OSF’ DCE Version 1.2.2
DCE Testing Guide

January 17, 1997
Revision 1.2.2

Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142



The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or
consequential damages in connection with the furnishing, performance, or use of this material.

Copyrightd 1995, 1996 Open Software Foundation, Inc.
This documentation and the software to which it relates are derived in part from materials supplied by the following:
« Copyrightd 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation
« Copyrightd 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company
« Copyrightd 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation
« Copyright 1990, 1991 Siemens Nixdorf Informationssysteme AG
« Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996 International Business Machines
- Copyrightd 1988, 1989, 1995 Massachusetts Institute of Technology

- Copyright 0 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the University of
California

- Copyrightd 1995, 1996 Hitachi, Ltd.

All Rights Reserved
Printed in the U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE
USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF
OR ITS LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are registered trademarks of the Open
Software Foundation, Inc.

X/Open is a registered trademark, and the X device is a trademark, of X/Open Company Limited.
The Open Group is a trademark of the Open Software Foundation, Inc. and X/Open Company Limited.

UNIX is a registered trademark in the US and other countries, licensed exclusively through X/Open Company
Limited.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.
AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.

DFS is a trademark of the Transarc Corporation.

Episode is a registered trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business Machines Corporation.
IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.
PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.



NetWare is a registered trademark of Novell, Inc.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED
SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer
software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in Section
52.227-19 of the FARS Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-
7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set
forth in paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This
computer software is submitted with “restricted rights.” Use, duplication or disclosure is subject to the restrictions as
set forth in NASA FAR SUP 18-52.227-79 (April 1985) “Commercial Computer Software-Restricted Rights (April
1985).” If the contract contains the Clause at 18-52.227-74 “Rights in Data General” then the “Alternate 11"
clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.
Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.



0-0

January 17, 1997



Contents

Preface.

Audience .
Applicability
Purpose
Document Usage
Related Documents .
Typographic and Keying Conventions.
Problem Reporting .
Chapter 1. DCE Subsystems.
1.1 Internationalization

111

Testing and Verification

1.2 Serviceability

121

Testing and Verification

Chapter 2. DCE Programs

2.1 dcecp.

211

2.2 dced
22.1
2.2.2

Téstihg and Verification

' Téstlng and Verification . .
dced Runtime Output and Debuggmg Output

2.3 DCE ACL Facility and Backing Store L|brary

23.1

Testing and Verification

Chapter 3. DCE Threads . -
3.1 Testing and Verification .

3.1.1

3.2

NNYD PR RERREE
NFRE oohwN

u

Installing Threads Functional Tests with
dcetest_config . G
Testing Dependenmes .o
Threads Test Case Categories .

Test Case Execution

Test Case Results .

Test Plans.

gging DCE Threads.

Debugging with gdb:
Debugging with dbx.

Chapter 4. DCE Remote Procedure Call .
4.1 Overview .
4.2 Setup, Testing, and Verification.

January 17, 1997

Xi
Xi
Xi
Xi
Xi
Xii

X Z
< =

NN N PR R e

el e '
U WRRF PR R DN NP R

NN I}JI\JI\J

RN
(@3]

3-1



DCE Testing Guide

4.2.1 Installing RPC Functional Tests with
dcetest_config . Ce e 4-2
42.2 RPCSetup . . e 4-3
4.2.3 RPC Application Tests. . . . . . . . . . . 4-3
4.2.4 IDL Compiler Tests . . N 4
4.2.5 RPC Runtime I18N Extension Functional
Tests . . . ... 424
4.2.6 RPC Runtime L|brary and IDL Comp|Ier
Tests . . . e ... 427
4.2.7 Name Service Interface Test. . . . . . . . . 4-32
428 TestPlans. . . . .. ... 432
4.3 RPC Runtime Output and Debugglng Output Coe e 4-32
4.3.1 Normal RPC Server Message Routing. . . . . . 4-32
4.3.2 DebuggingOQutput . . . . . . . . . . . . 435
Chapter 5. DCE Cell Directory Service . . . . . . . . . . . . . 5-1
5.1 Overview . . . Ce e e 5-1
5.2 Setup, Testing, and Verlflcatlon .o e 5-2
5.2.1 Installing CDS Functional Tests with
dcetest config . . . . . . . . . . . . . 5-2
522 CDSSetup . . . . . . . .. 5-3
523 CDSTestScripts. . . . . . . . . . . . . 5-8
5.2.4 Distributed ACLTests . . . . . . . . . . . 510
5.25 NSITest . .. . . . . . . . . bia2
5.2.6 Testing Intercell Lookup . . . . . . . . . . b12
5.3 CDS Runtime Output and Debugging Output . . . . . . 5-13
5.3.1 Normal CDS Server Message Routing. . . . . . 5-13
5.3.2 DebuggingQutput . . . . . . . . . . . . b6
Chapter 6. DCE Global Directory Service. . . . . . . . . . . . . 6-1
6.1 Overview . . . G e e 6-1
6.2 GDS Testing Overview . oo 6-2
6.2.1 Changes to the GDS Functional Tests Since DCE
1.03 . . .o 6-2
6.2.2 Installing GDS Functional Tests with
dcetest_config . . e 6-4
6.2.3 Running GDS Functional Tests with TET. . . . . 6-5
6.3 The XDSTestToolxt test . . . . . . . . . . . . 6-9
6.3.1 Examples . . T o R 4
6.3.2 MAVROS Compller Tests. . . . . . . . . . 6-13
6.3.3 Testing GDS Intercell Operation. . . . . . . . 6-13
6.4 GDS Runtime Output and Debugglng Output Ce e 6-15
6.4.1 TestPlans. . . . . . . . 615
Chapter 7. DCE Distributed Time Service 7-1
7.1 Overview 7-1
7.2 Setup, Testing, and Verification. 7-1

.2.1 Installing DTS Functional Tests with
dcetest_config C

Additional DTS Téstlng
Test Run Examples.

7.3 DTS Runtime Output and Debugging Output

: 7-2
7.2.2 Building the Tests 7-3
7.2.3 DTS Setup. 7-3
7.2.4 APl Tests . : 7-3
7.2.5 Synchronization Testlng 7-4
7.2.6 dtscp Testing. 7-5
7.2.7 7-6
7.2.8 7-8

N
H
o

ii January 17, 1997



Normal DTS Server Message Routing.

7.3.1
7.3.2 Debugging Output .
7.3.3 TestPlans. .

Chapter 8. DCE Security Service

8.1 Overview .
8.2 Setup, Testing, and Verlflcatlon

8.2.1 Installing DCE Security Functional Tests with

dcetest_config
Basic Security Setup
Basic Functionality Tests

PKSS Functional Tests.
Certification API Tests .

