, including any journal file error messages from iteration(s) that failed,
if any.

January 17, 1997 11−27

DCE Testing Guide

Following is an example of the output, showing in this case the error messages from one
iteration (out of 2569 total) ofdcethrpc. The test was run on an HP/UX platform named
‘‘dce3’’, and the machines ‘‘dce5’’ and ‘‘west’’ were also used:

ddccee22((hhppuuxx)) ddcceetthhrrppcc:: ppaassss == 22556688,, ffaaiil l == 11
""rruunn..tthhrr --tt4488 --mm wweesstt --mm ddccee55 ddcceetthhrrppcc"" ccoommpplleetteedd aatt 1111//1100//9933--1144::1188::4444
//oopptt//ddcceellooccaall/ /bbiinn ccoommpplleettee:: NNoovv 44 2211::1155
FFaaiil luurreess uunnddeerr //ddcceetteesstt//ddcceellooccaall/ /ssttaattuuss//ssyysstteemm//ddcceetthhrrppcc..ddccee22..993311110088114411881177

TThheerree wweerree 66 EERRRROORRss aanndd//oorr FFAAIILLuurreess ttoottaall i inn
tthhee 11 ffaaiil leedd iit teerraatti ioonnss.. HHeerree’’ss tthhee bbrreeaakkddoowwnn::

11 -- DDCCEE__EERRRROORR
11 -- EERRRROORR:: CCooppyyiinngg tthhdd__sseerrvveerr ttoo wweesstt:://ttmmpp ffaaiil leedd
11 -- EERRRROORR:: ddcceetthhrrppcc tthhrreeaaddss tteesstt ffaaiil leedd
11 -- EERRRROORR::FFaaiil leedd ttoo ssttaarrtt tthhdd__sseerrvveerr oonn ddccee55
11 -- EExxiit ti inngg tthhee tteesstt dduuee ttoo ffaaiil luurree iinn cchheecckk__sseerrvveerrss
11 -- EExxiit ti inngg tthhee tteesstt dduuee ttoo ffaaiil luurree iinn kkiil ll l__sseerrvveerrss

The error messages (identified by the case-insensitive keywords ‘‘error’’ or ‘‘fail’’) from
journal files of failed tests are collected and sorted, duplicate messages are counted and
eliminated, and each unique error message is reported. This simple summary can tell
you a lot about whether the same or different errors were occurring during a run, and you
can learn something of the nature of the errors as well.

You can do a

run_summary.ksh directory

while the test is running; in this case you will see a ‘‘ddiidd NNOOTT ccoommpplleettee!! ’’ message in
the command output.

To collect the output from different test runs under a single directory, define
DCELOGDIR for each test process before running the test.

See also ‘‘Performing a Quick Check of DCE on a Machine’’ later in this chapter for
information on monitoring DCE status during DCE system test runs.

11.3 System Test Tools

This section describes the tool set developed to support the DCE System Test. These
tools are generalized enough for system vendors to use them when developing their own
test suites.

11.3.1 Performing a Quick Check of DCE on a Machine

dce.ps is a script that providesps (process status) data only for the configured DCE
processes that are supposed to be running on the machine it is executed on. It will

11−28 January 17, 1997

TET and DCE Testing

identify any missing configured processes and any unconfigured processes. If everything
seems in order,dce.ps will go on to attempt to derive the cell name from a CDS
clearinghouse name viacdscp. If that works,dce.pswill report the cell name, and you
can be reasonably sure that the cell is running.

dce.psreturns a 0 (success) status code only if it successfully completes all its checks;
otherwise it returns a non-zero code. It provides ‘‘ps’’-style output for the DCE
processes and helpful messages for the user as well. An attempt has been made to
standardize thedce.ps’s process status output across platforms. Following is an example
of its output:

$$ $TET_ROOT/system/tools/dce.ps

TThhee ffoolll loowwiinngg DDCCEE ccoommppoonneennttss aarree rruunnnniinngg oonn ""ddccee22""..
PPIIDD SSTTIIMMEE TTIIMMEE CCOOMMMMAANNDD

1177007755 1100::1188::0055 00::1155 rrppccdd
1177119944 1100::1188::5544 00::2288 sseeccdd --bboooottssttrraapp
1188668899 1100::3311::1133 00::0033 ddttss__nnttpp__pprroovviiddeerr --hh ppaappeerrbbooyy --pp 660000 --ii 3300
1177665544 1100::2211::5500 00::3322 ccddssdd --aa
1188552299 1100::3300::1199 00::1199 ddttssdd
1188555566 1100::3300::2299 00::0000 ddttsstti immeedd
1177662255 1100::2211::4400 00::0033 ccddssaaddvv
1188448811 1100::3300::0066 00::0066 sseecc__cclli ieennttdd

DDCCEE oonn ""ddccee22"" sseeeemmss ttoo bbee rruunnnniinngg aass ccoonnffi igguurreedd..
CCoonnffi igguurreedd:: ddttss__nnttpp__pprroovviiddeerr ddttsstti immeedd ddttssdd ccddssdd ccddssaaddvv sseecc__cclli ieennttdd sseeccdd rrppccdd
CCDDSSCCPP ssaayyss ""ddccee22"" iiss rreessppoonnddiinngg iinn tthhee cceelll l ""//......//mmyy__cceelll l""..

$$ echo $?
00

Note that if you have sourcedprofile.dcest.tet in your current or ancestor shell then the
proper path exists inPATH , and you need only typedce.ps. Note also thatdce.pswill
give incorrect results whiledcedsystem tests are being run.

11.3.2 TET Tools

The following sections describe several utilities that have proven useful in integrating
tests with TET.

11.3.2.1 tet_setup

tet_setup is a utility used by various DCE tests run under TET. When invoked, it
executes (as root, anddce_login’d as the machine machine principal (\m for example,
hosts/foobar/self) a program specified to it. The program is typically a TET-run test;
executing it viatet_setup allows it to assume the principal identities necessary to test

January 17, 1997 11−29

DCE Testing Guide

desired ACLs.

It is invoked as follows:

tet_setupprogram [args . . .]

where:

program is the name of the program to be executed

args are the arguments, if any, to be passed to the program to be executed

For an example oftet_setup use, see the contents of

dce-root-dir/dce/src/test/admin/dcecp/ts/secval/secval_cleanup.tcl

or:

dce-root-dir/dce/src/test/admin/dcecp/ts/secval/secval_setup.tcl

tet_setupis installed in:

dce-root-dir/dce/install/platform/dcetest/dce1.2.2/test/tet/tools

Its source is located in:

dce-root-dir/dce/src/test/tools

11.3.2.2 TET Utility Routines

Source for various miscellaneous TET utility routines is located in:

dce-root-dir/dce/src/test/lib/libdcetst

The utilities are built into a librarylibdcetst.awhich is placed in:

dce-root-dir/dce/export/platform/usr/lib

when DCE is built. Following are brief descriptions of the routines.

• extern int tst_tet_printf(const char * format, ...)

Sends the contents of aprintf() to the TET journal file. Allows a tester to use the
different format directives accepted byprintf() when sending a message to the
journal file (tet_infoline() by itself does not allow this). If successful, a 0 is returned;
otherwise, a non-zero value is returned.

• extern void tst_dce_login(char *user, char *password, error_status_t *status)

Attempts adce_login as the specified principal. If successfulerror_status_ok is
returned; otherwise, a non-zero value is returned.

• extern int tst_chk_command(char *command, pid_t *pid)

Checks whether the specified command is in the process table: if it is, a 0 is returned;
otherwise, a non-zero value is returned.

• extern int tst_chk_process(pid_t *pid)

11−30 January 17, 1997

TET and DCE Testing

Checks whether the specifiedpid is in the process table: if it is, a 0 is returned;
otherwise, a non-zero value is returned.

11.3.3 Multi-Vendor Test Case Development Tools

The test cases have been designed to be easily ported to other flavors of the UNIX
operating system. This is aided by a suite of tools which are considered multi-vendor
because they are aware of the flavor of UNIX which they are running under and adjust
their nature of operationaccordingly.

A good example of the types of porting problems you may encounter is the use of theps
command. If a test case needed to determine the process identification (PID) of some
daemon process, it would search the output of theps command for the name of the
daemon in question and extract its PID. Theps command has a different syntax for the
BSD and System V flavors of UNIX. For example, BSD UNIX syntax isps -ax while
System V syntax isps -ef. The test case needs to be aware of the type of system it is
executing under in order to be able to choose the proper syntax. The problem grows very
quickly. A test case needs a special case for each difference of each flavor of UNIX. Not
only can this cause the test cases to be hard to port and maintain, but the readability and
modularity of the code can suffer as well. For example, the test case would need a large
casestatement to handle the various syntaxes of the same command offered on the
different flavors of UNIX. Maintaining every instance of the command’s usage in every
test case is time-consuming and costly.

The object of the multi-vendor tools is to abstract the differences of the flavors of UNIX
into a set of commands. The commands determine the type of operating system
automatically, if they have been ported to a particular flavor. Once the type of operation
system is known, it is easy to use the correct syntax of the command.

The tools currently support the following operating systems:

• AIX 3.2.4

• OSF/1 1.2 (on DECpc 450ST)

• HP/UX 9.0.1

• SINIX 5.41 (SVR4 on MX300i)

To port the tools to another operating system, you need to begin with theexpmachinfo
command. In the system test environment, this command is executed by:

systest-root/profile.dcest

or

/dcetest/dcelocal/test/tet/system/profile.dcest.tet

It creates the environment variables necessary for the other commands to determine
under what operating system they are executing.

The following commands are referred to as the core set, and since they use the
information created by theexpmachinfocommand, they may also need to be ported:

January 17, 1997 11−31

DCE Testing Guide

chkproc Returns 0 if a process exists and 1 if it does not.

getproc Returns the process id (PID) of a given process.

The rest of the commands increase the usability of the core set. They are as follows:

killproc Kills processes that match the given strings.

rshsp Enhances the usability ofrsh by sourcing a file of environment
variables before running the command on the remote machine and
by returning the return code of the remote command.

All the commands are located in the

/dcetest/dcelocal/test/tet/system/tools

directory.

11.3.4 Test Case Logging Facilitators for System Tests Not under TET

The tools in this section were developed to support faster analysis of scenario
executions. They provide standard mechanisms for logging results, and several tools for
examining the status.

11.3.4.1 Logging Results

The tools that are used to log results print the message you provide, with a header
attached to the front to indicate what has occurred (success, failure, etc.). The message is
printed to stdout and to the file whose name is stored in the environment variable
JOURNAL (see the ‘‘Test Logging During Iterations’’ and ‘‘Test Logging After
Iterations’’ sections earlier in this chapter). This allows testers to watch the progress of
tests scroll by on the screen while also recording the results in a permanent file.

These tests are divided into two groups: tests used by testcases and tests used by testcase
drivers. The following commands should be used within testcases:

xx_log Records something that worked successfully (or adds comments
to the journal file).

xx_warning Records something that may not have been an actual error but
should be examined.

xx_error Records something that did not work successfully (but the
testcase will continue to execute).

xx_severe Records something that failed and was so important that the
testcase should not continue to execute.

These commands are available from the command level (through shell scripts), and at the
API level through a library calledlibxx_.a. The scripts are installed and the library built
via:

11−32 January 17, 1997

TET and DCE Testing

dce-root-dir/dce/src/test/systest/tools/Makefile

The following commands should be used only by testcase drivers:

xx_begin Marks the beginning of an iteration of a testcase.

xx_pass Indicates that a testcase iteration has completed successfully.

xx_fail Indicates that a testcase iteration has completed with errors.

xx_example Checks journal files for errors.

These commands are available only at the command level, not at the API level.

11.3.5 Execution Tools

You can use the following tools to set up and execute System Test scenarios:

test/tet/system/profile.dcest.tetDefines all the necessary environment variables used by
the DCE system tests run under TET.

test/systest/profile.dcestDefines all the necessary environment variables used by all
DCE system tests not run under TET.

11.3.6 Miscellaneous Tools

The following tools are also available:

gdskill Deactivates a directory system installation of GDS, then deletes
the configuration data.

gdsSetup Sets up GDS on a system, based on the contents of a
configuration file. See the contents of thegds_xds_str_001.data
file for more information.

worldSetup Sets up GDS on a system, based on the contents of a
configuration file. See ‘‘Running the dcegdshd Driver’’ in
Chapter 13 for more information.

su.dce Provides DCE authentication and accepts passwords on the
command line. This program should be owned byroot and have
thesetuidbit set.

rcheck Checks a return code value against an expected value.

January 17, 1997 11−33

Chapter 12. DCE System Tests under TET

The following subsections list the test-specific options and descriptions of the DCE
system tests that have been converted to run under TET and therun control scripts.

All of these tests are run using the command format and common options described
above, and produce TET journal file andstdout output also as described above.

It should be noted that some tests are intended to generate errors. Some of the resulting
error messages appear in the standard output and may appear to be test errors, although
they are not. The test journal files are always the final authority as to whether a test
passed or failed.

The following subsections also contain information about the tests’ associated ‘‘data’’
scripts. These data scripts contain variables and default values for: internal loop counts;
thread counts; protocols; organization, group, and principal names; passwords; directory
and file names; test data; file sizes; wait times; and other, more esoteric runtime
parameters.

Some data script variables have test-specific command line options associated with them;
it is recommended that you use the command line options to change the value of such
variables at run time. If you wish to change variables that are not accessible from the
command line, you should consult the test and data scripts for information.

Note: All DCE system test verification was done with the default values for all
data file variables which are not alterable by command line option. It is left
entirely to the user to resolve problems arising from alteration of variables
not accessible from the command line.

12.1 Threads

The following sections describe the DCE Threads system tests run under TET.

January 17, 1997 12−1

DCE Testing Guide

12.1.1 dcethcac

Tests how many threads will co-habitate in an operating system by caching a user-
specified number of threads and yields (calls). The test may be used for stress testing by
specifying a large number of threads (via theNUMBER_OF_THREADS environment
variable).

The test is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
set TET_ROOT=‘pwd‘
set PATH=$TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.1 threads dcethcac

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thethreads directory) for
the test results journal file.

-vRUN_TIME=0.25 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

threads Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

dcethcac Specifies the name of the test (TET scenario) to be run.

12.1.2 dceth002

dceth002 is designed to exercise the threads-creation capability. It callsdceth002_c,
creating a number of threads in each of a number of processes. The threads then loop
and perform some simple computations.

Test Script: $TET_ROOT/threads/ts/dceth002/dceth002

To rundceth002, do the following:

1. Set (if desired) the following environment variables:

NUMBER_OF_THREADS
Specifies the number of threads to create in each process. Default
is 40.

PROCESSES Specifies the number of processes to run. Default is 4.

2. Invoke the test as follows:

12−2 January 17, 1997

DCE System Tests under TET

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-i intermediate_results_paththreads dceth002

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thethreads
directory) for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to thethreads
directory) for the intermediate test results file.

threads Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

dceth002 Specifies the name of the test (TET scenario) to be run.

This test can be used for stress testing by specifying a large number of threads and a
large number of processes.

12.1.3 dcethmut

dcethmut is designed to exercise the threads-creation capability and the use of mutual
exclusion primitives. It runs a number of copies ofdcethmut_c in separate processes,
each creating a number of threads which lock and unlock the same mutex repeatedly.

Test Script: $TET_ROOT/threads/ts/dcethmut/dcethmut

To rundcethmut, do the following:

1. Set (if desired) the following environment variables:

NUMBER_OF_THREADS
Specifies the number of threads to create in each process. Default
is 40.

PROCESSES Specifies the number of processes to run. Default is 4.

2. Invoke the test as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-i intermediate_results_paththreads dcethmut

January 17, 1997 12−3

DCE Testing Guide

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thethreads
directory) for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to thethreads
directory) for the intermediate test results file.

threads Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

dcethmut Specifies the name of the test (TET scenario) to be run.

12.1.4 dcethrpc

dcethrpc tests RPC servers’ and clients’ ability to spawn multiple threads. It primarily
tests the DCE Threads and RPC components but can also use the Security component.

Test Script: $TET_ROOT/threads/ts/dcethrpc/dcethrpc

Sets the following values:

• THREAD_EXEC

Specifies a pathname for executing the threads. Its value should be
‘‘ $TET_ROOT/threads/ts/dcethrpc’’.

• PROTOCOL

Specifies the protocol sequence to use: ‘‘ncadg_ip_udp’’
(connectionless, the default) or ‘‘ncacn_ip_tcp’’ (connection-
oriented). This option is useful for testing all the protocols DCE
supports.

• NUMBER_OF_THREADS

Specifies number of threads to create (default: 100).

• CHUNK_SIZE

Specifies the size of the portion of array that is read by the server.
The default is 100.

• MAX_CALLS

Specifies the maximum number of calls the server can handle
concurrently. The default is 5.

• RPC_MACHINES

12−4 January 17, 1997

DCE System Tests under TET

Specifies machines to use for servers. For example, ‘‘osf1 osf2 osf3
osf4 osf5’’.

The test is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-i intermediate_results_paththreads dcethrpc

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thethreads directory) for
the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to thethreads directory) for
the intermediate test results file.

threads Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

dcethrpc Specifies the name of the test (TET scenario) to be run.

This test can be used for stress testing by specifying a large number of threads to create
(note that the number of threads that can be created is dependent on the memory capacity
of the machine), setting a large chunk size, or by specifying many machines with the-m
option.

dcethrpc_auth is simply a variant of the normal, unauthenticated running ofdcethrpc,
so it supports all thedcethrpc and run options, as well as the following additional
options:

-A number Specifies the authentication level (Default: 0. 0 maps to default
level.)

-V number Specifies the authentication service (Default: 1. 1 maps to
private key authentication.)

-Z number Specifies the authorization service (Default: 2. 2 maps to DCE
PAC authorization.)

-N Specifies unauthenticated RPC; overrides-p, -A, -V and -Z
flags.

-p principal_name Specifies the account to authenticate with. This account must
already exist in the security registry, and its password must be
identical to its name. Moreover, the name must be registered
locally on each machine you want to target with the-m option.
Use the followingrgy_edit command on each target machine to
register the name locally and to verify that the name was
registered locally with thektlist command:

January 17, 1997 12−5

DCE Testing Guide

ktadd -p principal_name-pw principal_name

You must set the above options for the client and server by setting the
CLIENT_PARMS andSERVER_PARMS environment variables to the desired option
values. Once this has been done,dcethrpc will run asdcethrpc_authwhen executed.

Note: The account added fordcethrpc_auth must have a password identical to
its name. However, it is a severe security breach to leave thisaccount
extant after running the test. Make sure that you delete the account when
you have completed running this test.

12.2 RPC

The following sections describe the DCE RPC system tests that are run under TET.

12.2.1 dcerpary

dcerpary is designed to test the ability of the RPC runtime to transmit arrays of arrays
and arrays of pointers structures.

Refer to the comments in

dce1.2.2-root-dir/dce/src/test/systest/rpc/ary_client.c

and

dce1.2.2-root-dir/dce/src/test/systest/rpc/ary_server.c

for full details on how this testing isaccomplished.

Note that onlyoneary_server process can run on a single machine, because the process
listens on a well known port.

The test is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -vRUNNING_TIME=.01 rpc dcerpary

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to therpc directory) for the
test results journal file.

12−6 January 17, 1997

DCE System Tests under TET

-vRUNNING_TIME=0.01
Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

rpc Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

dcerpary Specifies the name of the test (TET scenario) to be run.

12.2.2 dcerpidl

This test runs a selected number of DCE IDL tests. The idea is to run the tests between
machines that have different endian representations.

However, note that the test programs are compiled only through ODE (that is, when DCE
is built), not on the fly.

Also note that thedcerpidl tests run only on similar HP-UX machines.

The tests are invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tcc -e -j journal_path-vRUNNING_TIME=0.25 rpc d cerpidl1

tcc -e -j journal_path-vRUNNING_TIME=0.30 rpc d cerpidl2

tcc -e -j journal_path-vRUNNING_TIME=0.30 rpc d cerpidl3

tcc -e -j journal_path-vRUNNING_TIME=0.30 rpc d cerpidl4

tcc -e -j journal_path-vRUNNING_TIME=0.30 rpc d cerpidl5

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to therpc directory) for the
test results journal file.

-vRUNNING_TIME=0. nn
Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

rpc Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

January 17, 1997 12−7

DCE Testing Guide

dcerpidln Specifies the name of the test (TET scenario) to be run.

12.2.3 dcerprec

This test is designed to test the ability of the RPC library to handle heavy stress loads.
The test is in two sections: a server side and a client side.

The client reads a file locally and remotely, and then compares the buffers to verify that
the identical information was read both locally and remotely.

The server offsets into the file the required amount of bytes, reads the specified amount
of bytes from that point, and passes this buffer back to the client.

Note: The stress levels of this test are low.

The test is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_file-vRUNNING_TIME=.50 rpc dcerprec

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to therpc directory) for the
test results journal file.

-vRUNNING_TIME=0.50
Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

rpc Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

dcerprec Specifies the name of the test (TET scenario) to be run.

12.2.4 dcerpbnk

The dcerpbnk DCE System Test is a small scale simulation of a banking operation. It
tests most aspects of DCE and resembles an actual application.

dcerpbnk tests the RPC component (in particular the Object Registry table and Interface
Registry table), as well as the Threads, CDS and Security components.

12−8 January 17, 1997

DCE System Tests under TET

Test Script: $TET_ROOT/rpc/ts/dcerpbnk/dcerpbnk

dcerpbnk is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUNNING_TIME=0.25 rpc d cerpbnk

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to therpc directory) for the
test results journal file.

-vRUNNING_TIME=0.25
Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

rpc Specifies the ‘‘test suite’’ name.

dcerpbnk Specifies the name of the test (TET scenario) to be run.

12.2.4.1 Running dcerpbnk_auth

dcerpbnk_auth is simply an authenticated variant of the unauthenticateddcerpbnk.

The following additional setup is required before running the test:

1. dce_loginas the Cell Administrator (cell_admin).

2. Invokergy_edit and add the test principal as follows:

$$ rgy_edit
==>> domain principal
==>> add bankd
==>> domain account
==>> add bankd -g none -o none -pwpassword-mp -dce
==>> ktadd -p bankd -pw password
==>> quit

The test itself is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUNNING_TIME=0.25 rpc d cerpbnk_auth

January 17, 1997 12−9

DCE Testing Guide

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to therpc directory) for the
test results journal file.

-vRUNNING_TIME=0.25
Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

rpc Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

dcerpbnk_auth Specifies the name of the test (TET scenario) to be run.

12.2.5 RPC Runtime Stress Test

This test first determines the platform’s maximum number of concurrent multiple client
calls allowed to a server, and then repeatedly transmits an array of structures of ten
members back and forth between its clients and server.

Test Script: $TET_ROOT/rpc/ts/rpc.runtime.1/dcerpcrun

Data Script: $TET_ROOT/rpc/ts/rpc.runtime.1/dcerpcrun.data

dcerpcrun is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vNMIN=15 rpc d cerpcrun

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to therpc directory) for the
test results journal file.

-vNMIN=15 Sets the NMIN environment variable, which specifies the
number of minutes the test should run.

rpc Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

12−10 January 17, 1997

DCE System Tests under TET

dcerpcrun Specifies the name of the test (TET scenario) to be run.

12.2.5.1 Description of dcerpcrun

Thedcerpcrun system test is a low level test of the DCE RPC runtime. It is designed to
perform load-testing on RPC at the same time as other DCE system tests are exercising
DCE upper layer functions (for example, in Security or CDS).dcerpcrun is derived from
RPC functional tests, and thus does not itself exercise this upper layer functionality. The
test contains the following enhancements over the functional test version:

• The test executes multi-threaded client calls to one server interface.

• A structure of 10 numbers is built into an array of 1000 elements and piped to and
sent back from the server. Error checking is performed on both sides of the bi-
directional pipe.

12.2.6 RPC-Security System Test

The rpc.sec.2system test is designed to stress the RPC and Security components of
DCE.

The Security component is stressed via frequent identity updates and validations, and the
RPC component is stressed via continuous RPC requests by multiple clients using full
authentication and a complex data type (a conformant structure). The client side test
code defaults to making calls as fast as possible so as to put as much load as possible on
the server.

This test can also be used for performance testing of authenticated RPC, though this is
not its default behavior. Note that an attempt has been made in the coding of this test to
observe good programming practice from the DCE point of view.

In outline, the test operates as follows:

1. The test first determines the implementation’s maximum number of concurrent
calls for multiple clients to a server, using the highest level of authentication
offered by the runtime library (rpc_c_protect_level_pkt_privacy), and
transmitting structures with conformant array members. The concurrent call
maximum will be sensed by the receipt of the RPC statusrpc_s_server_too_busy
(if the client is using a connection-oriented protocol) orrpc_s_comm_failure (if
the client is using a connectionless protocol).

2. Following the determination of the call maximum, the test is run in a loop after a
reset of the registry server ticket lifespan to five minutes for the test client and
server principals in order to validate ticket renewal operations near the maximum
call rate.

January 17, 1997 12−11

DCE Testing Guide

12.2.6.1 Logic Flow of the RPC-Security System Test

dcerpsec, the script invoked by TET, callsrpc.sec.2_setup.shandrpc.sec.2_runtest.sh.

In outline, the operation ofrpc.sec.2_setup.shis as follows:

1. Checks to make sure that the user has a valid identity ascell_admin.

2. Checks to make sure that all of the variables used by the setup script are assigned
values in the configuration file.

3. Creates the client and server principals.

4. Creates the client and server accounts and keytab files. If the path to the keytab file
does not exist, the script attempts to create it. Note that you will be prompted for
thecell_admin password twice during this part of the setup.

5. Creates the CDS directory into which the server interface entry will be exported.

6. Attempts to create a client keytab file on any systems named in the configuration
file as client machines in the test.

7. Attempts to create a server keytab file on any systems named in the configuration
file as server machines in the test.

12−12 January 17, 1997

DCE System Tests under TET

TABLE 12-1. Objects Created by the rpc.sec.2 System Test

DCE Object Variable in Default value
Needed config file as shipped___L
L
L

L
L
L

L
L
L

L
L
L

Server principal and RPCSEC2_SRV_PRINC_NAME rpc.sec.2_srv
account___
Client principal and RPCSEC2_CLI_PRINC_NAME rpc.sec.2_cli
account___
Group for the RPCSEC2_SRV_GROUP_NAME subsys/systest/cds_test
server test___
Server key file RPCSEC2_SRV_KEYTAB_FN rpc.sec.2_srv.keytab___
Server key file RPCSEC2_CLI_KEYTAB_DIRPATH /tmp
directory___
Client key file RPCSEC2_CLI_KEYTAB_FN rpc.sec.2_cli.keytab___
Client key file RPCSEC2_CLI_KEYTAB_DIRPATH /tmp
directory___
CDS directory for RPCSEC2_SRV_CDS_NAME /.:/test/systest/srv_ifs
server interface
object___
Configuration file RPCSEC2_CONF rpc.sec.2.conf
with test defaults
and parameters___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Logic Flow of ‘‘rpc.sec.2_runtest.sh’’

1. Reads the default configuration filerpc.sec.2.conf, or specified by the
RPCSEC2_CONF environment variable (if it was not specified with the-f
option).

2. Parses the command line options.

3. Determines the number of UDP and TCP clients to be run.

4. Reports to the user on the parameters that will be used for the run, describing the
number of UDP and TCP clients, total clients, machines involved, the status of
various flags, the duration of the run, where log files will be kept, and so on. In
this way the parameters are recorded for later reference.

5. Builds a list of the clients to run.

6. Verifies the presence on each client machine of: a client binary, the configuration
file, and a keytab file; and then starts the client(s) specified for that machine.

7. Waits a specified duration of time for the clients to start.

8. Verifies that all clients are started and ready to make remote calls. If all clients
are not ready, and the-I [gnore] option has not been specified, then a message
detailing the failures is output, all clients are killed, and the script exits.

January 17, 1997 12−13

DCE Testing Guide

9. Creates the synchronization file (i.e., the file for whose creation each client has
been waiting as its cue to begin operations) on all the client machines to signal
the clients to begin making RPCs to the server.

10. (Boundary mode only) Waits a specified amount of time for the clients to make
their single RPCs.

11. (Boundary mode only) Parses the logs from the clients’ runs and outputs a report
that describes in detail: the number of clients run; how many of each type (UDP
or TCP) failed or passed, etc; and a declaration of whether the test as a whole
passed or failed.

12.2.6.2 Logic Flow of the RPC-Security System Test

As is possible with any program, this test evolved over its development. A description of
the post-implementation state of the test follows:

Server side

The server side of therpc.sec.2 system test (rpc.sec.2_srv) performs the following
operations:

1. Reads the configuration file and parses the command line options.

2. Assumes its own identity.

3. Looks for an entry in the CDS namespace for the interface it is to export.

4. Obtains binding handles from the endpoint mapper.

5. Exports its bindings and a UUID to the CDS namespace entry for the interface
(unless a UUID is already present in the entry, in which case the existing UUID is
used).

6. Starts a timer thread to automatically refresh the server’s identity at the ticket
lifetime’s halfway point.

7. Starts a thread to catch and handle signals.

8. (If compiled with -DRPCSEC2_SRV_REPORTING) Starts a report thread to
periodically generate reports of calls accepted, calls parsed, and calls failed.

9. Services requests for therpcsec2_cnf_str RPC. In doing so it performs
authorization based on client name, authorization service, authentication service,
and protection level specified by binding handles in incoming RPCs. The incoming
calls must specify the correct client and server name, DES authentication, DCE
default authorization, and protection level.

Client side

12−14 January 17, 1997

DCE System Tests under TET

The client side of therpc.sec.2 system test (rpc.sec.2_cli) performs the following
operations:

1. Reads the configuration file and parses the command line options.

2. Assumes its own identity.

3. Spawns a thread to maintain its identity.

4. Spawns a thread to catch and handle signals.

5. If the run was specified to be for a duration of time, spawns a thread to generate
reports at specified intervals.

6. Builds the structure to be passed to the server.

7. Looks in the namespace for a binding to therpc.sec.2server. If a protocol is
specified, only a binding with the specified protocol will be imported.

8. Tests the imported binding to make sure the server is active.

9. Displays a message indicating that it is ready to make calls.

10. (Boundary mode only) If a synchronization file is specified, loops until the
sycnchronization file has been created (by the test driver script).

11. (Boundary mode only) Makes one call to the server, reports the result, and exits.

12. Loops, makingrpcsec2_cnf_str() calls to the server, checking results, and
tracking successes and failures.

12.2.6.3 Test Options

All parameters for this test are specified in the test configuration file. Refer to the
‘‘Configuration File’’ section below for information about the variables and their format.

12.2.6.4 Compile-Time Switches for Optional Functionality

There are several areas of optional functionality available in therpc.sec.2system test
that can be used to expand the scope of the test or to provide additional runtime
information. These areas of optional functionality are compiled into the program via the
definition of tags which can be specified in either of two ways:

• On thebuild command line; for example:

build -DRPCSEC2_ALL_OPTS

• In the environment variableCENV; for example (in a C shell):

%% setenv CENV RPCSEC2_ALL_DEBUGS
%% build

January 17, 1997 12−15

DCE Testing Guide

The defaultbuild flag value isRPCSEC2_ALL_OPTS.

The table below lists the supported compiler flags, the functionality that they control, and
the operation of the test depending on whether the flag is or is not specified.

TABLE 12-2. Compile-Time Switches for rpc.sec.2

__
Flag Functionality Test Operation__LL LL LL LL__
RPCSEC2_KEEP_SYMBOLS Keeps debugging symbols If defined, code is compiled with debugging

in compiled objects symbols; else debugging symbols usually
stripped from objects.__

RPCSEC2_SRV_REPORTING Turns on server If defined, server reports on call requests
status reporting received, calls passed and failed, id refreshes,

and time of last id refresh at an interval speci-
fied by RPCSEC2_CLI_DEF_REP_INTVL in
configuration file. If not defined, server
reports only upon receipt of SIGQUIT.__

RPCSEC2_ADD_DUMPERS Compiles extra routines If defined, several routines are compiled
into the server to aid into the server for dumping the contents
debugging of various DCE data structures in people-

readable form. These routines are not
called from the code, but can be called
from the debugger.__

RPCSEC2_ALL_DEBUGS turns on all debugging Has the same effect as specifying both
options RPCSEC2_KEEP_SIGNALS and

RPCSEC2_ADD_DUMPERS.__
RPCSEC2_ALL_OPTS turns on all optional Has the same effect as specifying

code RPCSEC2_SRV_REPORTING.__
RPCSEC2_DRVR_HNDLS_SIGCHLD turns on code to stag- If defined, client will wait to exit

ger client exits after processing is complete, in an attempt
to give the driver time to process client
logs.__

RPCSEC2_ALL_EXTS turns on all extension Has the same effect as specifying
code RPCSEC2_DRVR_HNDLS_SIGCHLD__L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Specifying server reporting can provide useful information about the server side of the
test.

12.2.6.5 Configuration File

Setting up to run therpc.sec.2system test consists of one step, namely customizing the
configuration file:

/dcetest/dcelocal/test/tet/rpc/ts/rpc.sec.2/rpc.sec.2.conf

The present section describes this step.

12−16 January 17, 1997

DCE System Tests under TET

The scripts and programs that make up therpc.sec.2 system test get most of the
information they need from a single configuration file whose default name is
rpc.sec.2.conf. The information normally contained in this file can be split up roughly
into two categories: default runtime parameters, and environment information.

Examples of default runtime information in the file are: the time duration a test should
run; the names of machines on which clients will be run; etc.

Examples of environment information stored in this file are: the name of the CDS
namespace entry to which the server exports its bindings; the name of the client and
server principals; etc.

Before running the test, it is important to inspect the configuration file to see if any
changes should be made for the site at which the test is to be performed. This is
particularly important in regard to the environment configuration information. For
example, you may wish to use a different client or server principal, a different CDS entry
name, etc. All of these things, if they are to be changed, must be changed in the
configuration file before running the test.

Note that all machines that the test is to be run on must have identicalrpc.sec.2.conf
files.

12.2.6.6 Format of the Configuration File

The contents of the test configuration file consist of text lines conforming to normal
Bourne shell syntax.

Note, however, the following restriction. The configuration file, as implied above, is read
by shell scripts, and by therpc.sec.2_cliandrpc.sec.2_srvbinary programs. In order to
simplify the routine used by these programs to read the file, lines that set values for the
rpc.sec.2_cliandrpc.sec.2_srvprogramsmustbe in one of the two following formats:

<<ssttrriinngg>>==<<ssttrriinngg11>> ## NNOOTTEE:: i inn tthhiiss ccaassee,, ssttrriinngg11 ccaannnnoott
ccoonnttaaiinn aannyy ssppaacceess..

or:

<<ssttrriinngg>>==""<<ssttrriinngg11>>"" ## NNOOTTEE:: i inn tthhiiss ccaassee ssttrriinngg11 mmaayy
ccoonnttaaiinn ssppaacceess..

Any lines that are not in this format will either be ignored by the routine
(rpcsec2_rd_conf(), in the file rpc.sec.2_rdconf.c) that the client and server use to read
the configuration file, or will generate an error. Comments are begun by a ‘‘#’’ character
anywhere on a line, as shown above, and continue to the end of the line.

January 17, 1997 12−17

DCE Testing Guide

12.2.6.7 Contents of the Configuration File

The assignments in the configuration file as it is shipped represent the minimum set
required to run the tests scripts and programs. You may add to the configuration file, but
you should not remove any of the original assignments.

The information in the configuration file determines the way that your Security and CDS
namespaces are set up. This being the case, you may want to modify the configuration
information to tailor the namespace to your preferences. If you do not want to use the
default values in the configuration file for the client or server principal name, CDS
directory, CDS name, or for any of the other configuration file variables, you will have to
modify the configuration file in accordance with your preferences before running the
setup script.

TABLE 12-3. Configuration File Contents

Variable Default Value
in Config File Description as Shipped___L
L
L

L
L
L

L
L
L

L
L
L

RPCSEC2_PROT_LEVEL Default protection level priv___
RPCSEC2_CLI_PRINC_NAME Client principal name rpc.sec.2_cli___
RPCSEC2_CLI_INIT_PW Client initial password "rpc&secC"___
RPCSEC2_CLI_KEYTAB_DIRPATH Directory for client keytab /tmp

file___
RPCSEC2_CLI_KEYTAB_FN Client keytab file name rpc.sec.2_cli.keytab___
RPCSEC2_CLI_MACHINES Remote client machines "rptest"___
RPCSEC2_CLI_DEF_RUN_INTVL Client interval to run 0 (hours)___
RPCSEC2_CLI_DEF_REP_INTVL Client report interval 1 (minutes)___
RPCSEC2_CLI_SYNC_DELAY Client delay for synchronization 60 (seconds)___
RPCSEC2_CLI_START_DELAY Clients startup delay 180 (seconds)___
RPCSEC2_CLI_ARRAY_ELEMS Number of array elements 15___
RPCSEC2_SRV_PRINC_NAME Server principal name rpc.sec.2_srv___
RPCSEC2_SRV_GROUP_NAME Server group subsys/dce/cds-test-group___
RPCSEC2_SRV_INIT_PW Server initial password rpc&secS"___
RPCSEC2_SRV_KEYTAB_DIRPATH Directory for server keytab /opt/dcelocal/var/security/keytabs

file___
RPCSEC2_SRV_KEYTAB_FN Server keytab file name rpc.sec.2_srv.keytab___
RPCSEC2_SRV_CDS_NAME Server interface name /.:/test/systest/srv_ifs/rpcsec2_if___
RPCSEC2_SRV_CDS_DIR_ACL Directory ACL for server rwditca

interface___
RPCSEC2_SRV_CDS_IO_ACL Object ACL for server interface rwdtc--___
RPCSEC2_SRV_MAX_CALLS Max concurrent call for server 5___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

12−18 January 17, 1997

DCE System Tests under TET

Variable Default Value
in Config File Description as Shipped___L
L
L

L
L
L

L
L
L

L
L
L

RPCSEC2_SRV_MAX_EXEC Max concurrent execs for server 1___
RPCSEC2_SRV_MACHINES Server machine "rptest"___
RPCSEC2_BIN_DIRPATH Directory with rpc.sec.2 binaries $TET_ROOT/rpc/ts/rpc.sec.2___
RPCSEC2_TEMP_DIRPATH Directory for temporary files /dcetest/dcelocal/tmp___
RPCSEC2_LOG_DIRPATH Directory for log files /dcetest/dcelocal/status___
RPCSEC2_UDP_PCT Percentage of udp clients 50___
RPCSEC2_CLI_TO_RUN Number of clients 9___
PRIN_PASSWD Principal password "-dce-"___LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

12.2.6.8 Running rpc.sec.2

To run rpc.sec.2in the example cell described earlier in this chapter, you would do the
following:

1. Edit the configuration file:

/dcetest/dcelocal/tet/rpc/ts/rpc.runtime.1/dcerpcrun.data

and make the appropriate changes to the configuration variables.

2. Define and export theTET_ROOT environment variable:

export TET_ROOT=/dcetest/dcelocal/test/tet

3. Source the TET version of the system test profile:

. $TET_ROOT/../test/systest/profile.dcest.tet

4. dce_loginascell_admin:

dce_login cell_admincell_admin_password

5. Invoke the test via TET:

cd /dcetest/dcelocal/tet
$TET_ROOT/bin/tcc -e -j journal_filenamerpc dcerpsec

12.2.6.9 Generating Test Reports

If you are not running the test in boundary mode, then after all the clients have exited,
you can generate a report of the results of the test by executing the following commands

January 17, 1997 12−19

DCE Testing Guide

in a Bourne or Korn shell:

$$ cd <logdir>

$$ for i in ‘ls cli_log pid.*‘
>> do
>> grep -v READY $i | awk -f bindir/rpc.sec.2_gen_summ.awk >> runpid.summ
>> done

$$ awk -f <bindir> /rpc.sec.2_gen_rep.awk run<pid> .summ > run<pid> .results

12.2.6.10 Implementation Notes

The size of the array passed to the server by the client determines how long the
rpcsec2_cnf_str()call will take. The server divides the array size by three, then waits in
the rpcsec2_cnf_str()call for the resulting number of seconds before processing the
array and returning. The number of array elements should be six or more if a goal of the
test is to force the server runtime to buffer and unbuffer call requests.

The observed maximum number of concurrent calls for anrpc.sec.2server running with
a single execution thread (specified in the configuration file by setting
RPCSEC2_SRV_MAX_EXEC to 1) is nine. If testing is desired with more than nine
threads, the number of execution threads in the server must be increased.

Note that if the test is run with the observed maximum of test clients and a server with
one execution thread (the default), then the connection-oriented protocol clients will
report large numbers ofserver_too_busyerrors. This is caused by the clients’ finding the
server call request buffer full because a slot that would normally have been available to
accept a client request has been taken by a housekeeping call regularly made by the RPC
daemon to determine whether the server is still active. The client then goes into a tight
loop, continuing to call and continuing to receive the error until a slot does open up. To
avoid this scenario, either run the server with more execution threads, or add a delay to
the client call loop whenrpc_s_server_too_busyis detected (if yoursleep() is not
wrapped and hence not threadsafe, usepthread_cond_timed_wait() or
pthread_delay_np()instead). Datagram clients will receive a fewcomm_failure errors
for this same reason, but these will be far fewer than theserver_too_busyerrors
received by connection-oriented clients, due to the different retry semantics of the
datagram runtime in case of call failure.

It has been observed that if the test client, for some reason, loses its credentials, it will
begin to consume swap space at the rate of about 1 megabyte per hour. However, the
case of a client losing its credentials is quite rare (in the instance in which this
phenomenon was observed, the clients had lost their credentials because the ticket
lifetime was changedafter the test had been started).

Note that if the clients are running in debug mode at the very end of the test, the report
generation scripts will not work correctly on the raw output.

If you wish to run therpc.sec.2test with a large number of clients, you will will to start
the clients in groups. If you attempt to start too many clients concurrently, all making

12−20 January 17, 1997

DCE System Tests under TET

calls to the same server, some number of the clients will receive the error status
rpc_s_connect_rejected, and therpc.sec.2_runtest.shscript will abort the test run. This
is caused by too many client call requests arriving at the server machine’s socket at the
same time, filling up the listen backlog buffer associated with the socket faster than the
RPC runtime can dequeue the requests and buffer them in the call request buffer; calls
arriving when the listen backlog buffer is full are rejected. The number of clients that can
be started at one time will vary from platform to platform; the larger the listen backlog
size and the faster the machine, the greater the number of clients that can be started at
once. For DCE 1.0.2, the maximum number of clients that could be successfully started
at the same time on the AIX platform was between 10 and 20.

12.2.6.11 Ticket Expiration

It is possible in some circumstances for a test client’s network credentials (i.e., ticket) to
expire, in spite of the fact that a thread is spawned to maintain the ticket. If a client’s
ticket does expire, the test as shipped will almost certainly fail soon afterwards.

The client ticket’s expiration is generally caused by starvation of the ticket-maintainance
thread, and is more likely to occur in clients that access therpc.sec.2server using the
connection-oriented protocol —especially if the ticket lifetime is short (i.e., in the
neighborhood of five minutes or less).

The chain of events that leads to the starvation generally begins when any unrecoverable
error occurs in the test server runtime. From then on, all remote calls will return errors to
the callers. (The test clients do not perform error handling for remote calls; instead, they
are designed to simply log errors and continue test activity.) Further, with the
connection-oriented protocol, any error in the server runtime causes an immediate return
from the remote call to the client. Thus when all this happens, the client thread making
the remote call goes into a tight loop, re-attempting immediately over and over again to
successfully complete the remote call. If the client’s ticket expiration time is short, the
time taken up by the call thread’s looping can deprive the ticket maintainance thread of
sufficient CPU cycles to refresh the client’s ticket before it expires. Then, once the ticket
has expired, the remote call thread begins generating messages that describe the last time
the ticket was refreshed, along with other (normally pertinent) information. This has the
result of making the call thread take up even more time, and as a result the ticket
maintainance thread is never allowed to refresh the ticket.

This failure scenario generally does not occur for test clients using the connectionless
protocol; its semantics prevent the sequence of events that leads to the tight looping
described above.

12.2.6.12 Runtime Errors that Should be Handled

As noted above, therpc.sec.2clients do not currently perform any error handling of the
communication status value returned from a remote call. The lack of such error handling
is responsible for the spurious test failure scenario described above, and this scenario can

January 17, 1997 12−21

DCE Testing Guide

probably be avoided if you add code to handle the three following errors:

• rpc_s_server_too_busy

(Returned only by TCP clients.) The server does not have a thread available to
service the client request, nor does it have space in any call request buffer to queue
the request. When a test client receives this error, it will go into a tight loop as
described in the previous section, making RPCs and continuing to receive this same
status, until sufficient resources are freed at the server to permit the call to be
serviced or queued. While testing did not prove this looping to have a significant
impact on the overall success rate of the TCP clients, it is wasteful of CPU cycles.
One way to avoid the tight looping would be to have the TCP clients wait for a few
seconds if they receive this status before doing anything. Another approach would be
to allocate more server threads to begin with, and thus avoid the situation altogether.

• rpc_s_connection_closed

A protocol error has occurred in the connection to the server. This means (with a
connection-oriented protocol) that the binding to the server has become permanently
useless, and the thread in the server runtime that listens for connection-oriented
protocol requests is probably unavailable, so that no connection-oriented protocol
calls will succeed. The only remedy for this condition is for the server to re-export its
binding handles.

• rpc_s_auth_tkt_expired

The client’s network credentials (i.e., ticket) have expired. The client thread
receiving this error can recover from the situation by notifying the ticket
maintainance thread that it should now refresh the ticket.

12.2.7 dcerpper

Thedcerpper DCE System Test is based on the RPCperf functional tests. It utilizes the
perf functional test server and client programs to perform the following tests:

• Null call

• Null call, idempotent

• Variable length input arg

• Variable length input arg, idempotent

• Variable length output arg

• Variable length output arg, idempotent

• Broadcast

• Maybe

• Broadcast/maybe

• Floating point

12−22 January 17, 1997

DCE System Tests under TET

• Unregistered interface

• Forwarding

• Exception

• Slow call

• Slow call, idempotent

The perf_server is run on the machine on whichdcerpper is being executed, and
perf_client is started on the specified client machines. The client machines are started
simultaneously in order to put stress on the server machine.

Test Scripts: $TET_ROOT/tet/rpc/ts/dcerpper/dcerpper

Test Programs: $TET_ROOT/tet/rpc/ts/dcerpper/perf_server

$TET_ROOT/tet/rpc/ts/dcerpper/perf_client

dcerpper is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUNNING_TIME=0.25 rpc d cerpper

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to therpc directory) for the
test results journal file.

-vRUNNING_TIME=0.25
Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

rpc Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory of the test to be run.

dcerpper Specifies the name of the test (TET scenario) to be run.

12.3 DCE Host Daemon (dced)

The dced system tests exercise the functionality provided by the DCE Host Daemon
(dced):

• Endpoint resolution

• Remote Key Table Management

January 17, 1997 12−23

DCE Testing Guide

• Remote Host Data Management

• Remote Server Configuration and Execution

• ACL operations on all the above functions

The test suite consists of three reliability tests which use arun control script as a test
driver in the same way as the other DCE system tests executed under TET. The tests
must be installed on each machine on which they will be run, usingdcetest_config.
Setup requirements are the same as for the otherrun script-based DCE system tests.

All sub-components and other executables for the tests are installed at:

$TET_ROOT/../test/tet/system/dced/ts/rel/

Test Scripts: $TET_ROOT/system/dced/ts/rel/dcdrel001/dcdrel001
$TET_ROOT/system/dced/ts/rel/dcdrel002/dcdrel002
$TET_ROOT/system/dced/ts/rel/dcdrel003/dcdrel003

The tests are invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/test/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/bin:$PATH

tcc -e -j journal_pathsystem/dced dcdrel001

tcc -e -j journal_path-vNMIN=15 system/dced dcdrel002

tcc -e -j journal_path-vNMIN=15 system/dced dcdrel003

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thesystem/dceddirectory)
for the test results journal file.

-vNMIN=15 Sets the NMIN environment variable, which specifies the
number of minutes the test should run.

system/dced Specifies the ‘‘test suite’’ name, equivalent to the component
subdirectory (located undersystem) of the test to be run.

dcedrel00n Specifies the name of the test (TET scenario:dcdrel001,
dcdrel002, or dcdrel003) to be run.

The tests can also be invoked through therun.dced script as follows (see Chapter 11 for
details on using the ‘‘run’’ scripts):

run.dced {-l loops |-t hours } [other_options] testname

where:

12−24 January 17, 1997

DCE System Tests under TET

-l loops Specifies the number of loops or passes to run.

-t hours Specifies the time in hours to run. A decimal point isaccepted;
e.g. ‘‘.5’’ is interpreted as 30 minutes.

testname Specifies the name of the test; see below.

The following tests can be run by specifying their name astestnamein the command
line:

dcdrel001 Exercises some of the endpoint operations provided bydced. Two test
servers and a test client are started on each machine included in the test.
The test servers register themselves via CDS and are then contacted by
the test clients on all machines involved in the test. For each series of
client-server interactions, the client requests the server to register its
interface and endpoints with a newly-generated list of object UUIDs,
and then contacts the server using each of the newly-registered object
UUIDs and requests that the endpoint be unregistered.