Public Key Login API Tests
GSSAPI Tests .
Commands Tests

API Tests .

PRPPRPOO~NOUOIRWN

0 00 00 00 0o GO CO 00 00 00 GO CO
N O

NN DN

N
[N
w

Test Plans.

Chapter 9. DCE Audit Service

9.1 Audit Service Overview .
9.2 Testing and Verification .

9.2.2 Description of the Event Class Test Case.
9.2.3 Installing the Audit functional tests with
dcetest_config . .

9.2.4  Audit Test Conflguratlon Requwements
9.2.5 Running the Audit Test Cases

9.2.6 TestPlans. . .

9.3 Audit Runtime Output and Debugglng Output

9.3.1 Normal Audit Server Message Routlng
9.3.2 Debugging Output . .o

Chapter 10. DCE Distributed File Service .

10.1 Overview
10.2 Setup, Testing, and Verification.

10.2.1 Installing DFS Functional Tests with

dcetest_config
10.2.2 Debugging Notes
10.2.3 Test Types. . .
DFS Test Setup

Delegation Tests. .
Multihome Server Tests

POO~NO 01

0 DFS Server Process Tests

PRRRRERREER
©OO0O0O0000
NSNS

10 2.12 DFS Administrative Tests.
10.2.13 DFS Gateway Tests
10.2.14 Test Plans.

Chapter 11. TET and DCE Testing .

11.1 Installing TET . .
11.1.1 Using dcetest_ conflg

11.1.2 Installing TET with dcetest conflg

January 17, 1997

ERA, Delegation, and Extended 'Logln Tests.

Kerberos 5 Functional Tests .'

Use of the “complle et” Ptogtarﬁ

9.2.1 Description of the Audit AP Test Cases

DCE Distributed Fllé Serwce Tests

File Exporter Authorization Tésté
DCE Local File System Tests

11 DFS Command Interface Tests .

Contents

7-10
7-13
7-15

8-1
8-1
8-2

8-2
8-3
8-7
8-11
8-15
8-18
8-25
8-31
8-35
8-36
8-41
8-45
8-46

1 1
e

O©M® GAAL NN

IR TGN
o O O Qloﬂoﬂo O©OOo ©OwOw © ©
i i
RGN

N



DCE Testing Guide

11.1.3 Installing the DCE Functional Tests with

dcetest_config . . .. . . . . 11-6
11.1.4 Installing the DCE System Tests with
dcetest_config . . I
11.1.5 Configuring for System Test with
dcetest_config . . B K
11.2 Using TET . .. . . . . . . . . . 11183
11.2.1 Overview of TET Use . . .. . . . 11-15
11.2.2 Running DCE System Tests under TET . . . . . 11-16
11.2.3 Using the “Run” Scripts: An Example . . 11-18
11.2.4 Prerequisites for Running System Tests Usmg the “Run”
Scripts . . .o 11-20
11.2.5 Standard DCE System Test Output Location. . 11-21
11.2.6 Command Line Options Common to Some or All of the
“Run” Scripts . e ... 1124
11.2.7 External and Internal Looplng .. . . . . . . 11-26
11.3 System Test Tools. . . . . . . 11-28
11.3.1 Performing a chk Check of DCE on a
Machine . . .. . . . 11-28
11.3.2 TET Tools. . ... 11-29
11.3.3 Multi-Vendor Test Case Development Tools. . 11-31
11.3.4 Test Case Logglng Facilitators for System Tests Not under
TET : ... 11-32
11.3.5 ExecutionTools. . . . . . . . . . . . . 11-33
11.3.6 MiscellaneousTools . . . . . . . . . . . 11-33
Chapter 12. DCE System Testsunder TET . . . . . . . . . . . . 121
12.1 Threads . . e e s 1241
12.1.1 dcethcac . . . . . . . . ..o 122
12.1.2 dcethOO2 . . . . . . . . . . . . . . . 122
12.12.3 dcethrmut . . . . . . . . . . . . . . . 123
12.1.4 dcethrpc . . . . . . . . . . . . . . . 124
122 RPC . . . . . . . . . . . . . . . . . . . 126
12.2.1 dcerpary . . . . . . . . . . . . . . . 126
12.2.2 dcerpid . . . . . . . . . . . . . . . 127
12.2.3 dcerprec . . . . . . . . . . . . . . . 12-8
12.2.4 dcerpbnk . . e e .. ... 12-8
12.2.5 RPC Runtime StressTest. . . . . . . . . . 12-10
12.2.6 RPC-Security System Test . . . . . . . . . 12-11
12.2.7 dcerpper . . . . e e e e 1222
12.3 DCE Host Daemon (dced) . . . . . . . . . . . . 12-23
124 Security . . . . . . . . . . . . . . . . . . 1226
1241 secrep. . . . . . . . . . . . . . . . 1226
1242 dceseacl . . . . . . . . . . . . . . . 12-27
1243 eraobjooxr. . . . . . . . . . . . . . . 12-28
1244 dceseact . . . . . . . . . . . . . . . 12-29
1245 dcesepol . . . . . . . . . . . . . . . 1230
1246 dcesestr . . . . . . . . . . . . . . . 12-30
1247 erareloOL . . . . . . . . . . . . . . . 1231
12.4.8 dlgcfgo01 . . ... 12-32
12.4.9 Security Reglstry System Test dcesergy .. . . 12-33
125 CDS . Ce o123
1251 dcecdsrep . Ce e e 12-37
12.5.2 CDS Server System Test. . . . . . . . . . 1238
12.5.3 CDS ACL Manager SystemTest . . . . . . . 12-40
12.5.4 dcecdsacl6 Initializaton . . . . . . . . . . 12-40
12.5.5 Logic Flow ofdcecdsacl6é Test . . . . . . . . 1241
12.5.6 Hierarchical Cell Tests. . . . . . . . . . . 1241

iv January 17, 1997



12.6 DCE Audit Service System Tests .

12.7 DTS . :
12.7.1 dcetmsyn :

12.8 Internationalization System Tests .
12.8.1 Prerequisite Setup .
12.8.2 Running the Tests .

12.9 DCE Senrweability System Tests
Chapter 13. DCE System Tests not under TET .

13.1 Security Administrative Tests . . .
13.1.1 Backup and Restore Reglstry Checklist .
13.1.2 Registry Replica Checklist :

13.2 CDS Administrative Tests and Checklists .o
13.2.1 Backup and Restore Clearinghouse Automated
Test . . .o
13.2.2 Backup Clearlnghouse Automated Test .
13.2.3 Restore Clearinghouse Automated Test .