As many machines as desired can be included in the test run, via the
command line options-m or -M , and the number of endpoints registered
can be modified by recompiling the tests with a different value for the
constantUUID_VEC_COUNT, which is defined in

dce-root-dir/src/test/systest/dced/ts/rel/dcdrel001/dcdrel001_client.c

The test starts two servers, both of which register endpoints using the
rpc_ep_register() routine. This test could be readily enhanced by
modifying one of the two servers’ manager routines to use thedcedAPI
functions for registering and unregistering endpoints instead.

dcdrel002 Exercises some of the server configuration and execution operations
provided bydced. Four variations of a test server are configured, using
the dcecp server createcommand. Then several sequences of starting,
stopping, and restarting the servers are executed.

At present the test creates the test servers on each of the machines
identified on therun.dced command line, and then executesdcecp
operations on those servers from the machine that the servers are
executing on. The test could enhanced by having it execute thedcecp
commands on each machine involved in the test to control servers on the
other machines.

dcdrel003 Exercises some of the keytab, hostdata, and ACLdced service
operations. Adcecpscript is executed on each of the macines specified
on the command line, to test some of the hostdata operations. Following
this, separatedcecp script is executed on each of the machines to test
some of the keytab operations. Finally, anotherdcecpscript is executed
on each of the machines to test some of the ACL operations.

Note: Whendcdrel003_acl.tclis running, no otherdced-related
testing should be taking place. This test subcomponent
changes ACLs to disallowdced operations, and will thus
cause any other activedcedtests to fail.

all Causes all of the tests to be run in turn, with the specified
command line options.

January 17, 1997 12−25

DCE Testing Guide

This test also uses the following standardrun options:

• -enumber

• -E number

• -m name(s)

• -M

For explanations of these options, see ‘‘Command Line Options Common to Some
or All of the ‘‘Run’’ Scripts’’, in Chapter 11.

12.4 Security

All of the security systest directory scripts are run as ‘‘root’’ UID, with the systest
environment fileprofile.dcest.tetsourced. All tests are run from the test ‘‘driver’’
level and use thergy_edit -update control program interface for all registry
operations. The drivers all use the

/dcetest/dcelocal/tet/security/ts/sec.functions

file for determining the security-related operations (rgy_edit functions) to be
tested, as listed below under each test driver name.

Note that all of these details are automatically taken care of when you run the
tests throughdcetest_config, as is recommended; if you run the tests manually,
you must sourceprofile.dcest.tetyourself.

12.4.1 secrep

This test consists of 9 test cases to test thechange -masterandbecome -master
functionality. The test cases are as follows:

Test case name Description

tc_bm Testsbecome master.

tc_bm_restart Become master and restart new master.

tc_cm_basic Basic change master test.

tc_cm_q_update Change master with updates in progress.

tc_cm_login_query Change master while logins and queries are in progress.

tc_cm_c_update Change master while master is being updated.

tc_cm_restart Change master and restart new master.

12−26 January 17, 1997

DCE System Tests under TET

tc_cm_slvinit Change master withinitrep in progress.

tc_cm_slvdel Change master withdelrep in progress.

The global cleanup function,tc_secrep_cleanup, will delete all replicas in the
cell. The function is written as if it were a test case, and is the last TET scenario to
be executed.

Note that at the end of the test (aftertc_secrep_cleanuphas been run), there is
only master; however, this may not be the original master. This is because the test
performs a change/become master.

To see both the result of each test as well as the start and end time of each test do
the following:

grep TEST <journal file name> | awk -F"|" ’{print $NF}’

The test is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_filesecurity all_secrep

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thesecurity
directory) for the test results journal file.

security Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

all_secrep Specifies the name of the test (TET scenario) to be run.

12.4.2 dceseacl

dceseacltests security registry ACLs and authorization operation, and can serve
as a registry load or stress test. It does this by creating a number ofaccounts,
principals, groups, and organizations; modifying permissions; and verifying
appropriate ACL management operation.

Test Script: $TET_ROOT/security/ts/dceseacl/dceseacl

Data Script: $TET_ROOT/security/ts/dceseacl/dceseacl.data

dceseaclis invoked as follows:

January 17, 1997 12−27

DCE Testing Guide

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vNMIN=15 security dceseacl

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thesecurity
directory) for the test results journal file.

-vNMIN=15 Sets theNMIN environment variable, which specifies the
number of minutes the test should run.

security Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

dceseacl Specifies the name of the test (TET scenario) to be run.

12.4.3 eraobj001

eraobj001 is a variant of thedcesseacltest. It is implemented as a wrapper
around the latter test. When invoked, it sets the value of theUSE_ERA
environment variable to ‘‘yes’’ and then invokesdceseacl. dceseaclis then run
with the extended attribute functionality (i.e., ACLs on the registry schema object,
and extended registry attribute instances attached to principals, groups, and
organizations).

Test Script: $TET_ROOT/security/ts/eraobj001/eraobj001

Data Script: $TET_ROOT/security/ts/era.data

eraobj001 is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=0.25 security eraobj001

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

12−28 January 17, 1997

DCE System Tests under TET

-j journal_path Specifies a file pathname (relative to thesecurity
directory) for the test results journal file.

-vRUN_TIME=0.25 Sets the RUN_TIME environment variable, which
specifies the number of hours the test should run.

security Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

eraobj001 Specifies the name of the test (TET scenario) to be run.

12.4.4 dceseact

dceseact adds, deletes, and changes information about principals, groups,
organizations, and accounts to test the security registry.

Note: This test must be run by a user who has write access to the registry
database.

Test Script: $TET_ROOT/security/ts/dceseact/dceseact

Data Script: $TET_ROOT/security/ts/dceseact/dceseact.data

dceseactis invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=.25 security dceseact

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thesecurity
directory) for the test results journal file.

-vRUN_TIME=0.25 Sets the RUN_TIME environment variable, which
specifies the number of hours the test should run.

security Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

dceseact Specifies the name of the test (TET scenario) to be run.

January 17, 1997 12−29

DCE Testing Guide

12.4.5 dcesepol

dcesepol tests security policy options through the use of the registry editor
(rgy_edit) and repeated login attempts.

Note: In order to test account expiration, this test must be running at
midnight (i.e., during the interval 11:59 P.M. and 12:01 A.M.). The
test must be run by a user who has write access to the registry
database.

dcesepolcreates three organizations to test password expiration date, password
life span, and account life span, respectively. Principals and accounts are created
for the organizations in order to perform policy verification via authenticated
login. The local registry password override login function is tested by disabling
the first account’s first machine login.

Test Script: $TET_ROOT/security/ts/dcesepol/dcesepol

Data Script: $TET_ROOT/security/ts/dcesepol/dcesepol.data

The test is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-i intermediate_results_pathsecurity dcesepol

where:

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thesecurity
directory) for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to thesecurity
directory) for the intermediate test results file.

security Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

dcesepol Specifies the name of the test (TET scenario) to be run.

12.4.6 dcesestr

dcesestr exerts stress on the registry server (secd) by attempting toaccess
information from the server through multiple clients. It adds principals, groups,
and organizations to the registry and then invokes multiple clients (resestr) which
in turn perform valid and invalid logins.

Note: This test must be run by a user who has write access to the registry

12−30 January 17, 1997

DCE System Tests under TET

database.

Test Script: $TET_ROOT/security/ts/dcesestr/dcesestr

Data Script: $TET_ROOT/security/ts/dcesestr/dcesestr.data

The test is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-i intermediate_results_pathsecurity dcesestr

where:

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thesecurity
directory) for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to thesecurity
directory) for the intermediate test results file.

security Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

dcesestr Specifies the name of the test (TET scenario) to be run.

The SEC_MACHINES environment variable, whose value is set in the data
script mentioned above, can be used for stress testing by giving it a long list of
machines to act as clients. Each of these clients will attempt logins at the same
time.

For additional stress testing, you can specify a large number of users for
SEC_NUM_USERS in the test data script. This will cause a large number of
accounts to be added to the registry, each of which will be used by the clients.
This can be used to force overflows of any caches that may be used insecdor
sec_clientd.

12.4.7 erarel001

erarel001 is a variant of thedcesestrtest. It is implemented as a wrapper around
the latter test. When invoked, it sets the value of theUSE_ERA environment
variable to ‘‘yes’’ and then then invokesdcesestr. dcesestr is then run with
extended registry attributes functionality, manipulating extended attributes on
principals, groups, and organizations during logins.

Test Script: $TET_ROOT/security/ts/erarel001/erarel001

Data Script: $TET_ROOT/security/ts/era.data

erarel001 is invoked as follows:

January 17, 1997 12−31

DCE Testing Guide

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUN_TIME=0.25 security erarel001

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thesecurity
directory) for the test results journal file.

-vRUN_TIME=0.25 Sets the RUN_TIME environment variable, which
specifies the number of hours the test should run.

security Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

erarel001 Specifies the name of the test (TET scenario) to be run.

12.4.8 dlgcfg001

dlgcfg001is a basic delegation configuration test.

Test Script: $TET_ROOT/security/ts/dlgcfg001/dlgcfg001

The test is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-vRUNNING_TIME=0.25 security dlgcfg001

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thesecurity
directory) for the test results journal file.

-vRUNNING_TIME=0.25
Sets theRUNNING_TIME environment variable, which
specifies the number of hours the test should run.

12−32 January 17, 1997

DCE System Tests under TET

security Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

dlgcfg001 Specifies the name of the test (TET scenario) to be run.

12.4.9 Security Registry System Test dcesergy

The purpose of this test is to stress the security registry servers by performing a
number of DCE logins and logouts while administrators are at the same time
performing registry updates and queries. Five Security registry administrators on
each host in the local cell create new organizations, groups and accounts, setting
registry policy on the new accounts and creating password override local registry
login policy, while verifying these policies and performing logins on each
machine. Ten principals on each host machine concurrently perform logins while
the registry administration is in progress. The test also provides override file
support for local registry account information.

The test was derived from the RPC API functional tests, and it conforms to the
basic RPC client-server model. Execution of the test operations is provided by the
server; the client learns the result of an operation via RPC status or exception.
Success is also indicated by a text message which is displayed for most otherwise
silent operations.

Test Script: $TET_ROOT/security/ts/sec.rgy.7/dcesergy

Data Script: $TET_ROOT/security/ts/sec.rgy.7/dcesergy.data

The test is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-i intermediate_results_pathsecurity dcesergy

where:

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thesecurity
directory) for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to thesecurity
directory) for the intermediate test results file.

security Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

dcesergy Specifies the name of the test (TET scenario) to be run.

You can increase the stress on the security server by running multiple copies of
dcesergyon different machines in the cell, but you must do so manually at each
machine, because the DCE 1.2.2 version ofdcesergydoesnotuse the-m machine

January 17, 1997 12−33

DCE Testing Guide

option.

12.4.9.1 Logic Flow of the Security Registry System Test

The server and client execution sequence can be displayed by building the test
with theST_DEBUGsymbol defined. The sequence is:

Server: Initialize Pthread synchronization data

Export the server binding to the RPC runtime, endpoint mapper
and the CDS data base

Start the credential refresh thread

Start the RPC listen thread

Client: Login as client principal

Import the server binding handle from CDS

Call the test operation (which was specified on the command line;
for example,-u principal will add the principal to the registry
database)

Wait for RPC status/exceptions or server return message

The server creates and uses a local key file/usr/tmp/v5srvtab to be used by the
RPC runtime in decrypting incoming tickets from authenticated clients (for
authenticated RPC, the-a option).

12.4.9.2 Test Setup Script

dcesergy adds test servers to the registry before the test server processes are
started on the respective test machines. This is done via a test setup script.

After setup is completed, the script will execute internal loops for the specified
number of loops or hours. It will execute thelogin-logout test for a specified
number of call threads, followed by the add principal account operation for the
specified number principals beginning with ‘‘basename0’’, finally ending the loop
with the deletion of the previously created principals.

Note that this script does not perform other operations (password override
functionality or get password entry); it is intended to be used only as an extended
duration test driver for continuous operation testing.

The script also invokes the client program, which logs in, binds to the CDS-named
server, and executes the login/logout operation on the server 10 times
concurrently (i.e., with 10 client call threads).

12−34 January 17, 1997

DCE System Tests under TET

12.4.9.3 Running the Security Registry System Test Components by Hand

Thedcesergysystem test can be manually invoked as follows:

1. Add the test servers to the registry by running the setup script:

secrgy_setup -nserver_name-p password

2. Run the server:

secrgy_server -nserver_name-p server_pwd\
[-c cell_name] [-a] [-d] [-i prot_seq]

3. Run the client program:

secrgy_client -nclient_name-p client_pwd-sserver_name\
[-w] [-o -r integer] [-x] [-c cell_name] \
[-u principal] [-k principal] [-a] [-f filename] \
[-t integer] [-l integer] [-d] [-i prot_seq] \
[-P] [-j aggregate_nr]

Where:

-n client_nameThe client_name(client principal name) specifies the principal
identity under which the client process is to execute.

-p client_pwd Specifies the client principal password.

-s server_name(Client program only) Specifies the server principal name (in the
NSI namespace) which the client will import and bind to.

-w Specifies the get password entry operation for the client principal.

-o Specifies that thesec_login_validate_and_certify()call be used
by the client during login operations. This is a privileged
operation, so the server must be running under the root UID in
order to be able to execute this option.

-r integer Specifies the number of concurrent client calls for login
operations.

-x Client flag to specify server clean-up and exit operations.

-c cell_name Specifies the cell within which client/server NSI import/export
and registry operations should occur.

-u principal Specifies that the principal name and account be added to the
registry. The password for all added principals is the same as the
server’s.

-k principal Specifies that the principal name and account be deleted from the
registry.

-a Specifies authenticated RPC.

January 17, 1997 12−35

DCE Testing Guide

-f filename Specifies the file to transfer from the client host machine to the
server host machine as thepassword_overridefile. Note that this
requires that the server be running under root UID in order to
have write permission to thedcelocal/etc directory.

-t integer Specifies how long (in minutes) each single client call should
continue execution, repeatedly looping through the login and
logout operations.

-l integer Specifies how long (in seconds) to wait in each client call
between login and logout operations. Use default or specify zero
for maximum test loading.

-d Specifies debug mode.

-i prot_seq Specifies the RPC protocol sequence to be used; either
‘‘ ncacn_ip_tcp’’ or ‘‘ ncadg_ip_udp’’.

-P Specifies that the client should perform a ping of the server (by
calling rpc_mgmt_is_server_listening()).

-j aggregate_nrSpecifies the number of aggregate accounts to add or delete from
the registry.

Both the client and the server program will detect conflicting parameters and
output an appropriate error message to the invoker.

12.4.9.4 Usage Examples

Following is a sequence of example commands showing how to run thesec.rgy.7
test by hand.

First, the setup script is run:

secrgy_setup -n foo -p bar

—This adds the server name and password to the registry.

Next, the server is started:

secrgy_server -n foo -p bar

—This invokes the server program, which adds the server name to the namespace
and starts a thread to refresh the server’s credentials at the midpoint of their
default registry lifetime.

secrgy_client -n foo -p bar -s foo -r 10

Invokes the client program, which logs in as the principalfoo using the password
bar, binds to the CDS-named serverfoo, and executes the login-logout operation
on the server 10 times concurrently (i.e., with 10 client call threads).

12−36 January 17, 1997

DCE System Tests under TET

12.5 CDS

The following sections describe the DCE CDS system tests run under TET.

12.5.1 dcecdsrep

The CDS replication system test consists of the following main components:

Test Script: $TET_ROOT/cds/ts/dcecdsrep/dcecdsrep

Data Script: $TET_ROOT/cds/ts/dcecdsrep/dcecdsrep.data

Function Script: $TET_ROOT/cds/ts/dcecdsrep/dcecdsrep.functions

When invoked, the test does the following:

1. Creates a replica clearinghouse and skulks the root.

2. Creates a directory in the master clearinghouse and skulks the root.

3. Replicates the directory in the replica clearinghouse and skulks the root.

4. Disables the master clearinghouse to ensure that addition of an object to the
replica clearinghouse is not possible.

5. Enables the master clearinghouse and adds the object to the directory, adds
its attribute, and skulks the directory.

6. Tries to get the attribute of the object; this should succeed.

7. Adds a new attribute (Note: currently does NOT use the same attribute) to
the object, and does NOT skulk the directory.

8. Disables the replica clearinghouse and tries to skulk; this should fail to
propagate the attribute.

9. Enables the replica clearinghouse.

10. Tries to get the attribute; this should fail.

11. Skulks the directory.

12. Tries to get the attributes again; this should succeed.

13. Cleans up.

All test functions (except forcleanUp and related functions) will trapSIGINT ,
SIGKILL , SIGTERM and SIGQUIT. cleanUp ignores all of these except for
SIGQUIT, and the functions called bycleanUp ignores all of them.

The test is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH

January 17, 1997 12−37

DCE Testing Guide

tcc -e -j journal_path-vRUNNING_TIME=0.25 cds dcecdsrep

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thecds directory)
for the test results journal file.

-vRUNNING_TIME=0.25
Sets theRUNNING_TIME environment variable, which
specifies the number of hours the test should run.

cds Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

dcecdsrep Specifies the name of the test (TET scenario) to be run.

12.5.2 CDS Server System Test

cdsservperforms access of local and remote cell (DNS naming) objects, using ten
clients per cell host. The test setscdscp confidence to ‘‘high’’ and gathers
statistics on time and number of server readaccesses.

Test Script: $TET_ROOT/cds/ts/cds.server.4/cdsserv.ksh

Data Script: $TET_ROOT/cds/ts/cds.server.4/cdsserv.cfg

The following environment variables are set incdsserv.cfg:

• CELLS

The name of the cells in the form ‘‘/.../cell1 /.../cell2’’, and so on. Default is
‘‘ .:’’ (i.e., the current cell).

• PRINCS

The names of the principals used to login to each cell specified inCELLS .
The default iscell_admin.

Specifying additional principals starts additional, simultaneous processes to
access CDS, so this is a good way to increase the load on CDS.

• PWS

A list of passwords for the list of principal names. The list of passwords must
match the order of the corresponding principal name list.

• CONFIDENCE

The CDS clerk confidence level (low, medium, or high).

cdsservis invoked as follows:

12−38 January 17, 1997

DCE System Tests under TET

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-i intermediate_results_pathcds cdsserv.ksh

where:

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thecds directory)
for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to thecds directory)
for the intermediate test results file.

cds Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory (located undersystem) of the
test to be run.

cdsserv.ksh Specifies the name of the TET test scenario to be run.

12.5.2.1 Logic Flow of the cdsserv System Test

The test consists of three nested control loops:

• The outermost loop is controlled by the number of cells in the cell list.

• The next inner loop is controlled by the number of principal logins.

• The innermost loop is controlled by the number of passes (loops) or the
number of hours of execution specified on the command line. This loop is
entirely contained in a separate process.

The test executes for all cells in the cell list and for each principal login. This
establishes the authenticated login context for all subsequentcdscp operations.
The CDS clerk, however, is invoked by the CDS advertiser on a UNIX ID basis,
not by DCE authenticated login context. Therefore, in order to increase the
number of CDS clerks which would apply localized stress to thecdsdserver, the
test should be executed using differing multiple UIDs.

The innermost loop performs twocdscp set confidence, and show directory
operations, followed by a singleshow clearinghouseoperation. The output of the
cdscp show clearinghousecommand is parsed to gather individual CDS server
statistics on ‘‘read’’ access count and response timing.

Thecdscpoperations are monitored and success failure results compiled and sent
to the test process standard output and TET journal file.

January 17, 1997 12−39

DCE Testing Guide

12.5.3 CDS ACL Manager System Test

This test exercises the CDS ACL manager via client access requests to local and
foreign cells. If clearinghouse replicas are available, they are tested. Five
administrators on each host in the specified cell(s) sequentially verify valid and
invalid ACL entry type permissions and management on replicas, soft links,
objects, and directories.

Test Script: $TET_ROOT/cds/ts/dcecdsacl6/dcecdsacl6

Data Script: $TET_ROOT/cds/ts/dcecdsacl6/dcecdsacl6.data

dcecdsacl6is invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -vRUN_TIME=0.25 cds dcecdsacl6

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thecds directory)
for the test results journal file.

-vRUN_TIME=0.25 Sets the RUN_TIME environment variable, which
specifies the number of hours the test should run.

cds Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

dcecdsacl6 Specifies the name of the test (TET scenario) to be run.

12.5.4 dcecdsacl6 Initialization

During initialization the necessary user and administrative groups are first added
to the registry, then the administrative and user principals are added to those
groups, and finally the associated principal accounts are added. CDS ACLs for the
cell and clearinghouses are modified to include thest_admin group initial
permissions as follows:

cell: rwcidta permissions

master clearinghouse: rwdtc permissions

The ACL of each clearinghouse server is modified to include thest_admin group
initial permissions (rwcidta).

12−40 January 17, 1997

DCE System Tests under TET

12.5.5 Logic Flow of dcecdsacl6 Test

When invoked,dcecdsacl6executes a series of three nested control loops:

• The outermost loop is controlled by the number of cells.

• The next inner loop is controlled by the number of administrative principals.

• The innermost loop is controlled by the number of clearinghouses.

The principal loop sequence is executed for each administrative principal passed
into the test driver on the command line and for every user principal included in
the clearinghouse operations files.

In each complete pass of the test, the following is done:

• some miscellaneous initialization;

• cdscp show directoryandset confidenceoperations;

• the specified ACL management-related operations.

The ACL management operations are determined by reading the clearinghouse
specific operation files created in advance and parsing output based on principal
name. The operation sequence and expected result (pass or fail) is parsed in the
order it appears in the file.

The state of the tested cell at the end of the clearinghouse operation sequence for
each complete test pass using default test setup parameters will be the same as the
cell’s state at the beginning of the pass, so that the test can continue execution
indefinitely.

12.5.6 Hierarchical Cell Tests

These are tests of the DCE 1.2.1 hierarchical cell functionality.hclcfg001 tests
intercell authentication with a list of cells usingrgy_edit. hclrel001 performs
intercell testing to a specified list of cells.

Note: Before attempting to run these tests, you must insert entries for them
in the appropriate TET scenario file. You can use either of two
scenario files to run the tests, i.e.

$TET_ROOT/system/directory/cds/tet_scen

(the CDS system test scenario file), or

$TET_ROOT/system/tet_scen

(the master system test scenario file). The entries you must insert are
as follows:

ddcceeccddssaaccll66
""SSttaarrtti inngg ddcceeccddssaaccll66 TTeesstt SSuuiit tee""

January 17, 1997 12−41

DCE Testing Guide

//ttss//ddcceeccddssaaccll66//ddcceeccddssaaccll66
""CCoommpplleetteedd ddcceeccddssaaccll66 TTeesstt SSuuiit tee""

-----insert the following entries:-----
hhccllccffgg000011

""SSttaarrtti inngg hhccllccffgg000011 TTeesstt SSuuiit tee""
//ttss//hhccllccffgg000011//hhccllccffgg000011
""CCoommpplleetteedd hhccllccffgg000011 TTeesstt SSuuiit tee""

hhccllrreell000011
""SSttaarrtti inngg hhccllrreell000011 TTeesstt SSuuiit tee""
//ttss//hhccllrreell000011//hhccllrreell000011
""CCoommpplleetteedd hhccllrreell000011 TTeesstt SSuuiit tee""

-----...end of inserted material-----

ccddsssseerrvv..kksshh
""SSttaarrtti inngg ccddsssseerrvv..kksshh TTeesstt SSuuiit tee""
//ttss//ccddss..sseerrvveerr..44//ccddsssseerrvv..kksshh
""CCoommpplleetteedd ccddsssseerrvv..kksshh TTeesstt SSuuiit tee""

Test Scripts: $TET_ROOT/system/directory/cds/ts/hclrel001/hclrel001
$TET_ROOT/system/directory/cds/ts/hclcfg001/hclcfg001

Data Scripts: $TET_ROOT/system/directory/cds/ts/hclrel001/hclrel001.data
$TET_ROOT/system/directory/cds/ts/hclcfg001/hclcfg001.data

The tests are invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.1/test/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/bin:$PATH

tcc -e -j journal_path-vNMIN=15 test_suitehclcfg001

tcc -e -j journal_path-vRUN_TIME=.50 test_suitehclrel001

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thesystem/
directory) for the test results journal file.

-vNMIN=15 Sets theNMIN environment variable, which specifies the
number of minutes thehclcfg001test should run.

-vRUN_TIME=0.50 Sets the RUN_TIME environment variable, which
specifies the number of hours thehclrel001 test should

12−42 January 17, 1997

DCE System Tests under TET

run.

test_suite Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory (located undersystem) of the
test to be run.

The value of this parameter will depend on which TET
scenario file you added the test entries to (see the Note at
the beginning of this section). If you added the entries to
the

$TET_ROOT/system/tet_scen

file, the ‘‘test suite’’ name will be simplysystem. If you
added the entries to the

$TET_ROOT/system/directory/cds/tet_scen

file, the ‘‘test suite’’ name will besystem/directory/cds.

hclcfg001 Specifies the name of the test (TET scenario) to be run.
hclcfg001 establishes intercell authentication with a list
of cells (specified in the environment variableCELLS ,
set inhclcfg001.data) usingrgy_edit.

hclrel001 Specifies the name of the test (TET scenario) to be run.
hclrel001 performs intercell testing to a list of cells
(specified in theCELLS environment variable).

12.6 DCE Audit Service System Tests

The Audit system tests are located at

$TET_ROOT/../test/tet/system/audit

where$TET_ROOT is

dce1.2.2-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet

The tests are invoked as follows (see Chapter 11 for details on using the ‘‘run’’
scripts):

run.aud {-l loops |-t hours } test_name

where:

-l loops loopsspecifies number of loops or passes to run.

-t hours Specifies the time in hours. A decimal point isaccepted;
e.g. ‘‘.5’’ is interpreted as 30 minutes.

January 17, 1997 12−43

DCE Testing Guide

-c Specifies that the log files from successful iterations be
kept.

test_name The name of the test to be run, which must be one of the
following:

audstr001 Audit stress test.

audrel001 Audit reliability test.

This test also uses the following standardrun options:

• -enumber

• -E number

• -c

• -h

For explanations of these options, see ‘‘Command Line Options Common to Some
or All of the ‘‘Run’’ Scripts’’, in Chapter 11.

See also the

dce-root-dir/dce/src/test/systest/audit/README

file.

12.7 DTS

The following sections describe the DCE DTS system tests run under TET.

12.7.1 dcetmsyn

dcetmsyn tests that synchronization occurs when thedtscp synchronize
command is executed.

The state is tested to see if a synchronization is occurring, and if so, the test will
enter a loop to wait for the state to be ‘‘on’’, which will occur when the
synchronization is completed. Thedtscp show last synchronizationcommand is
then executed and the output saved. The current time is saved. Asynchronize
command is then executed, and a loop is entered in order to wait for the
synchronization to complete. Thedtscp show last synchronizationcommand is
again executed and compared to the previous saved output to verify that a
synchronization did occur after thedtscp synchronizecommand was entered.

Before running the test you should do a

dtscp set synch hold down 24:00:00

12−44 January 17, 1997

DCE System Tests under TET

—this will set the default time to synchronize on the machine to every 24 hours. If
you do not do this, failures may occur when the test attempts to do a
synchronization at the same time that the machine is trying to do one of its own.
This test can be run on DTS local and global servers and clerks.

Test Script: $TET_ROOT/time/ts/dcetmsyn/dcetmsyn

Note that there is no data script for this test.

dcetmsynis invoked as follows:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -j journal_path-i intermediate_results_path time dcetmsyn

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AIX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thetime directory)
for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to thetime directory)
for the intermediate test results file.

time Specifies the ‘‘test suite’’ name, equivalent to the
component subdirectory of the test to be run.

dcetmsyn Specifies the name of the test (TET scenario) to be run.

12.8 Internationalization System Tests

The filesI8NSAN001andI8NSAN002, found in the

$TET_ROOT/../test/tet/system/I18N/ts

directory (where

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet

is the value of$TET_ROOT), are the Internationalization system tests; they test
Internationalization support in the CDS and Security components. The tests are
written asdcecpscripts, and are run under TET, but they are not run under arun
script.

Following is a list of the files and directories that make up the test; they are
located in the

January 17, 1997 12−45

DCE Testing Guide

dce-root-dir/dce/src/test/systest/I18N

directory and installed in the

dce-root-dirdce/install//platform/dcetest/dce1.2.2/test/tet/system/I18N

directory:

lib Directory containing files that define common procedures called
by the test main procedure.

tet_code File containing error definitions known by TET.

tet_scen TET scenario file.

tetexec.cfg File containing test configuration variables and assignments.

ts Directory where the main test scripts reside.

12.8.1 PrerequisiteSetup

Before attempting to run the internationalization tests, you must do the following:

1. Select a locale for testing and ready the message catalogs corresponding to
that locale.

2. Make sure that the host machine’s operating system has I18N support for
the desired locale.

3. Install and configure the DCE cell.

4. Install and configure the system tests usingdcetest_config. For information
ondcetest_config, see Chapter 11.

5. Edit the value of the variables defined in the

tetexec.cfg

file. For example:

LLOOCCAALLEE__NNAAMMEE==cc--ffrreenncchh
MMEESSSSAAGGEE__CCAATT==//uu11//ppiiggllaatti inn//%%NN
LLOOCCAALLEE__DDAATTAAFFIILLEE==ffrreenncchh..sshhoorrtt

The above settings mean that the test will use the French locale, and will
look for message catalogs in the

/u1/piglatin

directory.

6. Create the datafile defined by the environment variable
LOCALE_DATAFILE . This is the input file for the tests. It should contain
a list of at least 20 words, arranged one word per line.

12−46 January 17, 1997

DCE System Tests under TET

12.8.2 Running the Tests

To run the tests, do the following:

cd dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/test/tet
setenv TET_ROOT ‘pwd‘
setenv PATH $TET_ROOT/bin:$PATH
tcc -e -j journal_filesystem/I18Ntest_suite_name

wheretest_suite_nameis one of the following:

• I8NSAN001

• I8NSAN002

andjournal_file is the name of the file to which you want the test results written.

After the test has executed, the results will be found in the journal file (which you
specify). If a journal file is not specified, TET will create the file under the

results

directory.

12.9 DCE Serviceability System Tests

The DCE 1.2.2 Serviceabilitysystem tests are found in the

$TET_ROOT/../test/tet/system/svc/ts

directory (where

dce-root-dir/dce/install/platform/opt/dcetest/dce1.2.2/tet

is the value of$TET_ROOT). These are tests of different ways of configuring
serviceability at DCEstartup. The tests are installed bydcetest_config. They are
invoked as follows (see Chapter 11 for details on how to use the ‘‘run’’ scripts:

run.svc {-l loops |-t hours } [other_options] testname

where:

-l loops Specifies the number of loops or passes to run.

-t hours Specifies the time in hours to run. A decimal point is
accepted; e.g. ‘‘.5’’ is interpreted as 30 minutes.

testname Specifies the name of the test, and is one of the following:

January 17, 1997 12−47

DCE Testing Guide

• svccfg001

• svccfg002

• svccfg003

• svccfg004

• svccfg005

• svccfg006
The contents of

$TET_ROOT/../test/tet/system/svc/README

contains additional information about running the tests.

12−48 January 17, 1997

Chapter 13. DCE System Tests not under TET

The following sections describe the set of DCE system tests that are not run under TET.

13.1 Security Administrative Tests

The following sections describe checklists for system testing DCE Security Service
administrative functions.

A checklist is a series of instructions and manually-entered commands, together with a
description of the expected results of executing the commands. Checklists are used to
document test functions for which no automated test exists.

The DCE Administration tests are installed withdcetest_config. See ‘‘Installing the
DCE System Tests’’, in Chapter 11, for instructions on runningdcetest_config.

13.1.1 Backup and Restore Registry Checklist

The purpose ofbackup_restore_rgy_checklistis to verify that the backup and restore of
the master registry function properly.

13.1.1.1 Prerequisites for Performing ‘‘backup_restore_rgy_checklist’’

The checklist must be performed as root, and the machine the checklist is being executed
on must have root access via.rhosts to all machines in the cell.

Note: You should not execute this checklist in any DCE cell which you cannot
afford to corrupt as a result of performing the steps.

January 17, 1997 13−1

DCE Testing Guide

13.1.1.2 ‘‘backup_restore_rgy_checklist’’ Logic Flow

When performed, the steps inbackup_restore_rgy_checklistaccomplish the following
series of operations:

1. Logins are attempted.

2. Registry is set to maintenance mode.

3. Master registry is backed up locally.

4. A test entry is attempted in the registry, which should fail.

5. Registry is set to service mode.

6. Logins are attempted.

7. Test entries are made to the registry.

8. Logins of test entries are attempted.

9. Registry is set to maintenance mode.

10. Test master registry is backed up locally.

11. Master registry is restored from local backup.

12. Registry is set to service mode.

13. Logins of test entries are attempted; these should fail.

13.1.1.3 ‘‘backup_restore_rgy_checklist’’ Default Values

All values are supplied by the test user, based on his or her DCE configuration.

13.1.1.4 Performing ‘‘backup_restore_rgy_checklist’’

Perform thebackup_restore_rgy_checkliststeps as follows:

cd systest-root/admin/sec/tests

Execute the steps in

backup_restore_rgy_checklist

as specified.

13−2 January 17, 1997

DCE System Tests not under TET

13.1.2 Registry Replica Checklist

The purpose ofreplica_checklist is to verify that the replication of a registry functions
properly.

13.1.2.1 Prerequisites for Performing ‘‘replica_checklist’’

The checklist must be performed as root, and the machine the checklist is being executed
on must have root access via.rhosts to all machines in the cell.

Note: You should not execute this checklist in any DCE cell which you cannot
afford to corrupt as a result of performing the test steps.

13.1.2.2 ‘‘replica_checklist’’ Logic Flow

When performed, the steps inreplica_checklist accomplish the following series of
operations:

1. The initial security and CDS servers and at least two DCE clients are installed and
configured.

2. The state of the master registry is changed to maintenance mode, and the master
registry is backed up.

3. Disabling of write access to the master registry is verified.

4. The state of the master registry is changed to service mode.

5. Enabling of read access to the master registry is verified.

6. A slave registry is configured.

7. Listings of master and slave registries are obtained and compared to verify that
propagation occurred.

8. Read access to the registry from a non-registry machine is verified.

9. Five users are added, and their presence in the slave registry is verified.

10. The master registry is disabled using thesec_admin stopcommand.

11. Login is attempted from a non-registry machine.

12. An attempt is made to add a principal on a non-registry machine.

13. The master registry is enabled by startingsecd.

14. Two accounts are deleted.

15. The two deleted accounts are verified to no longer be present in the slave registry.

January 17, 1997 13−3

DCE Testing Guide

16. The master registry is disabled using thesec_admin stopcommand.

17. Read access to the registry from a non-registry machine is verified.

18. The original master registry which was backed up before beginning the test is
restored.

19. The master registry is enabled by startingsecdwith the-restore_masteroption.

13.1.2.3 Default Values for ‘‘replica_checklist’’

All values are supplied by the test user, based on his or her DCE configuration.

13.1.2.4 Performing ‘‘replica_checklist’’

Perform thereplica_checkliststeps as follows:

cd systest-root/admin/sec/tests

Execute the steps in

replica_checklist

as specified.

13.2 CDS Administrative Tests and Checklists

The following sections describe automated tests and checklists for system testing DCE
CDS administrative functions.

A checklist is a series of instructions and manually-entered commands, together with a
description of the expected results of executing the commands. Checklists are used to
document test functions for which no automated test exists.

The DCE Administration tests are installed withdcetest_config. See ‘‘Installing the
DCE System Tests’’, in Chapter 11, for instructions on runningdcetest_config.

13.2.1 Backup and Restore Clearinghouse Automated Test

The purpose of thebackup_restore_ch.kshtest is to show that clearinghouses can be
backed up and restored locally, i.e. that a clearinghouse can be successfully replaced
with a backup version of the clearinghouse.

13−4 January 17, 1997

DCE System Tests not under TET

13.2.1.1 Prerequisites forRunning ‘‘backup_restore_ch.ksh’’

The following things must be true in order to successfully run the
backup_restore_ch.kshsystem test:

• The test must be run as root, and the machine the test is being executed on must have
root access via.rhosts to all machines in the DCE cell.

• The test must be executed on a CDS server machine.

• There can be no CDS clients running DCE during the test except for a Security server
in a split server configuration.

Note: You should not execute this test on any CDS server which you cannot
afford to corrupt as a result of running the test. In some instances the CDS
clearinghouse can be corrupted if the test fails.

13.2.1.2 ‘‘backup_restore_ch.ksh’’ Logic Flow

When invoked,backup_restore_ch.kshperforms the following series of operations:

1. The master clearinghouse is backed up locally.

2. The master clearinghouse is checked to make sure the test directory and object
entries do not already exist.

3. A test directory and object are created in the master clearinghouse; the master
clearinghouse has now become a test clearinghouse.

4. The test clearinghouse is checked to make sure the test directory and object entries
exist.

5. The test clearinghouse is backed up locally.

6. The master clearinghouse is restored.

7. The master clearinghouse is checked to make sure the test directory and object
entries do not exist.

8. The test clearinghouse is restored.

9. The test clearinghouse is checked to make sure the test directory and object entries
do exist.

10. The master clearinghouse is restored.

13.2.1.3 Default Values for ‘‘backup_restore_ch.ksh’’

backup_restore_ch.kshruns with the following default values:

January 17, 1997 13−5

DCE Testing Guide

• DCE Administration login

cell_admin

• DCE Administration password

-dce-

• Test Name

bkrsch

• CDS Test Directory

bkrsch_hostname

• Clearinghouse Name

cellname#hostname

Note that all the defaults can be changed by editing the test scripts and changing the
variable values.

13.2.1.4 Objects Created by ‘‘backup_restore_ch.ksh’’

Directories Created (in the current directory):

• ./tmp

• ./backup

• ./log

Temporary Files Created (in the current directory):

• ./tmp/bkrsch_hostname_pid_STDOUT

• ./tmp/bkrsch_hostname_pid_STDERR

Log Files Created (in the current directory):

• ./log/bkrsch_hostname_pid_ERRORS

• ./log/bkrsch_hostname_pid_SHORT

• ./log/bkrsch_hostname_pid_FULL

13.2.1.5 Running ‘‘backup_restore_ch.ksh’’

backup_restore_ch.kshis invoked as follows:

cd /dcetest/dcelocal/test/systest/admin/cds

tests/backup_restore_ch.ksh

13−6 January 17, 1997

DCE System Tests not under TET

13.2.2 Backup Clearinghouse Automated Test

The purpose of thebackup_ch.kshtest is to show that clearinghouses can be backed up
locally.

13.2.2.1 Prerequisites forRunning ‘‘backup_ch.ksh’’

The following things must be true in order to successfully run thebackup_ch.kshsystem
test:

• The test must be run as root, and the machine the test is being executed on must have
root access via.rhosts to all machines in the DCE cell.

• The test must be executed on a CDS server machine.

• There can be no CDS clients running DCE during the test except for a Security server
in a split server configuration.

• You must source the system test profile file:

/dcetest/dcelocal/test/systest/profile.dcest

Note: You should not execute this test on any CDS server which you cannot
afford to corrupt as a result of running the test. In some instances the CDS
clearinghouse can be corrupted if the test fails.

13.2.2.2 ‘‘backup_ch.ksh’’ Logic Flow

When invoked,backup_ch.kshperforms the following series of operations:

1. DCE is stopped.

2. The master clearinghouse is backed up locally.

3. DCE is restarted.

13.2.2.3 Default Values for ‘‘backup_ch.ksh’’

backup_ch.kshruns with the following default values:

• DCE Administration login

cell_admin

• DCE Administration password

January 17, 1997 13−7

DCE Testing Guide

-dce-

• Test Name

bkch

• Clearinghouse Name

cellname#hostname

Note that all the defaults can be changed by editing the test scripts and changing the
variable values.

13.2.2.4 Objects Created by ‘‘backup_ch.ksh’’

Directories Created (in the current directory):

• ./tmp

• ./backup

• ./log

Temporary Files Created (in the current directory):

• ./tmp/bkch_hostname_pid_STDOUT

• ./tmp/bkch_hostname_pid_STDERR

Log Files Created (in the current directory):

• ./log/bkch_hostname_pid_ERRORS

• ./log/bkch_hostname_pid_SHORT

• ./log/bkch_hostname_pid_FULL

13.2.2.5 Running ‘‘backup_ch.ksh’’

backup__ch.kshis invoked as follows:

cd /dcetest/dcelocal/test/systest/admin/cds

tests/backup_ch.ksh

or:

tests/backup_ch.kshdirectory_to_save_CDS_clearinghouse_in

13−8 January 17, 1997

DCE System Tests not under TET

13.2.3 Restore Clearinghouse Automated Test

The purpose of therestore_ch.kshtest is to show that clearinghouses can be restored
from a local backup.

13.2.3.1 Prerequisites forRunning ‘‘restore_ch.ksh’’

The following things must be true in order to successfully run therestore_ch.kshsystem
test:

• The test must be run as root, and the machine the test is being executed on must have
root access via.rhosts to all machines in the DCE cell.

• The test must be executed on a CDS server machine.

• There can be no CDS clients running DCE during the test except for a Security server
in a split server configuration.

Note: You should not execute this test on any CDS server which you cannot
afford to corrupt as a result of running the test. In some instances the CDS
clearinghouse can be corrupted if the test fails.

13.2.3.2 ‘‘restore_ch.ksh’’ Logic Flow

When invoked,restore_ch.kshperforms the following series of operations:

1. DCE is stopped.

2. The master clearinghouse is backed up locally.

3. The backed up clearinghouse is restored.

4. DCE is started.

13.2.3.3 Default Values for ‘‘restore_ch.ksh’’

restore_ch.kshruns with the following default values:

• DCE Administration login

cell_admin

• DCE Administration password

-dce-

January 17, 1997 13−9

DCE Testing Guide

• Test Name

rsch

• Clearinghouse Name

cellname#hostname

Note that all the defaults can be changed by editing the test scripts and changing the
variable values.

13.2.3.4 Objects Created by ‘‘restore_ch.ksh’’

Directories Created (in the current directory):

• ./tmp

• ./backup

• ./log

Temporary Files Created (in the current directory):

• ./tmp/rsch_hostname_pid_STDOUT

• ./tmp/rsch_hostname_pid_STDERR

Log Files Created (in the current directory):

• ./log/rsch_hostname_pid_ERRORS

• ./log/rsch_hostname_pid_SHORT

• ./log/rsch_hostname_pid_FULL

13.2.3.5 Running ‘‘restore_ch.ksh’’

restore_ch.kshis invoked as follows:

cd /dcetest/dcelocal/test/systest/admin/cds

tests/restore_ch.kshdirectory_to_restore_CDS_clearinghouse_from

Note: The directory_to_restore_CDS_clearinghouse_fromshould contain the
files of a previously successfully backed up clearinghouse.

This script does not verify the presence of the files it is to restore, and it does not recover
the file to its original clearinghouse if there is a failure during the test.

13−10 January 17, 1997

DCE System Tests not under TET

13.2.4 Clearinghouse and Replica Checklist 1

The purpose of therep_ch_1_checklisttest is to do manipulations of CDS replicas and
clearinghouses.

13.2.4.1 Prerequisites for Performing ‘‘rep_ch_1_checklist’’

The following things must be true in order to successfully perform the
rep_ch_1_checklistsystem test checklist steps:

• The checklist must be performed as root, and the machine the checklist is being
executed on must have root access via.rhosts to all machines in the DCE cell.

• The checklist must be executed on the initial CDS server machine.

• An additional CDS server is required on which to perform the checklist steps. There
can be no CDS clients running DCE while the steps are being performed, except for a
Security server in a split server configuration.

• The test must have access to theexpectcommand.

Note: You should not execute this checklist on any CDS server which you cannot
afford to corrupt as a result of running the test steps. In some instances the
CDS clearinghouse can be corrupted if the test fails.

13.2.4.2 ‘‘rep_ch_1_checklist’’ Logic Flow

When performed, the steps inrep_ch_1_checklist result in the following series of
operations:

1. The master clearinghouse is verified

2. DCE is stopped on the remote and master machines

3. Clearinghouses on the remote and master machines are backed up

4. DCE is started on the master and remote machines

5. A test directory is created in the master clearinghouse

6. The test directory is validated

7. A test clearinghouse is created on the remote machine

8. A replica of the test directory is created and verified in the test clearinghouse

9. The test clearinghouse is verified on the remote machine

10. The test clearinghouse is verified on the master machine

January 17, 1997 13−11

DCE Testing Guide

11. The master clearinghouse is disabled, and the switch to the test clearinghouse is
verified on the master machine

12. The master clearinghouse is restarted and verified

13. The test clearinghouse is disabled on the remote machine

14. An attempt to skulk the test clearinghouse is made on the master machine

15. The switch from the test to the master clearinghouse is verified on the remote
machine

16. The test clearinghouse is restarted and verified on the remote machine

17. A new directory and object are added and verified on the master machine

18. The new directory and object are verified on the remote machine

19. Convergence is tested on the master and remote machines

20. The master replica is changed to the one located on the remote machine

21. The test directory replica is deleted on the local machine

22. DCE is stopped on the remote and master machines

23. The test clearinghouses are deleted

24. DCE is restarted on the master and remote machines

13.2.4.3 Default Values for ‘‘rep_ch_1_checklist’’

rep_ch_1_checklistruns with the following default values:

• DCE Administration login

cell_admin

• DCE Administration password

-dce-

• Root (superuser) password on additional server

systest1

• Test Name

reps

• Clearinghouse Name

cellname#hostname

13−12 January 17, 1997

DCE System Tests not under TET

13.2.4.4 Objects Created by ‘‘rep_ch_1_checklist’’

Directories Created (in the current directory):

• ./tmp

• ./backup

• ./log

Temporary Files Created (in the current directory):

• ./tmp/reps_hostname_pid_STDOUT

• ./tmp/reps_hostname_pid_STDERR

Log Files Created (in the current directory):

• ./log/reps_hostname_pid_ERRORS

• ./log/reps_hostname_pid_SHORT

• ./log/reps_hostname_pid_FULL

13.2.4.5 Performing ‘‘rep_ch_1_checklist’’

Perform therep_ch_1_checkliststeps as follows:

cd systest-root/admin/cds/tests

Execute the steps in

rep_ch_1_checklist

as specified.

13.2.5 Clearinghouse and Replica Checklist 2

The purpose of therep_ch_2_checklistis to perform manipulations of CDS replicas and
clearinghouses.

13.2.5.1 Prerequisites for Performing ‘‘rep_ch_2_checklist’’

The following things must be true in order to successfully perform the
rep_ch_2_checklistsystem test checklist steps:

• The checklist must be performed as root, and the machine the checklist is being
executed on must have root access via.rhosts to all machines in the DCE cell.

January 17, 1997 13−13

DCE Testing Guide

• The checklist must be executed on the initial CDS server machine.

• An additional CDS server is required on which to perform the checklist steps. There
can be no CDS clients running DCE while the steps are being performed, except for a
Security server in a split server configuration.

Note: You should not execute this checklist on any CDS server which you cannot
afford to corrupt as a result of performing the test steps. In some instances
the CDS clearinghouse can be corrupted if the test fails.

13.2.5.2 ‘‘rep_ch_2_checklist’’ Logic Flow

When performed, the steps inrep_ch_2_checklist result in the following series of
operations:

1. A test directory and object are created and verified in the master clearinghouse

2. A readonly replica of the test directory is created in a clearinghouse located on a
second machine

3. The test directory is excluded from the master clearinghouse

4. The test directory is verified as accessible in the clearinghouse on the second
machine

5. The test directory on the master machine is made readonly

6. The clearinghouse on the second machine is disabled

7. The clearinghouse on the second machine is relocated to a third machine, enabled,
and verified

13.2.5.3 Performing ‘‘rep_ch_2_checklist’’

Perform therep_ch_2_checkliststeps as follows:

cd systest-root/admin/cds/tests

Execute the steps in

rep_ch_2_checklist

as specified.

13.2.6 Intercell GDA Checklist

The purpose of theintercell_gda_checklist is to validate the response of servers and
clients when the GDA exits unexpectedly.

13−14 January 17, 1997

DCE System Tests not under TET

13.2.6.1 Prerequisites for Performing ‘‘intercell_gda_checklist’’

The following things must be true in order to successfully perform the
intercell_gda_checklistsystem test checklist steps:

• The checklist steps must be performed as root, and the machine the checklist is being
executed on must have root access via.rhosts to all machines in the DCE cell.

• The checklist must be executed on the initial CDS server machine.

• Thegdadmust be configured in both cells.

• The names given to the cells during configuration should be expressed in their full
DNS form (e.g.,mycell.osf.org, notmycell).

• An additional CDS server is required on which to perform the checklist steps. There
can be no CDS clients running DCE while the steps are being performed, except for a
Security server in a split server configuration.