13.2.4 Clearinghouse and Replica Checklist 1
13.2.5 Clearinghouse and Replica Checklist 2
13.2.6 Intercell GDA Checklist oo
13.2.7 dcecp System Tests .
13.2.8 DFS Administrative Checklist
13.3 Global Directory System Tests.
13.3.1 dcegdshd . . :
13.3.2 gds_xds_str | 001
13.4 DFS System Tests. . .
13.4.1 DFS System Test Cell Requwements .
13.4.2 Installing the DFS System Tests and
Checklists .
13.4.3 dfs.glue
13.4.4 dfs.lock .
13.4.5 dfs.maxdir.
13.4.6 dfs.maxfile .
13.4.7 dfs.block frag
13.4.8 dfs.read_write_all. main
13.4.9 filewnr.c .o
13.4.10 dirread.c
13.4.11 dirwrite.sh.

13.4.12 dfs.fmul . .
13.4.13 DFS System Testlng Checklists .

13.5 Security Delegation Tests
13.5.1 dlgstr001 .
13.5.2 dlgcf002

13.6 RPC-CDS System Test . .
13.6.1 Features of the RPC-CDS System Test . .
13.6.2 Logic Flow of RPC-CDS System Test Setup
13.6.3 Server Side Logic Flow. .
13.6.4 Client Side Logic Flow.

13.6.5 Parameters and Options for the RPC-CDS System'

Test . .
13.6.6 Compile- ~Time Switches for Optlonal
Functionality . .
13.6.7 Customizing the Conflguratlon File.
13.6.8 Format of the Configuration File. .
13.6.9 Contents of the Configuration File . . .
13.6.10 Setting Up to Run the RPC-CDS System Test .
13.6.11 Running the rpc.cds.3_setup.sh Setup Script

January 17, 1997

Contents

12-43

12-44
12-44

12-45
12-46
12-47

12-47
13-1

13-1
13-1
13-3

13-4

13-4
13-7
13-9
13-11
13-13
13-14
13-16
13-16

13-60



DCE Testing Guide

Appendix A. File and Path Names Cross-Reference .

Appendix B.

Vi

Al
A.2
A.3
A4
A5
A.6
A7
A.8

13.6.12 Starting the Servers.

13.6.13 Starting the Clients . .
13.6.14 Analyzing the Results .
13.6.15 Implementation Notes .
13.6.16 Runtime Error Handling

Threads Files
RPC Files
CDS Files
GDA Files
GDS Files
DTS Files .
Security Files
DFS Files

DCE Abbreviations List .

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23

A

— I G T mOoOQOw

- n XV OVvOozr X

C

vV .
W .
X
4

13-61
13-61
13-62
13-62
13-63

A-1
A-1

A-2
A-3

A-3
A-4

B-1
B-1
B-2
B-3
B-3

B-5
B-5
B-5
B-6
B-7
B-7
B-7
B-8
B-8
B-9
B-9
B-10
B-10
B-11
B-11
B-12
B-12
B-12

January 17, 1997



Contents

LIST OF FIGURES

Figure 3-1. Supplying Threads Test Install-from Location. . . . . . . . 3-2
Figure 11-1. Installing TET: Step1 . . . . . . . . . . . . . . . 114
Figure 11-2. Installing TET: Step2 . . . . . . . . . . . . . . . 114
Figure 11-3. Completion of Installation. . . . . . . . . . . . . . 114
Figure 11-4. Returnto MainMenu . . . . . . . . . . . . . . . 115
Figure 11-5. Selecting Test Installation. . . . . . . . . . . . . . 116
Figure 11-6. Supplying Test Location . . . . . . . . . . . . . . 116
Figure 11-7. Functional Test Installation Menu . . . . . . . . . . . 117
Figure 11-8. Previously Installed Tests. . . . . . . . . . . . . . 117
Figure 11-9. Installing Functional Tests. . . . . . . . . . . . . . 11-8
Figure 11-10. Installing System Tests: Step.2 . . . . . . . . . . . . 119
Figure 11-11. Installing System Tests: Step.2 . . . . . . . . . . . . 119
Figure 11-12. Installing System Tests: Step.3 . . . . . . . . . . . . 11-10
Figure 11-13. Installing System Tests: Step4 . . . . . . . . . . . . 11-10
Figure 11-14. Installing System Tests: Installation Messages . . . . . . . 11-11
Figure 11-15. Configuring for SystemTest . . . . . . . . . . . . . 11-12
Figure 11-16. End of Configuration . . . . . . . . . . . . . . . 11-13

January 17, 1997 Vii



DCE Testing Guide

LIST OF TABLES

TABLE 2-1 .

TABLE 11-1.
TABLE 12-1.
TABLE 12-2.
TABLE 12-3.
TABLE 13-1.
TABLE 13-2.
TABLE 13-3.
TABLE 13-4.
TABLE 13-5.
TABLE 13-6.
TABLE 13-7.
TABLE 13-8.
TABLE 13-9.
TABLE 13-10.
TABLE 13-11.
TABLE 13-12.

viii

DCE System Test Suites and TET Scenarios
Objects Created by the rpc.sec.2 System Test .
Compile-Time Switches for rpc.sec.2 .
Configuration File Contents .

Example Cell Configuration for gds_ xds str 001 .

filewnr.c Parameters and Values

dirread.c Parameters and Values .

dirwrite.sh Parameters and Values.

Command Line Switches for rpc.cds.3_setup. sh
Parameters for rpc.cds.3_srv.

Flags for rpc.cds.3_srv.

Parameters for rpc.cds.3 cli.

Flags for rpc.cds.3_cli. -
Compile-Time Switches for rpc.cds.3 .
Contents of Configuration File . :
Objects Required by the rpc.cds.3 System Test

2-8
11-13
12-13
12-16
12-18
13-30
13-38
13-41
13-43
13-52
13-52
13-53
13-54
13-55
13-56
13-58
13-60

January 17, 1997



Preface

The DCE Testing Guidedescribes how to test the OSF Distributed Computing
Environment (DCE).

Audience

The DCE Testing Guideis for licensees who are porting DCE to a non-reference
platform.

Applicability

This is Revision 1.0 of this guide. It applies to the O%IDCE Version 1.2.2 offering.
See your software license for details.

Purpose

The purpose of this manual is to guide developers testing DCE. After reading this guide,
you should be able to effectively test DCE.

Document Usage

January 17, 1997 Xi



DCE Testing Guide

This section describes the 13 chapters and 2 appendices that make up the guide.

Chapters 1 -10

These chapters give information on testing the DCE components, with one chapter
devoted to each component.

Chapter 11: TET and DCE Testing

This chapter describes how to install the Test Environment Toolkit (TET), which is
used to execute many of the DCE functional and system tests, and how TET is used
to execute tests and monitor their results.

Chapter 12: DCE System Tests under TET
This chapter describes the DCE system tests that are executed using TET.
Chapter 13: DCE System Tests not under TET

This chapter describes the DCE system tests that are not executed directly, not by
TET.

Appendix A: File and Path Names Cross-Reference

This appendix lists the pathnames of many files mentioned in the DCE
documentation.

Appendix B: DCE Abbreviations List

This appendix contains a list of DCE abbreviations met with both in the
documentation and the source code, together with brief definitions.

Throughout this guide, the path varialdee-root-diris used, andice-root-diris your-
root-dir/dce, whereyour-root-dir is the directory in which you create thiee directory,
anddce is the directory into which you unloaded the contents of the DCE distribution
tape.

Related Documents

Xii

For additional information about the Distributed Computing Environment, refer to the
following documents:

Introduction to OSF DCE

OSF DCE Command Reference

OSF DCE Application Development Reference

OSF DCE Administration Guide

OSF DCE DFS Administration Guide and Reference
OSF DCE GDS Administration Guide and Reference
OSF DCE Problem Determination Guide

OSF DCE Application Development Guide

January 17, 1997



Preface

« Application Environment Specification (AES)/Distributed Computing
« OSF DCE Technical Supplement
« OSF DCE Release Notes

Typographic and Keying Conventions

This document uses the following typographic conventions:

Bold

Italic

Constaant widdthh

[]

{}

Bold words or characters represent system elements that you
must use literally, such as commands, flags, and pathnames.

Italic words or characters represent variable values that you
must supply.

Examples and information that the system displays appear in
constzaant widdthh typeface.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an item in
format and syntax descriptions.

A vertical bar separates items in a list of choices.
Angle brackets enclose the name of a key on the keyboard.

Horizontal ellipsis points indicate that you can repeat the
preceding item one or more times. Vertical ellipsis points
indicate that you can repeat the preceding item one or more
times.

This document uses the following keying conventions:

<Ctrl- x> or X

<Return>

Entering commands

January 17, 1997

The notation<Ctrl- x> or "x followed by the name of a key
indicates a control character sequence. For examjilérl-c>
means that you must hold down the control key while pressing
<c>.

The notation<Return> refers to the key on your terminal or
workstation that is labeled with the word “Return” or “Enter,”
or with a left arrow.

When instructedeoter a command, type the command name
and then pressReturn>. For example, the instruction “Enter
thels command” means that you must type tlsecommand and
then press <Return> (enter = type command + press
<Return>).

Xiii



DCE Testing Guide

Problem Reporting

If you have any problems with the software or documentation, please contact your
software vendor's customer service department.

Xiv January 17, 1997



Chapter 1. DCE Subsystems

This chapter contains information regarding porting DCE 1.2.2 subsystems and APIs. It
consists of the following main sections:

- Miscellaneous

Contains information about various platform-sensitive aspects of DCE subsystem
code not peculiar to any single component.

« Internationalization

Contains information about porting the DCE internationalization mechanisms.
« Serviceability

Contains information about porting the DCE Serability routines.
« DCE configuration routines

Contains information about porting the DCE configuration routines.

1.1 Internationalization

An “internationalized” RPC application uses a wide variety of languages other than
U.S. English. DCE 1.2.2 contains RPC runtime support for character and code set
interoperability for use by internationalized RPC applications. If you are porting DCE
and plan for your DCE product to support internationalized RPC applications, you must
create a character and code set registry from a “template” character and code set
registry source file that OSF supplies on the DCE source tape. The file is installed at:

{usr/lib/nis/csricode_set_registry.txt

The code set registry template source file contains unique identifiers that OSF has
assigned to the character sets and code sets that have been registered with OSF. You
must edit this source file and supply the names that your platform uses to refer to these
character sets and code sets, then rurcthe utility to generate the binary-format code

set registry, which is required for porting and testing the RPC runtime extensions for

January 17, 1997 -1



DCE Testing Guide

character and code set interoperability. See the chapter entitled “Configuring DCE” in
the OSF DCE Administration Guide — Introductipand thecsrc(8dce)reference page

in the OSF DCE Command Referentar details on the template code set registry file
and how to runcsrc. See the chapter entitled “Writing Internationalized RPC
Applications” in the OSF DCE Application Development Guide — Core Components
volume for more information on character sets, code sets, and RPC runtime support for
internationalized RPC applications.

1.1.1 Testing and Verification

See Chapter 12 for information on the DCE Internationalization system tests.

1.2 Serviceability

The Serviceability API is dibrary of routines used by the DCE components (with the
exception of DCE Threads) to display or write server information of various kinds. It
uses message catalogs (generated by the E@fsutility), but it is more than simply a
message catalog-manipulation library. Seedbility is also made available for
application use; this is documented in tBSF DCE Application Development Guide —
Core Componentgolume.

The DCE Serviceabilitgource code is located at:
dce-root-dirdce/src/dce/utils/svc
The DCEsamsutility source code is located at:

dce-root-dirdce/src/tools/sams

1.2.1 Testing and Verification

1-2

A version of the DCE example applicatidimop which uses the sermgability API can
be found at

dce-root-dirdce/src/examples/svc/timop_svc

The timop_svc application was developed mainly during the writing of the OSF DCE
Application Development Guide chapter on Seeability. Although it was not designed

to be used for test purposes, it does make use of most of thesabijity routines, and it

is included in the DCE 1.2.2 release as (it is hoped) a useful functional hand test for the
interface. Instructions for building and running the program, as well as sample run
results, can be found in:

dce-root-difdce/src/examples/svc/timop_svc/README

January 17, 1997



DCE Subsystems

An additional very simple Sergeabilityhand test can be found at:

dce-root-dirdce/src/examples/svc/hello_svc

This program, when compiled and executed, does nothing more than print a “Hello
world” message to standard output, using the smgability API. Unlike timop_svc,
hello_svc does not require you to have a DCE cell up and running in order to

successfully execute it. (It does however require you to have the DCE Application
Environment installed). For further information, see:

dce-root-dirdce/src/examples/svc/hello_svc/README

January 17, 1997 -B



Chapter 2. DCE Programs

This chapter contains information about testing the following DCE 1.2.2 programs and
facilities:

+ dcecp— the DCE command program
+ dced— the DCE daemon

« DCE ACL Facility

« DCE Backing Store Library

2.1 dcecp

In DCE 1.1 a new control program callettecpwas added to the DCE administrative
package. This program is meant to augment the use of the existing control programs in
the present release, and ultimately to replace them entirely.

2.1.1 Testing and Verification

Thedcecpfunctional tests are designed to run under the TET scaffold (Test Environment
Toolkit; see “Overview of TET Use” in Chapter 11 for general information on TET).