Note: You should not execute this checklist on any CDS server which you cannot
afford to corrupt as a result of performing the test steps. In some instances
the CDS clearinghouse can be corrupted if the test fails.

13.2.6.2 ‘‘intercell_gda_checklist’’Logic Flow

When performed, the steps inintercell_gda_checklistresult in the following series of
operations:

1. Information to enable configuration for intercell testing is generated

2. The DNS database is updated with intercell information

3. The intercell configuration is setup and verified usingrgy_edit

4. CDS intercell access is performed

5. The Global Directory Agent (GDA) (gdad) is stopped

6. CDS intercell access is again performed

7. The Global Directory Agent (GDA) (gdad) is restarted

8. CDS intercell access is performed once again

13.2.6.3 Performing ‘‘intercell_gda_checklist’’

Perform theintercell_gda_checkliststeps as follows:

cd systest-root/admin/cds/tests

January 17, 1997 13−15

DCE Testing Guide

Execute the steps in

intercell_gda_checklist

as specified.

13.2.7 dcecp System Tests

Thedcecpsystem tests are implemented as a set of fourdcecpscripts:

DCPSAN001 Implements the procedure to backup and restore the CDS namespace,
using a local directory.

DCPSAN002 Implements the procedure to backup the CDS name space to a local
directory.

DCPSAN003 Implements the procedure to restore the CDS files that were backed up
by DCPSAN002. It expects to find all the namespace files that were
backed up byDCPSAN002.

DCPSAN004 Implements the procedure to unconfigure a DCE client.

The first three scripts are installed at:

dce-root-dir/install/platform/dcetest/dce1.2.2/test/systest/admin/cds/tests

For information on how to run these tests, see the

dce-root-dir/install/platform/dcetest/dce1.2.2/test/systest/admin/cds/tests/README

file.

The fourth script,DCPSAN004, is installed in:

dce-root-dir/install/platform/dcetest/dce1.2.2/test/systest/admin/config

For information on how to run this test, see the

dce-root-dir/install/platform/dcetest/dce1.2.2/test/systest/admin/config/README

file.

13.2.8 DFS Administrative Checklist

The purpose of theadmin_checklist is to exercise many of the administrative functions
associated with DFS. Note that this checklist doesnot include testing of the backup
system.

13−16 January 17, 1997

DCE System Tests not under TET

13.2.8.1 Prerequisites for Performing ‘‘admin_checklist’’

In order to successfully perform theadmin_checklist system test checklist steps, you
must have a multi-flserver DFS cell configured with both native and LFS aggregates
ready for configuring.

13.2.8.2 ‘‘admin_checklist’’ Logic Flow

When performed, the steps inadmin_checklist result in the following series of
operations:

1. Configure native filesystem into DFS

2. Create LFS aggregates/filesets

3. Create ACLs

4. Disable/Enable:

• aggregates

• filesets

• servers

• setuidcapability

5. Update/Modify:

• aggregates

• filesets

• server keys

• cache

• ACLs

6. Start/Stop servers

7. Cleanup cache

8. Monitoring

9. Dump/Restore

13.2.8.3 Performing ‘‘admin_checklist’’

Perform theadmin_checkliststeps as follows:

cd systest-root/admin/file/tests

January 17, 1997 13−17

DCE Testing Guide

Execute the steps in

admin_checklist

as specified.

13.3 Global Directory System Tests

Testcasedcegdshd tests the shadowing functions of the GDS component of DCE.
Testcasegds_xds_str_001tests the operation of the threadsafe XDS, threadsafe XOM,
and threaded DUA subsystems of the DCE Global Directory Service (GDS).

13.3.1 dcegdshd

dcegdshdtests the shadowing functions of GDS. Specifically, it tests the ability of GDS
to maintain replicas (called ‘‘shadows’’ in GDS) of an object with a single, simple
attribute, in some number of DSAs in a GDS administrative domain, with updates being
done with what GDS considers to be ‘‘high’’ frequency (every 5, 10, 15, or 30 minutes).
dcegdshddoes not test the ability of GDS to shadow either subtrees or objects with more
complex attributes, nor does it test at any other update frequencies than those mentioned
above.

The syntax fordcegdshdis:

dcegdshd -dmaster_dsa-sshadow_dsa [-u update_time]

or

dcegdshd[-h | -H]

where:

-c Specifies that the workstation logfiles be cleaned up (the default
is that this option is specified).

-e Specifies that the testcases listed on the command line be
excluded.

-h Specifies that a detailed usage message be displayed.

-H Specifies that input parameters be validated only.

-l loops Specifies that test be executed forloopsnumber of iterations.

-t hours Specifies that test be executed forhoursnumber of hours.

-d master_dsa Specifies the DSA that will house the master copy of the object.
This DSA must already exist.

13−18 January 17, 1997

DCE System Tests not under TET

-s shadow_dsa Specifies DSA to shadow the object in. This DSA must already
exist (user can specify multiple-soptions).

-u update_time Specifies (in minutes) the amount of time to allow to elapse
before propagating updates to first shadows. Default is 10
minutes.

Note: The granularity in update time is one of: 5, 10, 15, or 30 (minutes).

This test can be used for stress testing by specifying many-soptions.

13.3.1.1 Running the dcegdshd Driver

To run thedcegdshdsystem test, follow these steps:

1. Make sure that the following are available on each system involved in the test:

• systest-root/tools

This is the directory containing the test tools.

• systest-root/profile.dcest

On the machine that will contain the master DSA, the following must be available
in addition to what is mentioned above:

• systest-root/directory/gds/dcegdshd

Directory the contains the test scripts and files.

Note that if you install the system tests usingdcetest_config, all of the items
mentioned above should be automatically installed in their correct locations.

2. Modify the file:

systest-root/directory/gds/dcegdshd/sTest.gds

to reflect the environment for the test. Change the stringsmachine [1-n] in the
assignments of values to the variablesmach_1throughmach_n to be the names of
the machines at your site that are to participate in the system test. Note that the
machine assigned to variablemach_1 is considered the master for the GDS
administrative domain that is created by running theworldSetup.gdsscript. (This
master DSA is the DSA most stressed during the test run.) After these assignments
have been changed, you may wish also to change the names used in setting up the
test directory service, though this is not necessary. These names are stored in the
GDS_DSADNPREFIXvariable (insTest.gds) in the following format:

GDS_DSADNPREFIX="country_name org_name org_unit_namedsa"

Change this assignment, if you wish, to reflect the country name, organization
name, and organizational unit name you prefer.

Make sure that an entry appears in the list assigned to theGDS_HOSTCONFIG
variable for eachmach_1 throughmach_n variable to which you have assigned a
system name. See the example version ofsTest.gds, given below, to see how this is
done.

January 17, 1997 13−19

DCE Testing Guide

3. Copy the

systest-root/directory/gds/dcegdshd/sTest.gds

file to all machines that will be involved in the test.

4. Source the

systest-root/profile.dcest

environment file.

5. On the machine assigned to the variablemach_1 in the sTest.gdsfile, enter the
following command:

ksh systest-root/tools/worldSetup.gds systest-root/directory/gds/dcegdshd/sTest.gds

—When executed, this script will first remove any existing GDS configuration
information on each system test machine for directory ID 2, and then configure
GDS on each machine, setting up a GDS administrative domain, with the master or
initial DSA on the machine specified by the variablemach_1in thesTest.gdsfile.
The script will report on its progress, telling you what files are logging the progress
of setting up each machine involved in the test (this is in case you want to monitor
the progress directly). When all machines indicate setup is complete, the script
will display a ‘‘SETUP OK’’ message and exit. All the test machines are now
ready for testing. Note that all information on remote DSAs and objects is created
in the DIT and cache of directory ID 2.

6. Make sure that the following files exist on the machine specified by the variable
mach_1in thesTest.gdsfile:

• systest-root/directory/gds/dcegdshd/dcegdsh1

• systest-root/directory/gds/dcegdshd/Alter_object.sv

• systest-root/directory/gds/dcegdshd/Create_object.sv

• systest-root/directory/gds/dcegdshd/Create_shadow.sv

• systest-root/directory/gds/dcegdshd/Delete_object.sv

• systest-root/directory/gds/dcegdshd/Remove_object.sv

7. Make sure that the following program exists on the machine specified by the
variablemach_1in thesTest.gdsfile:

systest-root/directory/gds/dcegdshd/view_obj

8. On the machine containing the initial DSA, enter the following command:

systest-root/directory/gds/dcegdshd/dcegdshd options

— whereoptionsare as specified fordcegdshdat the beginning of this section.
The script will report the environment in which it is running, where it is logging,
and so on. It will then start running thedcegdsh1script, reporting on success or
failure at the end of each run, storing the log files in thepassand fail directories,
and updating thepass-fail-logfile.

13−20 January 17, 1997

DCE System Tests not under TET

Note that whendcegdshdis run, the object:

/C=us/O=osf/OU=dce/CN=Mark

must not be present in the Directory Information Tree.

Note also that the format for specifying a DSA to the program is:

/country_name/org_name/org_unit_name/dsa/dsa_name

For the following 4-machine configuration:

mach_1 dceqa1(initial DSA)

mach_2 dceqa2

mach_3 dceqa3

mach_4 dceqa4

dcegdshdwould be invoked as follows:

dcegdshd -t 48 -d /us/osf/dce/dsa/dceqa1 -s /us/osf/dce/dsa/dceqa2 \
-s /us/osf/dce/dsa/dceqa3 -s /us/osf/dce/dsa/dceqa4

13.3.1.2 Example Configuration File

Following are the contents of a configuration file fordcegdshd:

mmaacchh__11==ddcceeqqaa11

mmaacchh__22==ddcceeqqaa22

mmaacchh__33==ddcceeqqaa33

mmaacchh__44==ddcceeqqaa44

HHOOUURRSS==1122..00

TTIIMMEE__SSEERRVVEERRSS==

TTIIMMEE__CCLLEERRKKSS==

NNTTPP__SSEERRVVEERR==

NNTTPP__CCLLIIEENNTTSS==

CCDDSS__SSEERRVVEERRSS==""mmaacchh__11""

AAUUTTHH__SSEERRVVEERR==""mmaacchh__11""

CCEELLLLNNAAMMEE==NNOO__CCEELLLL

GGAATTEEWWAAYYSS==

GGDDSS__RREEQQVVAARRSS==""GGDDSS__DDSSAADDNNPPRREEFFIIXX GGDDSS__DDUUAAPPOORRTTBBAASSEE GGDDSS__DDSSAAPPOORRTTBBAASSEE GGDDSS__NNCCLLIIEENNTTSS GGDDSS__HHOOSSTTCCOONNFFIIGG""

GGDDSS__DDSSAADDNNPPRREEFFIIXX==""uuss oossff ddccee ddssaa""

GGDDSS__IINNIITTIIAALLDDSSAA==""22,,mmaacchh__11""

GGDDSS__DDIIRR__IIDD==22

GGDDSS__DDUUAAPPOORRTTBBAASSEE==""22220000""

GGDDSS__DDSSAAPPOORRTTBBAASSEE==""22110000""

GGDDSS__NNCCLLIIEENNTTSS==1166

January 17, 1997 13−21

DCE Testing Guide

GGDDSS__HHOOSSTTCCOONNFFIIGG==""mmaacchh__11::nnaammee==ssaammee::ddiirr==11,,CClli i--SSrrvv,,mmaacchh__11::ddiirr==22,,CClli i--SSrrvv,,mmaacchh__11""

GGDDSS__HHOOSSTTCCOONNFFIIGG==""$$GGDDSS__HHOOSSTTCCOONNFFIIGG mmaacchh__22::nnaammee==ssaammee::ddiirr==11,,CClli i--SSrrvv,,mmaacchh__22::ddiirr==22,,CClli i--SSrrvv,,mmaacchh__11""

GGDDSS__HHOOSSTTCCOONNFFIIGG==""$$GGDDSS__HHOOSSTTCCOONNFFIIGG mmaacchh__33::nnaammee==ssaammee::ddiirr==11,,CClli i--SSrrvv,,mmaacchh__33::ddiirr==22,,CClli i--SSrrvv,,mmaacchh__11""

GGDDSS__HHOOSSTTCCOONNFFIIGG==""$$GGDDSS__HHOOSSTTCCOONNFFIIGG mmaacchh__44::nnaammee==ssaammee::ddiirr==11,,CClli i--SSrrvv,,mmaacchh__44::ddiirr==22,,CClli i--SSrrvv,,mmaacchh__11""

eexxppoorrtt mmaacchh__11 mmaacchh__22 mmaacchh__33 mmaacchh__44

eexxppoorrtt AALLLL__MMAACCHHIINNEESS

eexxppoorrtt HHOOUURRSS TTIIMMEE__SSEERRVVEERRSS TTIIMMEE__CCLLEERRKKSS NNTTPP__SSEERRVVEERR NNTTPP__CCLLIIEENNTTSS CCDDSS__SSEERRVVEERRSS

eexxppoorrtt AAUUTTHH__SSEERRVVEERR CCEELLLLNNAAMMEE GGAATTEEWWAAYYSS GGDDSS__DDSSAADDNNPPRREEFFIIXX GGDDSS__IINNIITTIIAALLDDSSAA

eexxppoorrtt GGDDSS__DDIIRR__IIDD GGDDSS__DDUUAAPPOORRTT GGDDSS__DDSSAAPPOORRTTBBAASSEE GGDDSS__DDSSAAPPOORRTT11 GGDDSS__DDSSAAPPOORRTT22

eexxppoorrtt GGDDSS__HHOOSSTTCCOONNFFIIGG GGDDSS__DDUUAAPPOORRTTBBAASSEE

13.3.1.3 dcegdshd and DSA Processes

An active GDS on any given machine consists of from three to five processes which
cooperate as a unit. From time to time, one or more of these processes may die (due to
system problems, network difficulties, or whatever), rendering GDS on the machine on
which this happens inoperative. Usually in such situations, deactivating and then
reactivating all the GDS processes will restore GDS to full functionality.dcegdshd, in
order to avoid curtailed or useless test runs caused by instances of service failure, parses
the log from each run of thedcegdsh1script and attempts to reactivate GDS in this way
on any machine that could not be reached during thedcegdsh1run.

dcegdshdreports these restart attempts in the filerestart_info. This file is copied, along
with the JOURNAL and spoolfile files from thedcegdshdrun, to the fail directory
named for the current iteration of the test. Thus the contents of this file can help you to
determine the reasons for a test failure, and also provide a measure of the stability of
GDS on the machines being tested.

13.3.1.4 SuccessCriterion for dcegdshd

The success criterion fordcegdsh1is: no failed updates to any of the DSAs containing
shadows. If you consider this too rigorous, you can modify thedcegdsh1script to use
other criteria. To find the section of code where success or failure is currently decided,
edit dcegdsh1and search for the second occurrence of the stringTEST_FAILED .

13.3.2 gds_xds_str_001

The gds_xds_str_001test provides a means to verify the operation of the threadsafe
XDS, threadsafe XOM, and threaded DUA subsystems of the DCE Global Directory
Service (GDS). Thegds_xds_str_001test uses thext_test test driver (from the XDS

13−22 January 17, 1997

DCE System Tests not under TET

functional tests; see Chapter 6 for a description of the XDS functional tests) to execute a
specially constructed set of testcases that exercise the threadsafe features of XDS. The
gds_xds_str_001test files are located in the directory

systest-root/directory/gds/gds_xds_str_001

in the source tree, and in the installed test tree.

Thegds_xds_str_001test supports three levels of stress:

• HIGH

• MEDIUM

• LOW

The meaning of each of these levels is user-specified. The duration of the test run can be
specified as a number of hours or as a number of passes.

13.3.2.1 Prerequisites forRunning the Test

Thegds_xds_str_001test requires the following to be run successfully:

• rsh (or the equivalent) andrcp access to all of the test machines

• installation of GDS on all test machines

• installation of the system test tools on all test machines

• installation of the GDS system tests on all machines

• installation of the GDS functional tests on all test machines

• installation of the system test profile file (profile.dcest) on all test machines

• modifications to thegds_xds_str_001configuration file to make it correspond to the
local test environment.

13.3.2.2 Test Input

The test derives all of its runtime parameters from a datafile, and is scalable to any
number of machines and client processes. A sample datafile can be found at:

systest-root/directory/gds/gds_xds_str_001/gds_xds_str_001.data

13.3.2.3 Test Output

Thegds_xds_str_001system test produces the following output:

January 17, 1997 13−23

DCE Testing Guide

runlog.pid.date This file contains output describing all of the parameters for the
test run, including the command line used to invoke the test,
output about progress in verifying the input to and environment
for the gds_xds_str_001test run, output about progress in
setting up the GDS configuration and testcase files for the test,
output showing when each test iteration started, and a one line
summary of the result from each iteration. This log also contains
the final statistics for the test run.

pid.iteration.passlog This file contains detailed information about the progress of a
test iteration. It contains output on progress in setting up the
GDS test tree for the test iteration, progress in starting the test
clients, whether clients exited, the results of the client runs, and
progress in cleaning up the GDS test tree.

*.suxtlog This is thext_test standard output from the creation of the test
tree.

*.sud2log This is thext_test D2 logging output from the creation of the
test tree.

*.xtlog These contain thext_teststandard output from the test clients.

*.d2log These contain thext_test D2 logging output from the test
clients.

The*xtlog and*d2log files have names in the following format:

host.iteration.client_num.driver_PID.cli_OS.log_typelog

where:

host is the name of the client machine

iteration is the test iteration for which the client is being started

client_num is the number assigned to this client

driver_PID is the PID of thegds_xds_str_001driver invoking this
client

cli_O/S is the operating system on the client machine as reported
by uname(1)

log_type is one ofsuxt, sud2, xt, or d2

For example, the client creating the test tree on an HP/UX machine for test iteration 3
might send itsxt_teststandard output to the file:

hp1.2.3.4434.HP-UX.suxtlog

The runlog is created in the directory specified by the variableLOG_DIR in the
configuration file. Theper-iteration logs (i.e., all logs except for the runlog) are also
written in this directory during the iteration. After each iteration, the log files from that
iteration are either deleted or moved. The logs are deleted if the variableCLEANUP is
set to 1 in the configuration fileandthe iteration was successful. IfCLEANUP is set to 0
or if the iteration was not successful, the logs are moved to a directory namediteration

13−24 January 17, 1997

DCE System Tests not under TET

under one of the following directories, which are created under the directory specified by
the variableLOG_BASE in the configuration file:

config_only contains logs from configuration only runs

error contains logs from iterations where errors occurred

failed contains logs from iterations that ran normally, but had client
failures

killed contains the log from the cleanup of the client machines and
GDS if a signal was received

passed contains logs from successful iterations

13.3.2.4 Execution Flow of Test

Thegds_xds_str_001test execution flow is as follows:

1. Read the command line

This step gives the script the name of the data file which describes the test run. The
command line can also optionally specify that GDS is to be configured. Note that
normally GDS is configured only once (on the first invocation of the test), and that
this configuration is then used by subsequent invocations of the test.

2. Check variable settings

The variableVARLIST in the gds_xds_str_001configuration file specifies a list
of variables that must be defined in order for the test to run. Each variable in this
list is checked to see if it has a value. The value of each variable that is set is
recorded in the runlog file. If the variableVARLIST , or any of the variables in the
list are undefined, a message indicating this is printed to the runlog and to the
standard output, and the script exits.

3. Set variables and create directories

The variables used to run the test are derived from the values of the variables set in
the configuration file, and the log and temporary directories are created if they do
not yet exist.

4. Print the ‘‘Hi’’ message

A message is printed to the runlog and the standard output that shows the time the
test started, all of the operation parameters, where logs will be written, what they
will be named, and where the programs the test uses are expected to be.

5. Setup the trap handler

The trap() function is called to setup a handler forSIGHUP, SIGINT , and
SIGQUIT.

6. Build the client information file

January 17, 1997 13−25

DCE Testing Guide

A file is built that describes the logical clients to be run for each iteration. First,
access to each client machine is verified. Second, the presence of thext_test
program in the expected directory is verified. Third, a line for each logical client
assigned to each machine is generated in the client information file. This file
contains a line for each client of the following form:

client_numb:: machine_name:: client_OS

7. Set up GDS (if specified)

If the -G command line switch is specified, or the variableCONFIG_GDS is set to
1 in the configuration file, GDS will be configured for the test run on all the client
machines. The first machine in the list of machines assigned to the variable
CLI_MACHINES will be configured as the DSA that will be the server for the
test run, unless the variablemach_1 is assigned a machine name in the
configuration file.

Note: The xt_test program has hardcoded dependencies on the names of
the DSAs involved and the directory id that is used. This means that
the values of the variables GDS_DSADNPREFIX,
GDS_INITIALDSA , and GDS_HOSTCONFIG in the
configuration file mustnotbe changed.

8. Setup testcases

The testcases to be executed are setup on all of the test machines. Testcase setup
involves creating testcase files that cause the proper number of threads for the
specified stress level to be created by thext_test program, and then propagating
these files to the client machines. See the section below on configuration variables
for more information on specifying the testcases to run.

9. Check for a GDS Configuration only run

If GDS configuration was specified, and the number of passes was specified as 0,
then the test is being run to configure GDS, but not to run any testcases. If this is
the case, just report, cleanup, and exit

10. Loop, executing testcases until finished

For each iteration the following steps are executed:

a. Check to see if test loop should exit.

b. Pick the ‘‘next’’ testcase to be run from the list of testcases to be executed.

c. Pick the ‘‘next’’ client to create and cleanup the GDS test tree from the list
of clients.

d. Create the new passlog name.

e. Print the ‘‘BEGINNING iteration’’ message to the runlog and passlog.

f. Run the selected client to create the GDS test tree, and report on success or
failure in the passlog.

g. Start all the clients, reporting the start of each in the passlog.

h. Verify client startups.

13−26 January 17, 1997

DCE System Tests not under TET

i. Verify client exits.

j. Verify client exit status.

k. Cleanup the GDS test tree.

l. Cleanup the log files from the iteration.

m. Report the success or failure of the iteration.

n. Update the passed, failed, and error counters.

11. Remove the testcase files for this run and report statistics from the run

13.3.2.5 Test Options

The syntax of thegds_xds_str_001system test command line is:

gds_xds_str_001 -h| -f config [-G]

where:

-h print a usage message. This works for the regular or enhanced
command-line modes.

-f config specifies the path to thegds_xds_str_001configuration file.

-G specifies that GDS is to be configured on all the test machines.

The -h option cannot be specified with any other option. If-h is not specified, the-f
configoption is required.

There is also an enhanced command line interface togds_xds_str_001. This interface
allows some of the parameters for the test to be specified on the command line; however,
specifying parameters in this way is not recommended as usual practice. The enhanced
command-line interface is enabled by creating a link (namedgds_xds_str_001_cl) to the
gds_xds_str_001script, and then invoking the test using this link. For further
information on the enhanced interface, create the link and run the test with the-h (usage
message) option.

13.3.2.6 Data and Configuration Variables

This section describes in a general way the configuration variables that control the
execution of thegds_xds_str_001system test. For more details refer to the configuration
file at:

systest-root/directory/gds/gds_xds_str_001/gds_xds_str_001.data

• Required variables

As stated above, theVARLIST variable describes all of the variables that must be
defined in order for the test to run. This list should be updated if required variables

January 17, 1997 13−27

DCE Testing Guide

are added to the configuration file, andmust be updated if required variables are
deleted from the file.

• Test machines and GDS configuration

The test machines should be specified by shell variablesmach_1 to mach_n (where
n is the number of machines participating in the test). The shell variable
CLI_MACHINES also should be coded with the names of all the test machines;
these can be hard-coded in the variable, or specified via the values of the single
machine variables ($mach_1, and so on). The variables containing the string
‘‘ GDS_’’ in their names define the GDS configuration. In general, the only changes
you will probably want to make to the GDS configuration will be to specify the
names of the test machines; specify a different machine as the DSA server for the test
by assigning the name of that mchine to the variablemach_1; or specify a different
number of client processes; by changing the value of the
stress_level_GDS_NCLIENTS variables near the end of the file.

• Testcase available and testcases to execute

Which testcases are to be executed is specified by the variableTESTCASES in the
configuration file. The testcases that are available to be executed is specified by the
variableTESTCASE_LIST. The value of theTESTCASESvariable is a list of one
or more of the testcase names specified by the variableTESTCASE_LIST in the
configuration file, or the string ‘‘variant’’. If ‘‘variant’’ is specified, the test driver
cycles through all of the testcases specified by theTESTCASE_LIST variable,
executing a different testcase in each iteration. If ‘‘variant’’ is not specified, the
driver will cycle through the testcases specified by theTESTCASESvariable.