Thedcecptests can be run in two different ways:
+ Usetcc to run a block of tests
« Run individual test files as scripts

The second method is often helpful when you are porting and want to just run specific
tests without going through the overhead of runricg

The general format of running the tests under the TET scaffold is:

January 17, 1997 A



DCE Testing Guide

2-2

tcc -e functional/admin/dcecptest_suite_name

wheretest_suite_namis one of the following, as defined in the TET scenario file:

all

account

acl

attrlist

aud
audevents
audfilter
audtrail
cdsalias
cdsalias_hcell
clearinghouse
clock
directory

dts

endpoint
group
group_era
hostdata

ktb

link

log

misc

object
org_era
organization
principal
principal_era
registry
registry_one
rpcentry

rpcgroup

January 17, 1997



DCE Programs

« rpcprofile

« schema

- secval

. server

. utc

Theall test_suite_namis used to run the entire suite dfecptests.

Most of the above suites are named for thimecp object they test. The names whose
meanings are not obvious have the following explanations:

obj_era Tests manipulating Extended Registry Attributes (ERAsSPbp
objects.

obj_hcell Tests thecdsaliascommand orobj objects in a hierarchical cells
environment.

misc Tests miscellaneous, non-objelttecpcommands such dsgin.

ktb Testskeytab objects.

registry_one Destructive registry tests. These tests should be run individually

outside of the test suite.
schema Tests thexattrschema object.

Within each test suite are individual test files that are used to test subcomponents. The
list of these subcomponents is too lengthy to be given here, but it can be found in the
tests scenario file at:

dce-root-difdce/src/test/functional/admin/dcecp/tet_scen

Tests are divided into two groups. The first group consists of negative tests. These are
found in files with the N.tcl suffix in their name; they are designed to supply input that
generates error conditions.

The second group consists of positive tests. These are found in files witlP ttodsuffix
in their name; they verify the functionality dicecpcommands.

For more information about this file and other files used for dicecp functional test
suite, see “Files Used By the Tests”. below.

For the purpose of creating tlideecpfunctional test suite, a Tcl API to the TET scaffold
was added to the previously existing C, Bourne shell (XPG3) and Korn shell APIs. The
TET APIs are designed to allow tests to log test information and report results to the TET
journal file. The source for all the TET APIs can be found in:

dce-root-difdce/src/test/tet/src/tcl/api
dce-root-dirdce/src/test/tet/src/posix_c/api
dce-root-divdce/src/test/tet/src/ksh/api
dce-root-dirdce/src/test/tet/src/xpg3sh/api

For more information about TET in general, see “Overview of TET Use” in Chapter 11.
See “Running the Tests”, below, for details on running teecptests.

See the “Platform Definitions and Variables” section earlier in this chapter for
information on the DCECP_TEST preprocessor variable, which must be defined when

January 17, 1997 3



DCE Testing Guide

building dcecpfor functional testing.

2.1.1.1 Building the Tests

The current source location of tldeecpfunctional tests is:
dce-root-dirdce/src/tests/functional/admin/dcecp

In order to run any of thelcecpfunctional tests, you must first build and install all the
files in the following directories:

dce-root-dirdce/src/test/functional/admin/dcecp
dce-root-dirdce/src/test/functional/admin/dcecp/lib
dce-root-dirdce/src/test/tet/src/posix_c
dce-root-difdce/src/test/tet/src/tcl/api
dce-root-dirdce/src/test/tools

The tests themselves are found in:
dce-root-dirdce/src/test/functional/admin/dcecp/ts/*
These may be installed by subcomponent or as a whole.

To build and install the entirelcecp test suite (without the required TET and tools
directories) under ODE, do the following:

cd dce-root-dir/dce/src/test/functional/admin/dcecp
build
build install_all

(ODE is the OSF Development Environment; for more information on it, see Chapter 12
of the DCE 1.10SF DCE Porting and Testing Guide

2.1.1.2 Running the Tests

Note: Thedcecpfunctional tests should be run under an ordinary user lagn,
as root or any other extraordinary identity. This is because some of the
tests verify functionality running unauthenticated, and invoking the tests
under an ordinary login is the only way to make sure that authentication
does not occur when it is not supposed to.

There are two methods for running theecp functional tests. The first is the standard
approach. After installing the tests, do the following:

cd dce-root-dirdce/installplatform/dcetest/dcel.2.2/test/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT:$PATH

tcc -e functional/admin/dcecptest_suite_name

2-4 January 17, 1997



DCE Programs

where test_suite_namé one of the test suites listed in the TET scenario file. (See
“Testing and Verification”, above, for a list of valid test suite names.)

The second method for running tests can be helpful during the development and
debugging process. The individual script files found in:

$TET_ROOT/functional/admin/dcecpl/ts/*
can be run by hand. To do this, set th&€T_CONFIG environment variable to the
location of thetetexec.cfdfile, as follows:

setenv TET_CONFIG $TET_ROOT/functional/admin/dcecp/tetexec.cfg
Prior to running the tests, thietexec.cfgfile must be modified to reflect your local
configuration.

This file defines variables that are used throughout the tests. There are only a few
variables that need to be changed. The following list shows the variables that you will
need to modify, and what their values should be changed to (example values are given in

parentheses):

DCP_CLIENT The principal name of the cell administrator
(cell_admin).

DCP_CLIENT_PW The password fobCP_CLIENT.

DCP_CELLNAME_ONE The name of the cell you are irl..(/name.foo.con.

DCP_CELLNAME_TWO The name of the cell used for intercell tests
(/....)name.foo.con.

DCP_HOSTNAME_ONE The simple name of the host you are danfagustg).

DCP_HOSTNAME_TWO The simple name of another host in your cell
(murgatroyd).

DCP_ROOT_CH The name of the clearinghouse that contains the master
copy of the root directorynjachine_ch.

DCP_INTERCELL_AVAIL Do you want to run the intercell testd?dr 1).

DCP_SR_IP_ADDR The IP address of the machine that you are running the
tests on.

DCP_SR_STR_BINDING A protocol sequence followed by the above IP address.
Separated by a colon:™. (ncacn_ip_tcp:127.0.0.1

After you have changed the above variables’ values as appropeihte, the directory
that contains thelcecpfunctional test that you wish to run. For example:

cd $TET_ROOT/functional/admin/dcecp/ts/dts
You may now execute the test script by hand:
dts_modify_P.tcl

After the test completes, the results will be left in the filt xres in the current
directory. Note that each test file invocation will overwrite this file, so you should either

January 17, 1997 s



DCE Testing Guide

view or save its contents, as desired, after each test run.

Note that the above sequence of commands assumes that the tests have been installed in
their default location (by ODE) and that you wish to run them from that location.
However, the

dce-root-dirdce/installplatform/dcetest/dce1.2.2

test tree is self-contained (insofar as the tests and TET are concerned), and can be copied
to any other preferred location on your system, and executed from there. If you do this,
the first step given above becomes the following three steps:

cd dce-root-dirdce/installplatform/dcetest
cp -rdcel.2.2your_test tree
cdyour_test_tree

If you execute the tests from their default installed location, test results will be found at:
dce-root-dirdce/installplatfornydcetest/dce 1.2.2/test/tet/functional/admin/dcecp/resulfsss_nfjournal

wherepass_nris the number of the test iteration whose results are being written. The
results subdirectory is created by TET in the subdirectory specifiedebdo the tcc
command, as shown above. For further information about TET output, see “Overview of
TET Use” in Chapter 11.

For information on how to run specific tests within a suite, see the following section.

2.1.1.3 Special Requirements for Running the Tests

All of the dcecptests must be run in a fully functioning DCE cell with the following
specific characteristics:

« There must be dcedrunning on the current host.
« A security master and a CDS server must be running in the cell.

« The appropriate helper programs (such as a CDS advertissadqy) and a CDS
clerk (cdsclerk)) must be running on the host on which the tests are run.

In addition, the followingdcecptests have the following special requirements:
« clearinghouseanddirectory tests
These tests must be run on a machine that is running a CDS server.
- dtsandacl tests
These tests must be run on a machine that is running a DTS server.
- audit tests

These tests must be run on a machine that is running an audit daemon, which must be
started with thea option.

2-6 January 17, 1997



DCE Programs

. registry tests
These tests must be run in a cell that has a security replica.
« registry_onetests

Must be run on a machine on which a security replica is running. In addition, the tests
must be run one at a time, and the security state of the cell has to be restored between
each run.

2.1.1.4 Files Used By the Tests

The following files are used by TET when invoked to doecpfunctional tests:
« The TET configuration file
dce-root-difdce/src/test/admin/dcecp/tetexec.cfg
is where global variables should be defined foidakcptests.
« The TET scenario file
dce-root-dirdce/src/test/admin/dcecp/tet_scen

is where TET gets the list of tests it must run for a specific test component. If you
wish to run a specific test within a component, you must change the contents of the
TET scenario file. For example, to run specific “negative ACL modify” tests, you
should edit the following section in the scenario file:

"Staarttiimg negatiiwe ACL MADA-Y teestss™
fttsslaacll feacl__mumdif fyy Nttocl

so that it reads:

"Staarttiimg negatiiwe ACL MADA-Y teestss™
ftsslaacll feacl__mumdif fyy Nt tocl{ {28-30}

or:

"Staarttiimg negatiiwe ACL MADA-Y teestss™
ftsslaacll feacl__mumdif fyy Nttocl{ {28,229,330}

Either version will result in only tests 28, 29, and 30 in the negative ACL modify
suite to be executed when the ACL test suite is run by invoking TET as follows:

tcc -e admin/dcecp acl

January 17, 1997 Z



DCE Testing Guide

2.1.1.5 Tcl Tests

The
dce-root-dirdce/src/test/admin/tcl_dce

subdirectory contains a set of validation tests for the Tcl commands. SEERPDME
file located in this directory for instructions on how to build and run these tests.

1.2.2,Add note on LANG (start).

Note that before running the Tcl functional tests, you must selLkidG environment
variable to “C".
1.2.2,Add note on LANG (end)

2.1.1.6 Hand Tests for dcecp registry set Functionality

2-8

dcecpcontains support for severagéc_admincommands, as follows:

TABLE 2-1
New dcecp Command Equivalent sec_admin Command
registry set <replica_name> change_master -to <replica_name>
registry set <replica_name> -slave become -slave
registry set <replica_name> -master become -master

This section contains procedures for hand testingdbécpfunctionality.
To execute the test proceduressessfully, the tester must first set up a master and at
least one slave replica, as follows:

dcecp> registry cat
I..... /Il cellnaméssubsys/dcel/ssec/ssparttzacuis
I..... /I cellnaméssubsys/dice/ssec/caesar

where, in the example given hespartacusis the name of a slave machinedellname
before the tests are performed, arasaris the name of the master machine in the same
cell.

Test 1: Bind to master and change master to slave.

The test is performed as follows:
dcecp> registry set subsys/dce/sec/spartacus
You should now be able to execute thegistry dump command and get results similar

to the following:

January 17, 1997



DCE Programs

dcecp> registry dump
{mame /..... // cellnaméssubsys/dice/ssec/ccaesar
{ttyype slaave}
{ccelll //.....// cellnamg
{wuidd 08c199b6-H836-111cd-P4b4-D800092734a4}
{sstaatwis enablecd}
{llzastwpdtiinme 1994-108-22-113:54:007.0000-04:0001- ———- 1
{llzastwpdseq 0.11100}
{a&ddreesses {mcacm_igp_tocp nnnnnnn.nnn}

{mcadg _ipp_udp nnnnnnn.nnri}}
{mastecraaddrss {mcacm_ipp _tocp nnnnnnn.nnri

{mcadg _ipp_udp nnnnnnn.nnri}}

{masteersseqnum @11101}
{measteerwuuidd 2e7ac32b-1H846-111cd-a8cf--D000c0239a70}
{werssioon secd.ddce.11.2.2}

{mame /..... // cellnaméssubsys/dicel/ssec/ssparttzacus}
{tyype mesteer}}
{ccelll //.....// cellnamg
{wuidd 2e7ac32b-1H846-111cd-a8cf--D000c0239a70}
{staatwis enablecd}
{llzastwpdtiinme 1994-108-22-114:110:25.0000-®4:0001- ———- 1
{llaastwpdseq 0.11101}
{addreesses {mcacm_igp_tocp nnnnnnn.nnn}

{mcadg _ipp_udp nnnnnnn.nnri}}
{mastecraaddrss {mcacm_ipp _tocp nnnnnnn.nnri

{mcadg _ipp_udp nnnnnnn.nnri}}

{masteersseqnum @11101}
{meastecrwuuidd 2e7ac32b-H846-111cd-a8cf--0000c0239a70}
{werssioon secd.dce.11.2.2}
{wpdseqqueue {®.11099 0.11101}}}

Test 2: Change replica to a slave replica.