• Directories

The following variables specify the paths to the directories needed by the test:

TESTCASEDIR directory where the testcase files should be located, and
where the per-run testcase files will be created

BINDIR directory where thext_testbinary should be located

TMP_DIR directory where temporary files will be created

LOG_ROOT directory under which thegds_xds_str_001 test results
directory will be created

LOG_BASE directory under which all of thegds_xds_str_001results
directories (pass, failed, error , etc.) will be created

LOG_DIR directory in which the runlog will be created and in which
the per-iteration files will be written during the course of the
iteration

STTOOLS_DIR directory where the system test tools are located

D2_LOGDIR directory (on both the local and the remote machines) in
which the D2 log output of thext_test program will be
written

• Wait Values

The following variables specify the amount of time to allow for certain operations to
complete, or to wait at some point in the test:

13−28 January 17, 1997

DCE System Tests not under TET

GDSSETUP_WAIT The amount of time, in minutes, to allow for the
configuration of GDS to complete. This value can be
adjusted to correspond to the number of machines you are
configuring. For example, a combination of two HP/9000-
700’s, one RISC System/6000 and one DECpc 450ST will
take about 15 - 20 minutes to configure.

READY_WAIT Amount of time, in minutes, to wait for the client building or
removing the GDS test tree to complete, and to wait for the
clients to report ready.

EXIT_WAIT Amount of time, in minutes, to wait for the clients to report
that they are exiting.

ITERATION_SLEEP Amount of time, in seconds, to wait between test iterations.

The*_WAIT variables specify the upper bounds on how long some phase of the test
should take. If the phase is not complete by the end of the specified wait period,
something is most likely hung. TheITERATION_SLEEP value can be used to exert
more stress on the server, since if it is set high enough (i.e., at approximately 3
minutes or higher), the DSAs from each iteration will exit due to lack of activity.
This will in turn force the S-stub on the server to spawn a new group of DSAs for
each iteration, instead of allowing it to continue to reuse the DSAs from the previous
iteration(s). Note however that running the test in this fashion has been noted to
decrease the load on the DSAs.

• Duration and Log Handling

The HOURS variable sets the time of the test run in hours, and theCLEANUP
variable specifies whether to save or remove logs from successful iterations. If the
test is to run for some number of passes, the number of passes is specified via the
PASSESvariable (which supersedesHOURS if both are specified).

• Stress Level Semantics

TheLOW_* , MEDIUM_* , andHIGH_* variables specify the meaning of the stress
levels LOW , MEDIUM , andHIGH respectively. For each stress level, the number
of client processes and number of threads per client process can be specified. The
*stress_level_GDS_NCLIENTS variables allow specification of the number of
client processes specified when GDS in configured. This numbermust be greater
than the number of threads per client, multiplied by the number of clients per system.

13.3.2.7 Example GDS Configuration

An example GDS configuration for the test is shown in the following table.

January 17, 1997 13−29

DCE Testing Guide

TABLE 13-1. Example Cell Configuration for gds_xds_str_001

__
Machine DSA-name Dir-id GDS type default DSA initial DSA__LL LL LL LL LL LL LL__
mach_1 dsa-m1 1 Client/Server dsa-m1 dsa-m1

2 Client dsa-m2 none__
mach_2 dsa-m2 1 Client/Server dsa-m1 dsa-m1

2 Client/Server dsa-m2 none__
mach_3 hostname 1 Client/Server dsa-m1 dsa-m1

2 Client dsa-m2 none__
. . .__
mach_n hostname 1 Client/Server dsa-m1 dsa-m1

2 Client dsa-m2 none__LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

Note: ‘‘hostname’’ in the above table means that the DSA name is the name of the
machine.

13.3.2.8 Running gds_xds_str_001

After all test prerequisites have been satisfied, the test can be executed with the
command:

gds_xds_str_001 -fconfiguration_file-G

—which means to configure GDS before starting the test itself.

When runninggds_xds_str_001, you should keep the following information in mind:

• If tracing is turned on (viagdssysadm) for the DSA server, DSA log files will
accumulate in the

dcelocal/var/directory/gds/adm/dsa/dir1

directory over the course of the test run. For long runs, if tracing is turned on, the logs
can consume large amounts of disk space. For example, over a 48 hour run, the logs
have been observed to consume approximately 70 megabytes of disk space. If you
are planning a long run with tracing turned on, make sure there is plenty of space
available for the log files. The directory can be a symbolic link to a partition with
more disk space.

• If large numbers of clients and threads are to be used, you may experience problems
with limits on process table size and processes per id on the server side. This may
happen because the S-Stub must spawn a new DSA process for each client request it
receives when all DSAs are busy.

13−30 January 17, 1997

DCE System Tests not under TET

13.3.2.9 Analyzing Test Results

The results of runninggds_xds_str_001can be determined during the test run by
examining the runlog file for messages indicating that iterations failed or that errors were
encountered. Another method is to look for a directory namederror or failed in the
LOG_BASE directory. The presence of either of these directories indicates that some
iterations either failed or encountered errors. When the test run is complete, the number
of iterations that passed, failed, or encountered errors is printed in the runlog. To
determine which iterations failed or encountered errors, examine theerror and failed
directories in theLOG_BASE directory.

13.3.2.10 Sample Configuration File

A samplegds_xds_str_001configuration file is located in the source tree at:

systest-root/directory/gds/gds_xds_str_001/gds_xds_str_001.data

13.4 DFS System Tests

The following sections describe the automated tests and checklists used for system
testing the DCE Distributed File Service, and how to set them up and run them.

A checklist is a series of instructions and manually-entered commands, together with a
description of the expected results of executing the commands. Checklists are used to
document test functions for which no automated test exists.

13.4.1 DFS System Test Cell Requirements

The following list shows the minimum cell requirements for running each of the DFS
system tests. The configurations and optional data file settings used are recorded in the

dce-root-dir/project/test.plans

subdirectory for each DCE release. Data files and log files for automated tests can be
found in the

dce-root-dir/project/test.results

directory.

dfs.maxfile and

dfs.maxdir Require a single DFS (server and client) machine. These
tests should be run both fordfsexported native

January 17, 1997 13−31

DCE Testing Guide

filesystems and for LFS filesystems.

dfs.glue Requires 2 or more DFS machines (1 combined server
and client; the others may be simply clients). The test
must be run on the server machine, and the server
machine must havedfsexported a native filesystem.

dfs.lock Requires 2 or more DFS machines (1 combined server
and client; the others may be simply clients). The test
can be run on any DFS machine and can use either
native or LFS filesystems.

dfs.read_write_all.main Requires 2 or more DFS machines (1 combined server
and client; the others may be simply clients). The test
can be run on any DFS machine, but there must be at
least one LFS aggregatedfsexported.

dfs.block_frag Requires a single DFS (combined server and client)
machine with an expendable LFS aggregate. This
aggregate will benewaggr’d a number of times during
the test, so it must not contain needed filesets.

dfs.repfldb_checklist Requires 3 DFS (fldb server) machines and 1 core server
machine. The test involves rebooting the machine
serving as thefldb syncsite, so this machinemust notbe
providing the DCE core services (unless sufficient core
replication is in place).

dfs.repfs_checklist Requires 2 DFS (server and client) machines and 3 LFS
aggregates.

dfs.sec.cross_bind_checklist Requires 2 DFS (server and client) machines in separate
cells.

dfs.wan_checklist Requires 2 DFS (server and client) machines in separate
cells across a WAN connection,and an additional DFS
(client) machine across a WAN connection to a server in
the same cell.

13.4.2 Installing the DFSSystem Tests and Checklists

The DFS system tests are installed withdcetest_config. See ‘‘Installing the DCE System
Tests’’, in Chapter 11, for instructions on runningdcetest_config.

13.4.3 dfs.glue

Thedfs.gluetest tests the DFS glue code by accessing directories and files via their UFS
and DFS paths.

13−32 January 17, 1997

DCE System Tests not under TET

13.4.3.1 Syntax

Thedfs.gluesystem test is invoked as follows:

dfs.glue[-f] datafile[-t] hours_of_operation

Where:

datafile

Specifies the name of a datafile. A sample can be found at:

systest-root/file/glue.data

You should create one datafile perdfsexported UFS partition.

hours_of_operation

An integer value that specifies the number of hours of continuous operation
desired.

13.4.3.2 Prerequisites forRunning the ‘‘dfs.glue’’ System Test

In order for you to successfully run thedfs.gluetest, the following things must be true:

• The local machine is both the file server for the UFS/DFS path variables in the data
file anda DFS client.

• You are currently logged in as UNIX user and DCE principal with ‘‘root’’ read and
write access to the UFS/DFS paths andrsh (remote shell) permission to all machines
specified by theMACHINES datafile variable.

• There is sufficient space to run the test (see below).

• Any data written via the DFS path is visible to allMACHINES after
MAXTIME_DFSUPDATE seconds.

• Unauthenticated users have read and execute permission to the DFS path.

13.4.3.3 Space Required for Running the ‘‘dfs.glue’’ Test

The significant space requirements for runningdfs.glueare as follows.

• Each test file created byfilewnr (the program called bydfs.glue to write and read
files) will be:

8193 bytes *NUMFILEWRITES

large (whereNUMFILEWRITES is a variable whose value is specified in the
dfs.glue datafiles). Note that the value 8193 can be overridden by specifying a

January 17, 1997 13−33

DCE Testing Guide

different value via the-b parameter tofilewnr .

• Each test directory created bydirwrite.sh (the script called bydfs.glue to write test
directory entries) will contain a copy of the host kernel. Note that you can override
this by specifying an alternate ‘‘large’’ file todirwrite.sh via the -l parameter, or by
specifying a different value for theLARGE_FILE datafile variable.

• The maximum number of test files and test directories that will exist at any given
time during the test can be determined by multiplying the value of the datafile
variableMACHINES by the value of the datafile variableNUMPROCPERMACH .

13.4.3.4 Components of ‘‘dfs.glue’’

Thedfs.gluetest alternates between reading and writing files and directories locally and
remotely via their UFS and DFS paths; the test components for writing and reading (i.e.,
verifying what was written) are:

• systest-root/file/filewnr

• systest-root/file/dirwrite.sh

• systest-root/file/dirread

• dce-root-dir/dce/src/test/file/cache_mgr/spoke

• dce-root-dir/dce/src/test/file/cache_mgr/hub

13.4.4 dfs.lock

The dfs.lock test script uses thefilewnr program to test if whole file shared read locks
and exclusive write locks can be obtained and honored correctly in DFS usingfcntl()
calls. That is, ifNCLIENTS processes per machine all concurrently request an exclusive
write lock to the same DFS file, does only one succeed? And ifNCLIENTS processes
per machine all concurrently request a shared read lock to the same DFS file, do all
succeed?

Concurrency is achieved by starting all the processes sequentially but having them all
wait for the existence of a file in DFS before attempting to access the test file.

13.4.4.1 Syntax

dfs.lock is invoked as follows:

dfs.lock [-f] datafile[-t] hours_of_operation

13−34 January 17, 1997

DCE System Tests not under TET

Where:

datafile

Specifies the name of a datafile. This script can be executed fromanyDFS client
machine. A sample datafile can be found at:

systest-root/file/lock.data

hours_of_operation

Specifies number of hours test is to run.

13.4.4.2 Prerequisites forRunning the ‘‘dfs.lock’’ System Test

In order for you to successfully run thedfs.lock test, the following things must be true:

• You are currently logged in as a UNIX user and DCE principal with read and write
access to the DFS path andrsh (remote shell) permission to all machines specified by
theCLI_MACHINES datafile variable.

• The DCE principal specified by thePRINC datafile variable (see below) is valid and
has read and write access to the DFS path.

• There is sufficient space to run the test (see below).

13.4.4.3 Space Required for Running the ‘‘dfs.lock’’ Test

The only significant space requirement for runningdfs.lock is that the host machine must
contain:

8193 *NUMFILEWRITES bytes

(where NUMFILEWRITES is a variable whose value is specified in thedfs.lock
datafile).

13.4.4.4 Components of ‘‘dfs.lock’’

Thedfs.lock test uses:

systest-root/file/filewnr

to perform writes, reads and lock operations.

January 17, 1997 13−35

DCE Testing Guide

13.4.5 dfs.maxdir

This test creates, reads and deletes a large directory with various entries (symbolic links,
hard links, fifo file, etc). The bulk of the entries are simple ASCII files. Directory size and
location are specified in a data file. The test verifies that the various entries can be
created and read successfully.

The test uses thedirwrite.sh anddirread test components. An example data file can be
found at:

systest-root/file/maxdir.data

The test is invoked as follows:

./dfs.maxdir [-f] config_file> log_file2>&1 &

If the test runs successfully to completion, the last line of themaxdir.log file will contain
the string ‘‘PASSED’’.

13.4.6 dfs.maxfile

This test creates, reads and deletes a large file. The test invokes thefilewnr program with
switches based on the contents of a data file. Note that files created byfilewnr consist of
‘‘blocks’’ of bytes that are empty except for the specified pattern, and that these blocks
are read randomly. An example data file can be found at:

systest-root/file/maxfile.data

The test can be invoked as follows:

./dfs.maxfile [-f] config_file> log_file2>&1 &

If the test runs successfully to completion, the last line of thelog_file will contain the
string ‘‘PASSED’’.

13.4.7 dfs.block_frag

This test exercises all the block-fragment combinations by performing the following
operations on an LFS aggregate:

• newaggr

• dfsexport

• fts create

• dfsexport -detach

13−36 January 17, 1997

DCE System Tests not under TET

• salvage

Block-fragment combinations used are based on ranges specified in a data file. The data
file also specifies log sizes and fileset sizes. Future versions of the test may include fileset
and replication operations. An example data file can be found at:

systest-root/file/block_frag.data

The test can be invoked as follows:

./dfs.block_frag [-f] config_file

If the test runs successfully to completion, the last line of the test output will contain the
string ‘‘PASSED’’.

13.4.8 dfs.read_write_all.main

This test emulates concurrent but independent end user activity in LFS filesets in DFS.
The test establishes DCE principals and ‘‘home’’ filesets for each principal, containing a
work script. The test then logs in as each DCE principal on client machines and runs the
work script for the specified number of hours. The data file specifies aggregates,
aggregate sizes, server machines, client machines, principal names, uids and passwords.
An example data file can be found at:

systest-root/file/dfs.read.write.data

An example work script can be found at:

systest-root/file/do.ksh

The test can be invoked as follows:

./dfs.read_write_all.main [-f] config_file[-t] hours_of_operation> 2>&1 &

If the test runs successfully to completion, the last line of the test output will contain the
string ‘‘PASSED’’.

13.4.9 filewnr.c

Thefilewnr.c program is the basic file write-and-read module for the DFS system tests.

filewnr simply opens the specified file, and then writes and/or reads a specified pattern,
at a specified offset in the file, in ‘‘blocks’’ of bytes for all blocks in the file. When
allowed to run with all defaults,filewnr will create an 8 kilobyte+ file containing
‘‘holes’’. i.e., unwritten bytes.

The program operates on a single file. It is called by thedfs.glueanddfs.lock scripts to
verify the ability to write, read and lock a file. Its unique characteristics are that it does
not write every byte of the file and that it performs random rather than sequential reads.

January 17, 1997 13−37

DCE Testing Guide

13.4.9.1 Syntax

filewnr accepts the following parameters and options:

TABLE 13-2. filewnr.c Parameters and Values

__
Parameter Values Description__LL LL LL LL__
-b size integer Size (in bytes) of blocks to read and/or write__
-d none Delete file when finished__
-f filename valid pathname Name of file to read and/or write__
-l locktype EW Exclusive write lock

SR Shared read lock__
-h none Print help message__
-c integer ID number assigned to client by driver__
-C character string Continuation message string__
-T character string Termination message for wait file__
-n bnum integer Number of blocks to read and/or write__
-o offset integer Byte offset at which to read and/or write__
-p pattern character string Data to read and/or write__
-r none Read only flag__
-s range integer Number of seconds to sleep while waiting__
-v none Verbose output flag

If specified, following data is logged:
Parameters used
Test successes and failures

Output is to stdout; test failure messages to stderr__
-w filename valid pathname Do not start until specified file exists__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13.4.9.2 Logic Flow of ‘‘filewnr.c’’

When invoked,filewnr performs the following series of actions:

13−38 January 17, 1997

DCE System Tests not under TET

if (-w flag was specified)
loop until file_to_wait_forexists

if (-r flag wasnotspecified)
open file (withlocktypespecified with-l flag if specified)

exit with failure if unable to obtain lock (i.e., don’t block)

if (continuation message was specified)
inspect the wait file for specified string:

if (termination message is found)
exit

for each block:
write (patternspecified with-p flag) at (offset

specified by-o flag)

close file

open file (withlocktypespecified with-l flag if specified)

exit with failure if unable to obtain lock (i.e., don’t block)

if (continuation message was specified)
inspect the wait file for specified string:

if (termination message is found)
exit

for each block (randomly chosen):

readpatternlength number of bytes atoffset

compare what was read topattern

close file

13.4.9.3 ‘‘filewnr’’ Program Output

The output offilewnr is one of the following exit values:

Value Meaning

0 SUCCESS

1 FAILURE

2 USAGE

January 17, 1997 13−39

DCE Testing Guide

3 BAD_OPTIONS

4 BAD_WAIT

5 BAD_LOCK

If the -v (verbose) flag is specified,filewnr ’s invocation parameters and operation
success/failure messages will be logged to standard output. If the program is compiled
with the PERROR_is_perror flag, error output will be sent tostderr ; otherwise it will
be sent tostdout (the default, and necessary for the operation ofdfs.lock).

13.4.10 dirread.c

Thedirread.c program is the read module for DFS directory integrity system testing.

dirread is passed an input file of directory entries (one entry per line) and the name of a
test directory in which to find the entries. The program then verifies, using thereaddir()
call, that all the entries do in fact exist in the test directory, and that no other entries exist
in the test directory.

The program can be used in conjunction with the scriptdirwrite.sh to verify directory
contents. It will accept as input the output file ofdirwrite.sh and verify that the
supposedly just-written entries do exist.

13.4.10.1 Syntax

dirread accepts the following parameters and options:

13−40 January 17, 1997

DCE System Tests not under TET

TABLE 13-3. dirread.c Parameters and Values

Parameter Values Description___LL LL LL LL___
-i inputfile Valid file pathname File from which to read___
-p parentdir Valid directory pathname Directory in which to

find testdir___
-n nr_entries integer Number of directory entries

to read___
-t testdir Valid directory pathname Directory which contains

file entries to read___
-d none If specified, entries and testdir

are deleted when program
completes execution___

-v none Verbose output flag___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13.4.10.2 Logic Flow of ‘‘dirread.c’’

When invoked,dirread performs the following series of operations:

 read (inputfilespecified with-i flag) into an array

 readdir the test directory, marking array entries as found:

 if there is a directory entry that is not in the array

 report an error

 if there is an array entry that is not in the directory

 report an error

 if an entry is found in the directory more than once

 report an error

 if deleting test directory:

 readdir the test directory, marking array entries as deleted

 stat entry

 rmdir directory entry

 unlink non-directory entry

13.4.10.3 ‘‘dirread’’ Program Output

January 17, 1997 13−41

DCE Testing Guide

The normal output ofdirread is one of the following exit values:

Value Meaning

0 SUCCESS

1 FAILURE

2 USAGE

3 chdir to parentdir failed

4 chdir to testdir failed

5 inputfileerror

6 file close error

7 malloc error

8 directory open error

9 closetestdirerror

10 rmdir testdirerror

11 staterror

If the -v (verbose) flag is specified,dirread ’s invocation parameters and operation
success/failure messages will be logged to standard output (failure messages are logged
to standard error).

13.4.11 dirwrite.sh

Thedirwrite.sh script is the write module for the DFS directory integrity system test.

dirwrite.sh simply creates a test directory at a specified or default path and fills it with
the specified (or default) number of entries. The minimum number of entries is six (6).
These are:

• a ‘‘large’’ file (by default, the kernel)

• an empty file

• a directory

• a hard link

• a symbolic link

• a special file (mkfifo)

Any subsequent files created (up toNUMDIRENTRIES) are all small ASCII files.

In addition to filling the test directory,dirwrite.sh also performs the following
operations on the directory:

• cp

13−42 January 17, 1997

DCE System Tests not under TET

• mv

• chown

• chgrp

• chmod

The return status of each operation is checked anddirwrite.sh exits immediately after
any detected failure.

13.4.11.1 Syntax

dirwrite.sh accepts the following parameters and options:

TABLE 13-4. dirwrite.sh Parameters and Values

Parameter Values Description___LL LL LL LL___
-r none Remove test directory when finished___
-h none Help flag: Display a usage message___
-p valid pathname Specifies name of parent directory in which

to create test directory
Default is current directory.___

-t valid pathname Specifies name of test directory to create
Default name is: <hostname_PID>_dir___

-n integer Specifies number of entries to create
in test directory
Default is 5000___

-l valid pathname Specifies pathname of a ‘‘large file’’
to place in test directory___

-o valid pathname Specifies name of file in which to
output a listing of contents of test
directory
Default is <test_directory>/CONTENTS___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13.4.11.2 Logic Flow of ‘‘dirwrite.sh’’

When invoked,dirwrite.sh performs the following series of operations:

1. create a directory

2. chmod the directory

3. chgrp the directory

January 17, 1997 13−43

DCE Testing Guide

4. chown the directory

5. create links to the directory

6. copy the directory

7. move the directory

8. fill the directory (includes usingcp, ln, touch, mkdir , mkfifo , rm , rmdir)

9. (if specified) remove the directory (rm -rf)

13.4.11.3 ‘‘dirwrite.sh’’ Usage Example

Following is an example of callingdirwrite.sh directly:

dirwrite.sh -p /:/ctd -t test_dir -n 500 -l /vmunix -o /:/ctd/test_dir_ls

This command line specifies the following:

• The test directory’s parent directory has the following pathname:

/:/ctd

Note that the parent directory must existbeforeyou rundirwrite.sh , and you must
have write permission for this directory.

• Create the test directory with the following pathname:

/:/ctd/test_dir

• Create 500 entries in the test directory.

• Use/vmunix as the ‘‘large’’ file.

• Output a listing of the test directory’s contents to:

/:/ctd/test_dir_ls

13.4.11.4 ‘‘dirwrite.sh’’ Output

If the test directory was not specified to be removed, the specified (by-o) output file will
contain a listing of the test directory’s contents.

If a command fails,dirwrite.sh exits with a message to standard output announcing the
failure.

13−44 January 17, 1997

DCE System Tests not under TET

13.4.12 dfs.fmul

The dfs.fmul test currently tests partial file locking, blocking while locked, and
unlocking by using RPC from the client to the servers.

The test consists of three modules:

• dfs.fmul (Top level script not yet implemented)

Tests fileset move under load.

• fmul.client

Client module fordfs.fmul.

• fmul.server

Server module fordfs.fmul.

13.4.12.1 Syntax

Thedfs.fmul system test is invoked as follows:

For each server:

fmul.server [-d]

For the client:

fmul.client -f datafile-snumber_of_servers-n lockfile-p lockfile_path[-d]

Where:

-d Specifies additional output useful for debugging.

-f datafileSpecifies the name of a datafile.

s number_of_serversSpecifies the total number of servers required.

-n lockfileSpecifies the name of the file created and locked by test.

-p lockfile_pathSpecifies the path to the lockfile.

13.4.12.2 Prerequisites forRunning the dfs.fmul

In order for you to successfully run thedfs.fmul test, the following things must be true:

• All machines used for the client and servers must be able to read and write the
lockfile specified in the arguments tofmul.client .

January 17, 1997 13−45

DCE Testing Guide

• You are currently logged in as UNIX user root and DCE principalcell_admin.

• The appropriate number of servers must be started before the client. More than one
server may run on an individual machine.

13.4.13 DFS System Testing Checklists

The present section describes checklists used for system testing DCE administrative and
distributed file system functions.

A checklist is a series of instructions and the expected results of following those
instructions. Checklists are used to document how to test functions for which no
automated test currently exists.

13.4.13.1 dfs.repfs_checklist

Steps to follow for setting up and testing replicated filesets. At the minimum, 2 machines
are required, both DFS servers, one as both client and server.

The testing includes:

• multiple read/write access to a LFS fileset that is replicated

• verifying both release and scheduled replication

• disabling and re-enabling the primary (r/w) fileset

• disabling and re-enabling a secondary (read-only) fileset

13.4.13.2 dfs.repfldb_checklist

Steps to follow for setting up and testing replicated fileset location database servers. At
the minimum, 3 machines are required, each configured as a fileset location database
server.

The testing includes:

• multiple read/write access to both native and LFS filesets

• fileset manipulation (cloning, renaming, moving)

• disabling and re-enabling one or more fileset location database servers.