The test is performed as follows:
dcecp> reegisstrny set ssubsys/dice/ssec/caesar --slaave

You should now be able to execute thegistry dump command and get results similar
to the following:

dcecp> reegisstrny diump
{mame /..... // cellnaméssubsys/dicel/ssec/ssparttzacus}
{ttyype slaave}
{ccelll //.....// cellnamg
{wuidd 2e7ac32b-1H846-111cd-a8cf--D000c0239a70}
{staatwis enablecd}
{lleastwipdti inme 1994-18-22-112:26:339.0000-14:001-———- 1}
{llaastwpdseq 0.11091}
{addreesses {mcacm_igp_tocp nnnnnnn.nnn}

{mcadg ipp_udp nnnnnnn.nnri}}

January 17, 1997 3



DCE Testing Guide

{mastecraaddrss {mcacm_ipp _tocp nnnnnnn.nnri

{mcadg _ipp_udp nnnnnnn.nnri}}
{masteersseqnum @11091}
{masteerwuidd 08c199b6-11H836-111cd-P4b4-10800092734a4}
{werssioon secd.dce.11.2.2}

{mame /..... // cellnaméssubsys/dicelssec/caesar}}

{ttyype slaave}

{ccelll //.....// cellnamg

{wuidd 08c199b6-H836-111cd-P4b4-D800092734a4}

{sstaatwis enablecd}

{lleastwipdti inme 1994-18-22-112:26:339.0000-14:001-———- 1}

{llzastwpdseq 0.11091}

{addreesses {mcacm_igp_tocp nnnnnnn.nnn}
{mcadg _ipp_udp nnnnnnn.nnri}}

{mastecraaddrss wnkmown}

{werssioon secd.ddce.11.2.2}

Test 3: Change replica to a master replica.

The test is performed as follows:
dcecp> reegisstrny set ssubsys/dce/ssec/sspartteacus -masteer

You should now be able to execute thegistry dump command and get results similar
to the following:

dcecp> reegisstrny diump
{mame /..... // cellnaméssubsys/dicel/ssec/ssparttzacuis}
{ttyype mesteer}}
{ccelll //.....// cellnamg
{wuidd 2e7ac32b-1H846-111cd-a8cf--D000c0239a70}
{sstaatwis enablecd}
{llzastwpdtiinme 1994-108-22-114:226:445.0000-04:0001- ———- 1
{llaastwpdseq 0.11104}
{addreesses {mcacm_igp_tocp nnnnnnn.nnn}

{mcadg _ipp_udp nnnnnnn.nnri}}
{mastecraaddrss {mcacm_ipp _tocp nnnnnnn.nnri

{mcadg _ipp_udp nnnnnnn.nnri}}

{masteersseqnum @11104}
{mastecruuidd 2e7ac32b-1H846-111cd-z8cf--0000c0239a70}
{werssioon secd.dce.11.2.2}
{wpdseqqueue {®.11103 0.11104}}}

{mame /..... // cellnaméssubsys/dicel/ssec/caesar}}

{ttyype slaave}

{ccelll //.....// cellnamg

{wuidd 08c199b6-H836-111cd-P4b4-D800092734a4}
{staatwis enablecd}

{llzastwpdtiinme 1994-108-22-114:226:445.0000-04:0001- ———- 1
{llzastwpdseq 0.11104}

2-10 January 17, 1997



DCE Programs

{a&ddreesses {mcacm_igp_tocp nnnnnnn.nnn}
{mcadg ipp_udp nnnnnnn.nnri}}
{mastecraaddrss {mcacm_ipp _tocp nnnnnnn.nnri
{mcadg ipp_udp nnnnnnn.nnri}}
{masteersseqnum @11104}
{meastecrwuuidd 2e7ac32b-1H846-111cd-a8cf--D000c0239a70}
{werssioon secd.dce.11.2.2}

2.2 dced

This and the following sections contain testing information alin#d the DCE Host
Daemon, which replaces the (pre-DCE 1.1) RPC daempmd] andsec_clientd

2.2.1 Testing and Verification

The installed location of thdcedtests is:
your_install_patltest/tet/functional/admin/dced

which by default is:
dce-root-dirdce/installplatform/dcetest/dce1.2.2/test/tet/functional/admin/dced

2.2.1.1 Running the Tests

Before attempting to run the tests, you must edit the

dce-root-dirdce/installplatform/dcetest/dce1.2.2/test/tet/functional/admin/dced/tetexec.cfg

file and set the values of the following parameters:

T_CELL_ADMIN This should be the value of your Cell Adminstrator's principal name

(the default value when setting up the cell witice config is
cell_admin).

T_CELL_ADMIN This should be your Cell Administrator principal’s password.

TET_SIG_IGN This should be the (system-dependent) value of $H&VTALRM
signal, defined in

lusr/include/sys/signal.h
for your platform.

To run the tests, do the following:

January 17, 1997 21



DCE Testing Guide

2-12

Make suralcedis running.

dce_loginas a privileged user.

Change directory to the installed test subtree:
cdyour_install_patltest/tet/

set TET_ROOT ‘pwd'
setenv PATH $TET_ROOT/bin:$PATH

To execute all of the tests, do:
tcc -e functional/admin/dced
To execute a test suite, do:
tce -e functional/admin/dcedtest_suite_name

wheretest_suite_namis one of the suites listed in the TET scenario file located
at:

dce-root-dirdce/installplatfornydcetest/dce 1.2.2/test/tet/functional/admin/dced/tet_scen

The existing test suites are:
« binding

« common

+ hostdata

+ keytab

-+ secval

« srvrconf

. srvrexec

You can also specify test_suite_namef all, which will cause all of the suites to
be run.

If you execute the tests from their default installed location, test results will be
found at:

dce-root-dirdce/installplatfornydcetest/dce 1.2.2/test/tet/functional/admin/dced/resulisss_nfjournal

wherepass_nris the number of the test iteration whose results are being written.
The results subdirectory is created by TET in the subdirectory specifiedettp

the tcc command, as shown above. For further information about TET output, see
“Overview of TET Use” in Chapter 11.

January 17, 1997



DCE Programs

2.2.2 dced Runtime Output and Debugging Output

The dced component outputs server information of all kinds via the DCE senfility
component. The following sections describe how to control the various kinds of
information (including debugging output) available fraitedvia serviceability.

2.2.2.1 Normal dced Server Message Routing

There are several ways to control norrdaéd server message routing:

« At startup, through the contents of a routing file (which are applied to all components
that use serdgieability messaging).

« Dynamically, through thelcecp logobject.
+ Via environment variables (such 8/C_ERROR).
« Via command line options

The svcroute(5dce)reference page describes most of these methodsddbd(8dce)
reference page should be referred to for the last method. Routing of an already-started
dceds messages can be controlled through theecp log object. See thdog.8dce
reference page in theSF DCE Command Referenfa further information.