13−46 January 17, 1997

DCE System Tests not under TET

13.4.13.3 dfs.wan_checklist

Steps to follow for setting up and testing wide-area network access to DFS. A minimum
of 2 machines, one at each end of a wide-area network, is required for the test.

The testing includes:

• intra-cellaccess

• cross-cellaccess

13.4.13.4 dfs.sec.cross_bind_checklist

Steps to follow for setting up and testing cross-cell DFS access with ACLs. A minimum
of 2 machines, each configured in a different cell, is required for the test.

The testing includes:

• cross-cell write access (denied/granted)

• cross-cell read access (denied/granted)

13.5 Security Delegation Tests

There are two security delegation system tests that are not run under TET. They are
described in the following two subsections.

13.5.1 dlgstr001

dlgstr001 is a multi-delegate test of delegation. See the

dce-root-dir/dce/src/test/systest/security/dlgstr001/README

file for details on how to run it.

13.5.2 dlgcf002

dlgcf002 is an ACL and compatibility delegation system test. See the

dce-root-dir/dce/src/test/systest/security/dlgcfg002/README

January 17, 1997 13−47

DCE Testing Guide

file for details on how to run it.

13.6 RPC-CDS System Test

The rpc.cds.3system test is designed, as its name suggests, to stress the RPC and CDS
components of the DCE software.

The test first determines the maximum number of concurrent calls that the server can
handle, using no authentication. The maximum number of concurrent calls has been
reached when clients start receiving the statusrpc_s_server_too_busy(if the client is
using a connection-oriented protocol) orrpc_s_comm_failure (if the client is using a
connectionless protocol) in response to calls to the server.

After the maximum for concurrent calls has been determined, the test loops, importing a
server binding from a different CDS object on each loop, and using that binding to
request data from the server (the data consists of a conformant structure containing an
array of strings, modelled as a personal calendar). During this looping, the CDS cache
data maintained on behalf of the clients is frequently invalidated in order to force the
CDS clerk to obtain new information from the cell clearinghouse.

The rpc.cds.3system test exerts stress on the RPC component by making many remote
procedure calls passing a complex data type at some specified level of authentication.
The test exerts stress on the CDS component by executing many namespace lookups and
binding import operations, forcing the use of group attributes to resolve binding searches,
and forcing many namespace searches to resolve names by frequently invalidating the
contents of the CDScache.

13.6.1 Features of the RPC-CDS System Test

Some special features of therpc.cds.3system test are:

• Instant status reports on receipt ofSIGQUIT

• Toggling of debug output on receipt ofSIGHUP

• Graceful shutdown on receipt ofSIGINT

13.6.2 Logic Flow of RPC-CDS System Test Setup

In outline, the operation ofrpc.cds.3_setup.shis as follows:

1. Checks to make sure that the user has a valid identity ascell_admin.

2. Checks to make sure that all of the variables used by the setup script are assigned
values in the configuration file.

13−48 January 17, 1997

DCE System Tests not under TET

3. Creates the client and server principals.

4. Creates the client and server accounts and keytab files. If the path to the keytab file
does not exist, the script attempts to create it. Note that you will be prompted for
thecell_admin password twice during this part of the setup.

5. Creates the CDS directory into which the server interface entry will be exported.

6. Attempts to create a client keytab file on any systems named in the configuration
file (or via the-r command line option) as client machines in the test.

7. Attempts to create a server keytab file on any systems named in the configuration
file (or via the-R command line option) as server machines in the test.

The rpc.cds.3server binary (rpc.cds.3_srv) exports to the CDS namespace a number of
objects that refer, via the object UUID in each entry, to one of the calendars that the
server has data for.

In order to make use of the server easier, the object names are of the form:

rpccds3_calN

—that is, the stringrpccds3_calwith a numeric suffix.

13.6.3 Server Side Logic Flow

The rpc.cds.3_srvbinary implements the server side of therpc.cds.3system test. The
flow of logic in the server is as follows:

1. Parse the command line.

2. Read the configuration file specified by the-f command line parameter.

3. Register authorization information.

The following step is executed only if therpc.cds.3_smain.oobject was compiled with
theDRPCCDS3_DO_LOGINswitch:

4. Establish the server identity.

If the rpc.cds.3_smain.oobject was not compiled with theDRPCCDS3_DO_LOGIN
switch then the following step is executed:

4. Get the login context for the current identity.

The main line of the test logic flow resumes with step 5:

5. Initialize the mutex and condition variables for thepthread_cond_timedwait()
call that controls the duration of the RPCs.

If the rpc.cds.3_smain.o object was compiled with the
DRPCCDS3_AUTO_REFRESHswitch, then the following four steps are executed:

6. Initialize the mutex and condition variables for thepthread_cond_timedwait()
call that is used to time identity refreshes.

7. Get the expiration time of the server’s current identity, and from it calculate the
ticket lifetime.

January 17, 1997 13−49

DCE Testing Guide

8. Save the encrypted key from the key returned bysec_key_mgmt_get_key()in
order to use it when refreshing the server identity.

9. Spawn the thread that will maintain the server identity.

The main line of the test logic flow resumes with Step 10:

10. Spawn the thread that will catch and handle signals for the process.

11. Read the calendar data files specified on the command line or in the
configuration file, and load the calendar data into an internal array. Note that the
number of calendar data files does not have to be the same as the number of
calendars. If the number of data files is smaller then the number of calendar
objects to be exported to the namespace, then in some cases more than one
namespace entry will refer to a single calendar. This convention allows the user
to specify that many objects are to be created without having to specify many
calendar data files.

12. Loop through the range of numbers specified by the sequence start and number
of calendars (specified respectively withRPCCDS3_SRV_CALSEQ and
RPCCDS3_SRV_NCALS in the configuration file) to be managed by this
server.

For each number in the range of numbers mentioned in the previous step above, the test
now does the following:

1. Construct the CDS name of the calendar object that will be associated with that
number. This name is of the form:

CDS_PATH/rpccds3_calnumber

2. Get a UUID for the calendar object. If the calendar object already exists in the
CDS namespace, then the UUID from the existing entry is used; if the entry does
not exist, or if it exists but has no UUID in it, then one of two things can happen:

• If the calendar that is to be associated with the CDS entry already has a
UUID associated with it, then that UUID is used.

• If the calendar that is to be associated with the CDS entry has not yet had a
UUID associated with it, then a new UUID is generated.

If the CDS entry exists and has a UUID in it and the calendar has a UUID
associated with it, then if the UUIDs match, that UUID is used; if the UUIDs
don’t match, then the old UUID is removed from the object, and the UUID from
the calendar is used.

3. If the UUID is not from the namespace entry, then the UUID is exported to the
namespace entry (this has the side effect of creating the namespace entry if does
not already exist).

4. If the server object UUID vector does not yet contain the UUID, then the UUID
is added to the server object UUID vector.

5. The CDS name of the CDS server entry is added to the group attribute of the
CDS object.

6. The server obtains binding handles and exports them to the namespace entry
specified in the configuration file.

13−50 January 17, 1997

DCE System Tests not under TET

7. The server listens for client requests for calendar data.

8. When a client call request is received, the server extracts the object UUID from
the client binding and searches the internal array of calendars for a calendar
associated with that UUID. If such a calendar is found, then the calendar data is
returned to the client.

Note that during the server’s run, information on total calls handled, calls that passed and
failed, number of id refreshes, and the last time the id was refreshed can be obtained by
sendingSIGQUIT to the server process. This report is also generated if the server is
killed with SIGINT .

13.6.4 Client Side Logic Flow

Following is a detailed list of the steps the client performs:

1. Gets values for operational parameters by reading the configuration file, the
name of which by default isrpc.cds.3.conf; or it can be passed in the command
line via the-f option.

2. Assumes the client principal identity specified in the configuration file.

3. Sets various strings for reporting, such as hostname and operating system.

4. Looks in the CDS namespace for an existing entry for therpc.cds.3 interface
(defined in the configuration file). If a CDS namespace entry is found, then all
the binding handles thatrpc_binding_import_next() will return are
sequentially imported, and anrpc_mgmt_is_server_listening()call is made to
verify that the binding is usable. This step ensures that the later steps will find
some usable bindings at the server, and that the server is alive.

5. If a protocol is specified, converts the binding handle to a string binding and
parses it to find the protocol type.

6. Looks for the synchronization file and sleeps after finding it, in order to
synchronize startup of its RPCs.

7. Makes the RPC. If the-b flag was specified, the client checks the return status
from the call and exits with the appropriate value, as described above. If the
client is running in stress mode, the status is checked, counts of successes,
failures, total calls and call times are updated, and the next RPC is made.

13.6.5 Parameters and Options for the RPC-CDS System Test

Therpc.cds.3_setup.shscript accepts the following command line switches.

January 17, 1997 13−51

DCE Testing Guide

TABLE 13-5. Command Line Switches for rpc.cds.3_setup.sh

__
Parameter Function Default value__LL LL LL LL__
-B path Sets the path to the rpc.cds.3 The value of RPCCDS3_BIN_DIRPATH in

binaries on the remote machine the configuration file.
or machines.__

-f path Sets the path to the rpc.cds.3 The path to the rpc.cds.3 binaries
configuration file on the on the remote machine(s).__

-r mach Adds a machine to be The value of RPCCDS3_CLI_MACHINES in
configured for running the the configuration file.
test’s client side.__

-R mach Adds a machine to be The value of RPCCDS3_SRV_MACHINES in
configured for running the the configuration file.
test’s server side.__

-l Specifies local setup None.
only.__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Therpc.cds.3_srvexecutable accepts the following command line switches.

TABLE 13-6. Parameters for rpc.cds.3_srv

Specification in

Parameter Option Configuration File Values___L
L
L

L
L
L

L
L
L

L
L
L

L
L
L

Directory for calendar data -D not specified Default is "."
files___
Calendar data file list -c RPCCDS3_SRV_CAL_DATA List of file names separated

with spaces.___
Configuration file -f not specified path
pathname___
Protection level for RPCs -1 RPCCDS3_PROT_LEVEL conn, call, pkt, integ, priv

Default is priv___
Number of calendars to be -n RPCCDS3_SRV_NCALS any number
exported to the namespace Default is 200
by server___
Initial sequence number of -I RPCCDS3_SRV_CALSEQ any number
cds calendars Default is 1___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13−52 January 17, 1997

DCE System Tests not under TET

TABLE 13-7. Flags for rpc.cds.3_srv

Parameter Option_________________________________LL LL LL_________________________________
Debug on -d_________________________________
Let epv default -e_________________________________
Replace any existing uuids -r
use only one of -r or -n_________________________________LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

January 17, 1997 13−53

DCE Testing Guide

Therpc.cds.3_cliexecutable accepts the following command line switches.

TABLE 13-8. Parameters for rpc.cds.3_cli

__
Specification in

Parameter Option Configuration File Values__L
L
L

L
L
L

L
L
L

L
L
L

L
L
L

__

Directory for calendar data -D not specified Default is "."
files__
Calendar data file list -c RPCCDS3_SRV_CAL_DATA list of file names separated
with spaces__
Protocol to use -P RPCCDS3_PROT_LEVEL datagram or connection__
Sync file name -S not specified file name__
Configuration file -f not specified path
pathname__
Last client flag -L__
Protection level for RPCs -1 RPCCDS3_PROT_LEVEL conn, call, pkt, integ, priv
Default is priv__
Number of passes -p not specified any number
(cannot be used with
time interval or boundary mode__
Hours to execute (plus -h RPCCDS3_CLI_DEF_RUN_INTVL any number
minutes if -m specified) Default is 48__
Minutes to execute (plus -m not specified any number
hours if -h specified)__
Report interval (in -i RPCCDS3_CLI_DEF_REP_INTVL any number
passes if -p specified, Default is 60
in calendar imports if -r minutes or passes
specified, in minutes if
-m or -h specified)__
Number of calendars to be -n RPCCDS3_SRV_NCALS any number
exported to the namespace Default is 200
by server__
Age in minutes for cds cache -a RPCCDS3_CLI_CDS_CACHE_AGE any number
data Default is 5__
Initial sequence number of -I RPCCDS3_SRV_CALSEQ any number
cds calendars Default is 1__
Starting sequence number -s RPCCDS3_SRV_CALSEQ any number
for calendars exported by Default is 1
the server__L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13−54 January 17, 1997

DCE System Tests not under TET

TABLE 13-9. Flags for rpc.cds.3_cli

Parameter Option__________________________________LL LL LL__________________________________
Boundary mode -b
(not allowed to do boundary
mode with -h -i -p or -m
options)__________________________________
Debug on -d__________________________________
Test all bindings -t__LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L

13.6.6 Compile-Time Switches for Optional Functionality

There are several areas of optional functionality available in therpc.cds.3 system test
that can be used to expand the scope of the test or to provide additional runtime
information. These areas of optional functionality are compiled into the program via the
definition of tags which can be specified in either of two ways:

• On thebuild command line; for example:

%% build -DRPCCDS3_ALL_OPTS

• In the environment variableCENV; for example (in a C shell):

%% setenv CENV RPCCDS3_ALL_DEBUGS
%% build

The defaultbuild flag value isRPCCDS3_ALL_OPTS.

The table below lists the supported compiler flags, the functionality that they control, and
the operation of the test depending on whether the flag is or is not specified.

January 17, 1997 13−55

DCE Testing Guide

TABLE 13-10. Compile-Time Switches for rpc.cds.3

Flag Functionality Test Operation___LL LL LL LL___
RPCCDS3_KEEP_SYMBOLS Keeps debugging symbols If defined, code is compiled with debugging

in compiled objects symbols; else debugging symbols usually
stripped from objects.___

RPCCDS3_ID_REFR_DEBUG Print ID refresh If defined, code is compiled to
messages cause messages about identity maintenance

activity to be printed.___
RPCCDS3_ADD_DUMP_ROUTINES Dump data If defined, server code is compiled

structures to dump contents of data structures.___
RPCCDS3_SRV_REPORTING Turns on server If defined, server reports on call requests

status reporting received, calls passed and failed, id refreshes,
and time of last id refresh at an interval speci-
fied by RPCCDS3_CLI_DEF_REP_INTVL in
configuration file. If not defined, server
reports only upon receipt of SIGQUIT.___

RPCCDS3_AUTO_REFRESH Turns on auto- If defined, server spawns a thread that will
matic identity maintain the authentication ticket by waking
refreshing up prior to the ticket’s expiration time,

and refresh the ticket. If not defined,
server will lose its network credentials
when its tickets expire as dictated by
cell security policy.___

RPCCDS3_DO_LOGIN Causes server to If defined, server will make security calls
assume its own to establish network credentials. If not
identity defined, server will run with invoker’s

credentials.___
RPCCDS3_ALL_OPTS turns on all optional Has the same effect as specifying

code RPCCDS3_SRV_REPORTING,
RPCCDS3_AUTO_REFRESH, and
RPCCDS3_DO_LOGIN.___

RPCCDS3_ALL_DEBUGS turns on all debugging Has the same effect as specifying
options RPCCDS3_ID_REFR_DEBUG,

RPCCDS3_KEEP_SYMBOLS,
and RPCCDS3_ADD_DUMP_ROUTINES.___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

Specifying server reporting can provide useful information about the server side of the
test. The login and auto refresh flags allow the scope of the test to be expanded to include
the Security component, especially if the policy for the test run is set to expire tickets
frequently, and a high protection level is used on RPC calls. The login and auto refresh
options are also useful if the test is intended to run for extended durations.

13−56 January 17, 1997

DCE System Tests not under TET

13.6.7 Customizing the Configuration File

Setting up to run the setup script for therpc.cds.3 system test consists of one step,
namely customizing the

/dcetest/dcelocal/test/tet/system/rpc/ts/rpc.cds.3/rpc.cds.3.conf

configuration file. The present section describes this step.

The scripts and programs that make up therpc.cds.3 system test get most of the
information they need from a single configuration file whose default name is
rpc.cds.3.conf. If the file is named something other than the default, the name can be
specified to the test via the-f command line option (see below) or via the environment
variableRPCCDS3_CONF.

The information normally contained in this file can be split up roughly into two
categories: default runtime parameters, and environment information.

Examples of default runtime information in the file are: the time duration a test should
run; the names of machines on which clients will be run; etc.

Examples of environment information stored in this file are: the name of the CDS
namespace entry to which the server exports its bindings; the name of the client and
server principals; etc.

Before running the test, it is important to inspect the configuration file to see if any
changes should be made for the site at which the test is to be performed. This is
particularly important in regard to the environment configuration information. For
example, you may wish to use a different client or server principal, a different CDS entry
name, etc. All of these things, if they are to be changed, must be changed in the
configuration file before running the test.

Note that all machines that the test is to be run on must have identicalrpc.cds.3.conf
files.

13.6.8 Format of the Configuration File

The contents of the test configuration file consist of text lines conforming to normal
Bourne shell syntax.

Note, however, the following restriction. The configuration file, as implied above, is read
by shell scripts, and by therpc.cds.3_cliandrpc.cds.3_srvbinary programs. In order to
simplify the routine used by these programs to read the file, lines that set values for the
rpc.cds.3_cliandrpc.cds.3_srvprogramsmustbe in one of the two followingformats:

<<ssttrriinngg>>==<<ssttrriinngg11>> ## NNOOTTEE:: i inn tthhiiss ccaassee,, ssttrriinngg11 ccaannnnoott
ccoonnttaaiinn aannyy ssppaacceess..

or:

<<ssttrriinngg>>==""<<ssttrriinngg11>>"" ## NNOOTTEE:: i inn tthhiiss ccaassee ssttrriinngg11 mmaayy

January 17, 1997 13−57

DCE Testing Guide

ccoonnttaaiinn ssppaacceess..

Any lines that are not in this format will either be ignored by the routine (rd_conf(), in
the file rdconf.c) that the client and server use to read the configuration file, or will
generate an error. Comments are begun by a ‘‘#’’ character anywhere on a line, as shown
above, and continue to the end of the line.

13.6.9 Contents of the Configuration File

The assignments in the configuration file as it is shipped represent the minimum set
required to run the tests scripts and programs. You may add to the configuration file, but
you should not remove any of the original assignments.

The information in the configuration file determines the way that your Security and CDS
namespaces are set up. This being the case, you may want to modify the configuration
information to tailor the namespace to your preferences. If you do not want to use the
default values in the configuration file for the client or server principal name, CDS
directory, CDS name, or for any of the other configuration file variables, you will have to
modify the configuration file in accordance with your preferences before running the
setup script.

TABLE 13-11. Contents of Configuration File

Variable Default Value
in Config File Description as Shipped___L
L
L

L
L
L

L
L
L

L
L
L

RPCCDS3_PROT_LEVEL Default protection level none___
RPCCDS3_CLI_PRINC_NAME Client principal name rpc.cds.3_cli___
RPCCDS3_CLI_INIT_PW Client initial password "rpc&cdsC"___
RPCCDS3_CLI_KEYTAB_DIRPATH Directory for client keytab /tmp

file___
RPCCDS3_CLI_KEYTAB_FN Client keytab file name rpc.cds.3_cli.keytab___
RPCCDS3_CLI_MACHINES Client machine names "machine1 machine2"___
RPCCDS3_CLI_DEF_RUN_INTVL Client interval to run 48 (hours)___
RPCCDS3_CLI_DEF_REP_INTVL Client report interval 60 (minutes)___
RPCCDS3_CLI_SYNC_DELAY Client start delay time after 60 (seconds)

finding sync file___
RPCCDS3_CLI_START_DELAY Startup delay 180 (seconds)___
RPCCDS3_CLI_CDS_CACHE_AGE Maximum time that data can 5 (minutes)

cached___
RPCCDS3_SRV_PRINC_NAME Server principal name rpc.cds.3_srv___
RPCCDS3_SRV_GROUP_NAME Server Group subsys/dce/cds-test-group___L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13−58 January 17, 1997

DCE System Tests not under TET

Variable Default Value
in Config File Description as Shipped___L
L
L

L
L
L

L
L
L

L
L
L

RPCCDS3_SRV_INIT_PW Server initial password "rpc&cdsS"___
RPCCDS3_SRV_KEYTAB_DIRPATH Directory for server keytab /tmp

file___
RPCCDS3_SRV_KEYTAB_FN Server keytab file name rpc.cds.3_srv.keytab___
RPCCDS3_SRV_MACHINES Server machine names "machine1"___
RPCCDS3_SRV_CDS_NAME Server interface name /.:/test/systest/srv_ifs

/rpccds3_if___
RPCCDS3_SRV_OBJ_DIR Directory for server objects /.:/test/systest

/srv_objs/rpccds3___
RPCCDS3_SRV_CAL_DATA Calendar data file names ‘‘rpc.cds.3_cal1.data

rpc.cds.3_cal2.data
rpc.cds.3_cal3.data’’___

RPCCDS3_SRV_CALSEQ Starting calendar sequence 1
number___

RPCCDS3_SRV_NCALS Number of calendar objects 200___
RPCCDS3_SRV_CDS_DIR_ACL Directory ACL rwditca___
RPCCDS3_SRV_CALL_DELAY Server call duration 2 (seconds)___
RPCCDS3_SRV_CDS_IO_ACL Initial object ACL rwdtc--___
RPCCDS3_SRV_MAX_CALLS Maximum concurrent calls for 5

server___
RPCCDS3_SRV_MAX_EXEC Maximum concurrent execs for 1

server___
RPCCDS3_BIN_DIRPATH Directory for binaries /dcetest/dcelocal/test

/tet/system/rpc
/ts/rpc.cds.3___

RPCCDS3_TMP_DIRPATH Directory for tmp files /dcetest/dcelocal/tmp___
RPCCDS3_LOG_DIRPATH Directory for log files /dcetest/dcelocal/status___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13.6.10 Setting Up to Run the RPC-CDS System Test

Before you can run therpc.cds.3system test, certain objects in the CDS namespace and
certain accounts in the Security registry must exist. The following table describes these
necessary items, as well as the variables in the configuration file relevant to the creation
of these objects, and the default values of these variables (i.e. the values in the file as
shipped). Note that the required objects are created from the specified values
automatically by therpc.cds.3_setup.shscript described below.

The configuration file describes the parameters and environment for running the
rpc.cds.3system test. Customization of this file for your site characteristics and testing
requirements is the only prerequisite for running therpc.cds.3_setup.shscript, which
will setup your DCE cell to run therpc.cds.3system test.

January 17, 1997 13−59

DCE Testing Guide

TABLE 13-12. Objects Required by the rpc.cds.3 System Test

__
DCE Object Variable in Default value
Needed config file as shipped__L
L
L

L
L
L

L
L
L

L
L
L

__
Server principal and RPCCDS3_SRV_PRINC_NAME rpc.cds.3_srv
account__
Client principal and RPCCDS3_CLI_PRINC_NAME rpc.cds.3_cli
account__
Group for the RPCCDS3_SRV_GROUP_NAME subsys/systest/cds_test
server test__
Server key file RPCCDS3_SRV_KEYTAB_FN rpc.cds.3_srv.keytab__
Server key file RPCCDS3_SRV_KEYTAB_DIRPATH /tmp
directory__
Client key file RPCCDS3_CLI_KEYTAB_FN rpc.cds.3_cli.keytab__
Client key file RPCCDS3_CLI_KEYTAB_DIRPATH /tmp
directory__
CDS directory for RPCCDS3_SRV_CDS_NAME /.:/test/systest/srv_ifs/rpccds3_if
server interface
object__
CDS directory for RPCCDS3_SRV_OBJ_DIR /.:/test/systest/srv_objs/rpccds3
calendar objects
exported by server__LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

13.6.11 Running the rpc.cds.3_setup.sh Setup Script

Make sure that the machine on whichrpc.cds.3_setup.shwill be run can rsh to the
client machines for the test.

Note that both the setup script and the test assume that you have a DCE cell up and
running.

If you wish to use a configuration file with a name other thanrpc.cds.3.conf, then you
can specify the desired name by assigning it to the environment variable
RPCCDS3_CONFbefore running the setup script, or the name can be specified on the
command line with the-f option.

In order to run therpc.cds.3_setup.shscript, you mustdce_login as thecell_admin
principal. This is necessary because you will be creating DCE accounts during the setup,
and this requires special privileges. During execution of the setup script you will be
prompted twice for thecell_admin password. If you want to skip these prompts, you
must modify therpc.cds.3_sec_util.shscript; see the comments to the shell function
rpccds3_sec_add_accountthere for details on the modifications required. After you are
dce_logined, make sure that the path to the directory containing therpc.cds.3scripts and
the configuration file is in your execution path.

13−60 January 17, 1997

DCE System Tests not under TET

Now you can simply type:

rpc.cds.3_setup.sh -Bpath

(wherepath is the path to therpc.cds.3binaries and scripts on the client machines). The
setup script assumes that the configuration file is in the same directory as are the
rpc.cds.3binaries on each client test machine. If this is not the case, then the path to the
configuration file (whichmustbe the same on all test machines) must be specified with
the-f option.

Enter thecell_admin password when prompted, and, if no errors are reported, your cell
will be set up to run therpc.cds.3system test. Note that the setup can be repeated as
many times as necessary without adverse effect.

13.6.12 Starting the Servers

Once the setup script has been successfully executed, the servers must be started. This is
done as follows.

On the machines specified in the configuration file or through the-R switch on the
command line, you must runrpc.cds.srv using the appropriate server options described
in the ‘‘Test Options’’ section. The output fromrpc.cds.3_srvshould be redirected into a
file for future reference.

For example:

rpc.cds.3_srv -I 1 -n 20 > /dcetest/dcelocal/tmp/rpc.cds.3_srv.log

The above command specifies 20 calendars, starting with the sequence number 1. The
rest of the parameters have been specified in the example configuration file.

13.6.13 Starting the Clients

Starting the clients is done similarly to the servers.

On the machines specified as clients, you must runrpc.cds.3_cliusing the client options
described in the ‘‘Test Options’’ section. You can start multiple clients on the
samemachine. Again, you should redirect the output to a file for future reference.

For example:

rpc.cds.3_cli -I 1 -n 20 -P datagram > /dcetest/dcelocal/tmp/cli_logpid.1

The above command specifies 20 calendars, starting with sequence number 1. The
ncadg_ip_udpprotocol is also specified on this command line.

January 17, 1997 13−61

DCE Testing Guide

13.6.14 Analyzing the Results

If you are not running the test in boundary mode, then after all the clients have exited,
you can generate a report of the results of the test by executing the following commands
in a Bourne or Korn shell:

$$ cd logdir

$$ for i in ‘ls cli_log pid.*’
>> do
>> grep -v READY $i | awk -f bindir/rpc.cds.3_gen_summ.awk >> runpid.summ
>> done

$$ awk -f bindir/rpc.cds.3_gen_rep.awk runpid.summ > runpid.results

wherepid is the process id of the driver script.

Note that this sequence of commands can be run at any time during the test run to obtain
a report on the current status of the clients as of the last time that reports were generated.
If up-to-the-minute status is desired, then executing:

kill -3 <pids>

(where <pids> is the process ids of all the clients running on a particular machine)
should be run on each machine in the test to cause the clients on that machine to generate
a current status line in the log file. Then thefor loop andawk command combination
described above can be used to generate a current status report.

13.6.15 Implementation Notes

As shipped, therpc.cds.3test exerts stress on the CDS clerk and (indirectly) on the CDS
clearinghouse. Other stresses can be induced by running the test in a manner different
from the way it runs as shipped. For example:

• If you want to stress the system and the CDS clearinghouse by running multiple CDS
clerk processes, you can invoke different test clients with different UIDs on the same
machine. The CDS advertiser process will start a new CDS clerk for each different
UID for which a CDS operation is requested.

• If you want to stress the CDS clerk caching and ACL mechanisms, you can run a
number of test clients with different UIDs accessing the same object or objects.

If you wish to have more than one server exporting objects to the namespace for this test,
it is a good idea to use a different configuration file for each server, each specifying a
different server CDS name. This makes administration of the namespace easier because
the RPC API does not (for a number of reasons) provide a way to remove some bindings
from a CDS entry; all or none must be removed. This means that if two servers export
bindings to the same namespace entry, and one of the servers later terminates, you

13−62 January 17, 1997

DCE System Tests not under TET

cannot remove that server’s bindings from the entry while preserving the other server’s
bindings. On the other hand, leaving the entry as it is means that clients can still import
(and attempt to use) the invalid bindings. The only thing that can be done in such a
situation is remove, and then re-export, all of the bindings.

13.6.16 Runtime Error Handling

The spurious test failure scenario described earlier forrpc.sec.2can also occur with
rpc.cds.3, for the same reason: therpc.cds.3clients do not currently perform any error
handling of the communication status value returned from a remote call. This scenario
can probably be avoided if you add code to handle the three following errors:

• rpc_s_server_too_busy

(Returned only by TCP clients.) The server does not have a thread available to
service the client request, nor does it have space in any call request buffer to queue
the request. When a test client receives this error, it will go into a tight loop as
described in the previous section, making RPCs and continuing to receive this same
status, until sufficient resources are freed at the server to permit the call to be
serviced or queued. While testing did not prove this looping to have a significant
impact on the overall success rate of the TCP clients, it is wasteful of CPU cycles.
One way to avoid the tight looping would be to have the TCP clients wait for a few
seconds if they receive this status before doing anything. Another approach would be
to allocate more server threads to begin with, and thus avoid the situation altogether.

• rpc_s_connection_closed

A protocol error has occurred in the connection to the server. This means (with a
connection-oriented protocol) that the binding to the server has become permanently
useless, and the thread in the server runtime that listens for connection-oriented
protocol requests is probably unavailable, so that no connection-oriented protocol
calls will succeed. The only remedy for this condition is for the server to re-export its
binding handles.

• rpc_s_auth_tkt_expired

The client’s network credentials (i.e., ticket) have expired. The client thread
receiving this error can recover from the situation by notifying the ticket
maintainance thread that it should now refresh the ticket.

January 17, 1997 13−63

Appendix A. File and Path Names Cross-
Reference

This appendix lists the pathnames of many files mentioned in the DCE documentation.

A.1 Threads Files

Filename Default Location

exc_handling.h dceshared/share/include

pthread.h dceshared/include

cma_stdio.h dceshared/share/include

A.2 RPC Files

Filename Default Location

dce.rc dcelocal/etc

dcecds.cat dceshared/nls/msg/${LANG}

dce_error.h dceshared/share/include

dcerp.cat dceshared/nls/msg/${LANG}

ep.idl dce/ep.idl

file.ext dceshared/share/include

idl /pbin/idl

id_base.h dceshared/share/include

January 17, 1997 A−1

DCE Testing Guide

idlbase dceshared/share/include

idlbase.h dceshared/share/include

idl.cat dceshared/nls/msg/${LANG}

nbase.acf dceshared/include

nbase.idl dceshared/include

nidl_to_idl dceshared/bin

rpccp dceshared/bin

rpcexc.h dceshared/share/include/dce

rpc.h dceshared/share/include

sec_login.h dceshared/share/include

uuidgen dceshared/bin

uuidgen.cat dceshared/nls/msg/${LANG}

uuid.h dceshared/share/include

A.3 CDS Files

Filename Default Location

cds_attributes dcelocal/etc

cdsadv dceshared/bin

cds_cache.nnnnnnnn dcelocal/var/adm/directory/cds

cds_cache.version dcelocal/var/adm/directory/cds

cdsclerk dceshared/bin

cdscp dceshared/bin

cdsd dceshared/bin

cds_files dcelocal/var/directory/cds

cds_globalnames dcelocal/etc

clearinghouse-name.checkpointnnnnnnnn
dcelocal/var/directory/cds

clearinghouse-name.tlognnnnnnnn
dcelocal/var/directory/cds

clearinghouse-name.version
dcelocal/var/directory/cds

A−2 January 17, 1997

File and Path Names Cross-Reference

A.4 GDA Files

Filename Default Location

gda_child dceshared/bin

gdad dceshared/bin

A.5 GDS Files

Filename Default Location

gdscache dceshared/bin

gdscacheadm dceshared/bin

gdscmxl dceshared/bin

gdscstub dceshared/bin

gdsditadm dceshared/bin

gdsdsa dceshared/bin

gdsipcchk dceshared/bin

gdsstep dceshared/bin

gdsstub dceshared/bin

gdssysadm dceshared/bin

osiforminfo dcelocal/var/adm/directory/gds/conf

nsapmacros dcelocal/var/adm/directory/gds/adm

A.6 DTS Files

Filename Default Location

dce /usr/include/dce

utc.h dceshared/share/include

dts dcelocal/usr/examples

dtscp dceshared/bin

dtsd dceshared/bin

dtsprovider.idl dceshared/examples/dts

January 17, 1997 A−3

DCE Testing Guide

dts-servers /.:/subsys/dce

A.7 Security Files

Filename Default Location

acct.h dceshared/share/include/dce

aclbase.h dceshared/share/include/dce

acl_edit dcelocal/bin

binding.h dceshared/share/include/dce

daclif.h dceshared/share/include/dce

group /etc

keymgmt.h dceshared/share/include/dce

kdestroy dcelocal/bin

klist dcelocal/bin

kinit dcelocal/bin

krb5cc_unix_id /tmp

misc.h dceshared/share/include/dce

passwd /etc

passwd_export dceshared/bin

pe_site dcelocal/etc/security

pgo.h dceshared/share/include/dce

policy.h dceshared/share/include/dce

rdaclif.h dceshared/share/include/dce

rgybase.h dceshared/share/include/dce

rgy_data dcelocal/var/security

rgy_edit dcelocal/bin

sec_admin dceshared/bin

sec_create_db dcelocal/bin

secd dcelocal/bin

secidmap.h dceshared/share/include/dce

sec_login.h dceshared/share/include/dce

su dcelocal/bin

A−4 January 17, 1997

File and Path Names Cross-Reference

v5srvtab /krb5

A.8 DFS Files

Filename Default Location

admin.bak dcelocal/var/dfs

admin.bos dcelocal/var/dfs

admin.fl dcelocal/var/dfs

admin.ft dcelocal/var/dfs

admin.up dcelocal/var/dfs

bak dceshared/bin

BakLog dcelocal/var/dfs/adm

bakserver dcelocal/bin anddceshared/bin

bkdb.* dcelocal/var/dfs/backup

bos dcelocal/bin anddceshared/bin

BosConfig dcelocal/var/dfs

BosLog dcelocal/var/dfs/adm

bosserver dcelocal/bin anddceshared/bin

butc dceshared/bin

CacheInfo dcelocal/etc

CacheItems dcelocal/var/adm/dfs/cache

cm dcelocal/bin anddceshared/bin

core.* dcelocal/var/dfs/adm

dfsatab dcelocal/var/dfs

dfsbind dcelocal/bin anddceshared/bin

dfsd dcelocal/bin anddceshared/bin

dfsexport dcelocal/bin anddceshared/bin

DFSLog dcelocal/var/adm/dfs/cache

dfstab dcelocal/var/dfs

FileLog dcelocal/var/dfs/adm

FilesetItems dcelocal/var/adm/dfs/cache

fldb.* dcelocal/var/dfs

January 17, 1997 A−5

DCE Testing Guide

FlLog dcelocal/var/dfs/adm

flserver dcelocal/bin anddceshared/bin

fms dceshared/bin

FtLog dcelocal/var/dfs/adm

fts dcelocal/bin anddceshared/bin

ftserver dcelocal/bin anddceshared/bin

fxd dcelocal/bin anddceshared/bin

newaggr dcelocal/bin anddceshared/bin

NoAuth dcelocal/var/dfs

RepLog dcelocal/var/dfs/adm

repserver dcelocal/bin anddceshared/bin

salvage dcelocal/bin anddceshared/bin

SalvageLog dcelocal/var/dfs/adm

scout dceshared/bin

TapeConfig dcelocal/var/dfs/backup

TE_device_name dcelocal/var/dfs/backup

TL_device_name dcelocal/var/dfs/backup

upclient dcelocal/bin anddceshared/bin

UpLog dcelocal/var/dfs/adm

upserver dcelocal/bin anddceshared/bin

Vn dcelocal/var/adm/dfs/cache

A−6 January 17, 1997

Appendix B. DCE Abbreviations List

This appendix contains a list of abbreviations and acronyms used in DCE, both in the
DCE source code and in the documentation.

Note that the distinction in many abbreviations and acronyms between the upper- and
lower-case version is arbitrary. For example, the abbreviation ‘‘XOM’’ is spelled thus
when cited in documentation as the component name; the same abbreviation appears in
lowercase in library routine and constant names in source code (it has the same meaning,
however, in both forms). In other words, although an attempt has been made to preserve
the customary case of all abbreviations, the list below should be regarded as being case-
insensitive.

Note also that the following list is of abbreviations only; it is not a general DCE glossary.

B.1 A

acb association control block (RPC internal)

acf attribute configuration file (RPC)

acl Access Control List (Security)

acct account

ACSE Association Control Service Element

addr address

admin_gd OSF DCE Administration Guide

command_ref OSF DCE Command Reference

AEP Application Environment Profile (see ISP & IEEE 1003.10, .11)

AES OSF Application Environment Specification

afl aggregate fileset list (DFS LFS)

January 17, 1997 B−1

DCE Testing Guide

AFNOR Association Francaise de Normalisation. French ISO member body

afs Andrew filesystem (both Carnegie and Mellon had first names Andrew)
(DFS)

agfs aggregate filesystem (DFS)

AIX Trademark name for IBM OS, derived from UNIX System V

alloc allocate

ANSI American National Standards Institute, US member of ISO

API application programming interface

APP Application Portability Profile. NIST environment for application
portability

app_gd OSF DCE Application Development Guide

app_ref OSF DCE Application Development Reference

ASN (ASN.1) abstract syntax notation: ISO/ANSI Std. 8824/8825 Data format
for various data types

assoc association

attr attribute

auth authentication (Security)

authn authentication (Security)

authz authorization (Security)

AVA attribute value assertion (XDS/XOM/GDS)

B.2 B

BIND Berkeley Internet Naming Daemon (DNS)

bos Basic Overseer Server (BOS Server) (DFS)

BOSS Basic Overseer Server (BOS Server) (DFS)

bosserver Basic Overseer Server (BOS Server) (DFS)

butc back up tape coordinator (DFS) (‘‘backup tape controller’’ in some
specs)

butm back up tape manager (DFS)

B−2 January 17, 1997

DCE Abbreviations List

B.3 C

ccall client call

CCITT International Telegraph & Telephone Consultative Committee (of ITU)

CDS Cell Directory Service

cdsadv the CDS advertiser

cdspi CDS’s (DCE-private) programming interface

cdsta CDS transaction agent protocol; a DCE-private protocol between the
CDS server and clerk. Also used among CDS servers.

cf configuration

C-ISAM C-based index sequential access method database; used to hold the GDS
DIB

CLNS Connectionless network service (OSI Layer 3 Protocol)

cm cache manager (DFS)

cma Concert Multithread Architecture (name for earlier DCE Threads
interface)

cn connection (connection-oriented RPC protocol)

com common

cond condition variable (Threads)

CONS Connection oriented network service (OSI Layer 3 Protocol)

CPIO Tape I/O format, interchange format Std. in IEEE 1003.1 (POSIX)

CPU central processing unit

crc cyclic redundancy check (RPC internal)

cred credentials (Security) (RPC internal)

cs character set or code set

CSMA/CD Carrier Sense, Multi-access/CollisionDetection (see IEEE 802.3)

ctl control

ctx context

B.4 D

dap directory access protocol; used between the GDS DUA and DSA

db database

January 17, 1997 B−3

DCE Testing Guide

DBMS Data Base Management System

dcache data cache

DCE Distributed Computing Environment

dced DCE Host Daemon

DECdns Digital Distributed Naming Service

DECdts Digital Distributed Time Synchronization Service

DES Digital Encryption Standard (Security)

DFS Distributed File Service

dg datagram (connectionless RPC protocol)

DIB directory information base; the GDS database

Dir-X the Siemens/Nixdorf implementation of X.500 that serves as a base for
GDS

DIS ISO Draft International Standard (DP accepted, second technical ballot)

DIT directory information tree; the logical structure of the GDS database

dn DECnet network address family services

DN Distinguished name (GDS)

DNS Domain Name Service DEC DNA Name Server; the base technology for
CDS

dnspi original name of cdspi

dnsta DNS transaction agent interface; the original name of CDSTA

DP ISO Draft Proposed Standard (has started first technical ballot)

ds XOM directory service

DSA directory service agent; the GDS name for the directory server code

dsP ds private extension

DSP directory service agent protocol; a DSA/DSA protocol in GDS

dsm distributed storage manager (underlies the epdb)

DTS Distributed Time Service

DUA directory user agent; the GDS name for the directory client code

B.5 E

elt element

ep endpoint

B−4 January 17, 1997

DCE Abbreviations List

epdb endpoint database

epv endpoint vector; entry point vector

exc exception

exp expiration

B.6 F

fd file descriptor

fifo first-in, first-out (the standard model of a queue)

FIPS Federal Information Processing Standard (US Government)

fldb Fileset Location Database (or FLDB) (DFS)

flserver Fileset Location server (DFS)

FL server Fileset Location server (DFS)

fptgt foreign privilege ticket-granting ticket

FTP File transfer protocol (DDN- TCP/IP application) Functional Standards

ftserver Fileset Server (DFS)

fxd File Exporter (formerly known as ‘‘Protocol Exporter’’, px) (DFS)

B.7 G

GDA Global Directory Agent

GDS Global Directory Service

gen generate

GOSIP Government OSI Profile (US FIPS 146, UK, EC versions) Gateway
System that interfaces one network to another

grp group

B.8 H

HP/UX Trademark name for Hewlett-Packard OS, derived from UNIX

January 17, 1997 B−5

DCE Testing Guide

B.9 I

iapl* interface application programming language; interface used between
XDS/XOM and GDS

icl in core logging

id identifier

IDL Interface Definition Language (RPC)

IDU interface data unit

IEEE Institute of Electrical and Electronics Engineers. Professional
organization

IEEE 1003.0 Guide to POSIX Open Systems Environment. POSIX suite

IEEE 1003.1 Operating System interface Std. (ISO 9945). POSIX suite

IEEE 1003.2 Shell and Utilities document. POSIX suite

IEEE 1003.3 Test Methods. POSIX Suite (see also PCTS)

IEEE 1003.4 Real Time extensions to 1003.1. POSIX suite

IEEE 1003.4a Threads Extension to 1003.1. POSIX suite

IEEE 1003.5 Ada API for IEEE 1003.1 Std.

IEEE 1003.6 Security extensions for POSIX

IEEE 1003.7 System Administration services for POSIX

IEEE 1003.8 POSIX Distribution Services (RPC, XTI, TFS, FTAM API)

IEEE 1003.9 FORTRAN API for IEEE 1003.1 Std.

IEEE 1003.10 Supercomputing AEP (Application Environment Profile)

IEEE 1003.11 Transaction Processing AEP (Application Environment Profile)

IEEE 1003.14 Multiprocessor AEP (Application Environment Profile)

IEEE 1201.1 High level (toolkit) windowing project

IEEE 1201.2 Windowing drivability guide

IEEE 802.3 ISO/ANSI Std.LAN OSI layer 1 CSMA/CD (Ethernet)

IEEE 802.4 ANSI/IEEE Std.Token Bus LAN OSI layer 1 (a la MAP)

IEEE 802.5 ANSI/IEEE Std.Token Ring LAN OSI layer 1 (a la IBM)

IEEE Standards Board. Authorized by ANSI as a Standards development
organization

if interface

info information

init initialize

B−6 January 17, 1997

DCE Abbreviations List

inq inquire

intro Introduction to OSF DCE (book)

IP IP network address family services

IPC Interprocess Communications (function in IEEE 1003.4)

IS ISO International Standard (DISaccepted)

ISAM Indexed Sequential Access Method. No standards to date, except
COBOL

ISO International Organization for Standards (see also JTC1)

B.10 K

kdc Key Distribution Center (Security)

kutils kernel utilities

B.11 L

LAN Local Area Network (such as ISO/IEEE 802.3...)

LFS Local Filesystem (DFS)

lifo last-in, first-out (the standard model of a stack)

B.12 M

mepv manager entry point vector (RPC)

mgmt management

mgt management services

MHS Message Handling Service (X.400 name for mail service)

msg message

mutex mutual exclusion lock (Threads)

January 17, 1997 B−7

DCE Testing Guide

B.13 N

NAF network address family

NAS Network Application Support

NDR network data representation (RPC)

NFS Network File System (SUN specification)

NIST National Institute of Standards and Technology (formerly NBS)

np non portable (Threads routine name suffix)

ns nameservice; naming service

NSAP Network Service Access Point (OSI)

NSI Name Service Interface (RPC)

NTP Network Time Protocol

B.14 O

obj object

OID object identifier (GDS, CDS)

om X/Open object management (XOM)

op operation

org organization

OS Operating System

OS Interface ISO DIS9945. IEEE 1003.1 Std.operating system service API
(POSIX)

OSF Open Software Foundation. Consortium developing AES, OSF/1 and
tests

OSF/1 First release of OSF’s system implementation

OSF/Motif OSF’s Windowing environment: toolkit and style guide

osi operating system independent (DFS)

OSI Open System Interconnect network address family services
(communication protocols) (GDS). ISO 7498-1984

OSS OSI Session Service

B−8 January 17, 1997

DCE Abbreviations List

B.15 P

PAC Privilege Attribute Certificate (Security)

pag process authentication group (DFS)

PDU protocol data unit

perm Permission

pgo principal/group/organization (Security)

pkt packet (RPC)

pmax DECstation 3100 platform

port_gd OSF DCE Build Environment, Porting, and Testing Guide

POSIX Suite of API standards (see IEEE 1003, OS interface, shell, admin., UPE)

prin principal (Security)

protseq protocol sequence (RPC)

psap presentation service access point; the address of a GDS DUA

ptgt privilege ticket-granting ticket (Security)

pthread DCE Threads (POSIX 1003.4a conformant)

pvt private (Security)

px protocol exporter (alternatively fxd) (DFS)

B.16 R

rcx recovery tests

RDN relative distinguished name; the GDS name for an attribute/value pair

relnotes OSF DCE Release Notes

repl replica/replication

repserver Replication Server

rgy registry (Security)

rios IBM RISC System/6000 platform

RISC Reduced Instruction Set Computer (as opposed to CISC)

ROS remote operation service layer; a collection of networking support
routines used to implement GDS

ROSE Remote Operation Service Elements

January 17, 1997 B−9

DCE Testing Guide

RPC Remote Procedure Call

rpcd remote procedure call daemon (also known as the ‘‘endpoint mapper’’)
(not supported in DCE 1.2.1) (RPC)

rpc_ss RPC stub support

B.17 S

SAP service access point

sautils stand alone utilities (DFS LFS)

scache status cache

scall server call

sec security; Security service

SGML Std.Generalized Markup Language. ISO 8879-1986 - page formatting

sm state machine

SQL Structured Query Language. ISO/ANSI Std.X3.135-1986. Relational
DBMS API

ssr stub support routine (RPC)

svc service; serviceability

SVID System V Interface Definition. Specification for AT&T’s UNIX System
V

sys system

s5 System V (a popular implementation of UNIX)

B.18 T

tar Tape archive format, interchange format std. in IEEE 1003.1 (POSIX)

tcb task control block; thread control block (Threads)

TCP transmission control protocol - used by the RPC CN protocol (RPC)

TCP/IP Transmission control protocol, Internet protocol: US DoD network
(DDN)

TDF Time Differential Factor

tech_supp OSF DCE Technical Supplement

TET Test Environment Toolkit

B−10 January 17, 1997

DCE Abbreviations List

tgs ticket-granting service (Security)

tgt ticket granting ticket (Security)

thr threads (do not use thd) (Threads)

tkc token cache (DFS)

tkm token manager (DFS)

tkt ticket (Security)

tlr (auth) trailer (Security)

tpq thread pool queue

tsap transport service access point (GDS)

twr tower

twrfl tower floor

T1 Standard for high bandwidth WAN connection

B.19 U

ubik the library of routines used to implement the FLDB

UDP/IP User Datagram Protocol/Internet Protocol - used by the RPC DG
protocol (RPC)

UFS UNIX file system (also known as the ‘‘Berkeley file system’’ and the
‘‘fast file system’’)

ULTRIX Trademark name for Digital OS, derived from Berkeley

UNIX Trademark name for AT&T operating system product (System V)

users_gdref OSF DCE User’s Guide and Reference

utc coordinated universal time (DTS)

util utility

UUID Universal Unique Identifier

B.20 V

VFS virtual file system

VFS+ OSF’s extension to VFS (necessary for DFS)

vnops vnode operations

January 17, 1997 B−11

DCE Testing Guide

volreg volume registry

B.21 W

WAN Wide area network (as in world-wide, usually synchronous)

way ‘‘who are you’’ (RPC protocol)

B.22 X

xaggr extended aggregate (DFS)

XDS X/Open Directory Service

X lib Low level windowing API, linked to X-11. X Window System, X3H3.6
Std.

XOM X/Open OSI-Abstract-Data Manipulation

XPG4 X/Open Portability Guide 4

XTI X/Open Transport Interface (network stack independent)API. Also IEEE
1003.8 project

xvnode extended vnode

xvolume extended volume

B.23 Z

zlc zero link count

B−12 January 17, 1997