2.2.2.2 Debugging Output

Debugging output frondced can be enabled (provided thdted has been built with
DCE_DEBUG defined) by specifying the desired debug messaging level and route(s) in
the

dce-local-patlfsvc/routing

routing file (described above), or by specifying the same information in the
SVC_DHD_DBG environment variable, before bringing wted Debugging output
can also be enabled and controlled throughdtecp logobject.

Note that, unlike normal message routing, debugging output is always specified on the
basis of DCE component/sub-component (the meaning of “sub-component” will be
explained below) and desired level.

The debug routing and level instructions for a component are specified by the contents of
a specially-formatted string that is either included in the value of the environment
variable or is part of the contents of the routing file.

The general format for the debug routing specifier string is:

January 17, 1997 43



DCE Testing Guide

"componensub_compevel,. . ..output_formdestination6
[output_formdestination...]"

where the fields have the same meanings as in the normal routing specifiers described
above, with the addition of the following:

component  specifies the component name

sub_compevel specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

A star (“*”) can be used to specify all sub-components. The sub-
component list is parsed in order, with later entries supplementing earlier
ones; so the global specifier can be used to set the basic level for all
sub-components, and specific sub-component exceptions with different
levels can follow (see the example below).

“Sub-components” denote the various functional modules into which a component has
been divided for sereieability messaging purposes. Ficed, the sub-components are as

follows:

aclmgr Thedced ACL managers
xattrschema Thedcedattribute service
general Generaldcedfacilities
hostdata Thedcedhostdata service
rkeytab Thedcedrkeytab service
secval Thedcedsecval service
srvrconf Thedcedsrvrconf service
srvrexec Thedcedsrvrexec service
locks Thedcedlock manager
endpoint Thedcedendpoint mapper service

For example, the string
dhd:**..11,general. .3B:TTEXTFILLE.50.200:/ ttmp/diced LOG

sets the debugging level for alkced sub-componentsekceptgeneral) at 1; generals
level is set at 3. All messages are routedtiop/dced_LOG. No more than 50 log files
are to be written, and no more than 200 messages are to be written to each file.

The texts of all thedced serviceabilitymessages, and the sub-component list, can be
found in thedcedsams file, at:

dce-root-dirdce/src/admin/dced/idl/dhd.sams

For further information about the secaabilitymechanism and API, see Chapter 4 of the
OSF DCE Application Development Guide — Core Componealsme, “Using the
DCE ServiceabilityApplication Interface”.

2-14 January 17, 1997



DCE Programs

2.3 DCE ACL Facility and Backing Store Library

2.3.1 Testing and Verification

The source code for the functional tests for the DCE Backing Store library is located in
the

dce-root-difdce/src/test/dce/utils/acldb/ts/db
subdirectory. The following tests are supplied:
« dce_db_open

« dce_db_close

« dce_db_fetch

« dce_db_store

« dce_db_misc

« dce_db_delete

« dce_db_iter

These programs test the DB APIs implied by their names. They are standalone (no
server) tests which create, manipulate, and delete backing stores in the current directory.

The source code for the functional tests for the DCE ACL facility are located in the
dce-root-difdce/src/test/dce/utils/acldb/ts/acl
subdirectory. The following tests are supplied:
« rdacl_svr_opers
Tests thedacl_* routines.
« dce_acl_perm_fcns
Tests thedce_acl_*permissions-related routines.
« dce_acl_conv_fcns
Tests thadce_acl_*convenience routines.
« acl_setup

This module implements the setup routines for the DCE ACL functional tests.
FVT’s.

Each of the test suites attempts to add a principal and account, tedlegrincl, which
they need. The setup script logs ina@dl_admin and sets an ACL on

/.:/hostshost_name

January 17, 1997 a5



DCE Testing Guide

in preparation for the tests.

2.3.1.1 Running the Tests

To run the Backing Store or ACL library tests, do the following:

cd dce-root-dirdce/installplatform/dcetest/dcel.2.2/test/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/bin:$PATH

tcc -e functional/dce/utils/acldbtest_suite_name

wheretest_suite_namis one of the suites listed in the TET scenario file located at:

dce-root-dirdce/installplatform/dcetest/dcel.2.2/test/tet/functional/dce/utils/acldb/tet_scen

Note that the above sequence of commands assumes that the tests have been installed in
their default location (by ODE) and that you wish to run them from that location.
However, the

dce-root-dirdce/installplatform/dcetest/dcel.2.2

test tree is self-contained (insofar as the tests and TET are concerned), and can be copied
to any other preferred location on your system, and executed from there. If you do this,
the first step given above becomes the following three steps:

cd dce-root-dirdce/installplatform/dcetest
cp -rdcel.2.2your_test tree

cdyour_test_tree

If you execute the tests from their default installed location, test results will be found at:
dce-root-dirdce/installplatfornydcetest/dcel.2.2/test/tet/functional/dce/utils/acldb/resulisdss_nfjournal

wherepass_nris the number of the test iteration whose results are being written. The
results subdirectory is created by TET in the subdirectory specifiededto the tcc
command, as shown above. For further information about TET output, see “Overview of
TET Use” in Chapter 11.

2-16 January 17, 1997



Chapter 3. DCE Threads

DCE Threads is a POSIX 1003.4a-compliant threading service which allows an
application to create separate threads of execution within a process. These threads have
low startup overhead and can share data among themselves.

The DCE Remote Procedure Call (RPC) service uses threads to let servers communicate
with multiple clients concurrently. Many of the server functions in DCE use threads to
allow simultaneous communication with multiple clients and for the concurrent
processing of data while waiting for I/O operations to complete.

3.1 Testing and Verification

Nineteen types of DCE Threads tests are shipped with DCE. These tests are described
below.

3.1.1 Installing Threads Functional Tests with dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guidieetest_config

will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocglto that location.

The functional tests for a given component will thus be installed under a:
/dcetest/dcelocal/testomponent_nanie

directory, where thdestcomponent_namelements of this path are equivalent to the
testicomponent_namelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locatiorfrom whichthe tests should be
installed (in other words, the location of the built test tree). If you are installing the DCE

January 17, 1997 a4



DCE Testing Guide

Threads functional tests, you should give the pathname of the Bi§fHEree, not the
install tree, even though the prompt message contains as an example an install tree
pathname. For example:

Figure 3-1. Supplying Threads Test Install-from Location

Locatiioon of DCE Test |Imstaall| BBimariiees

1. il leesysteem
2. NWedisa

98. FRetwrm tm preevioous menu
99. Hexitt

seleectiioon: 1

Enteer ttthe fwilll ppatth too tthe DCE bimnany imstzall | ttrrece.
Thiss wil ll| bbe trhe dirreectoony tthat ccontaaims thhe

.../ [<BULLD>fi imsttaall I/ /<mecthinmetyype>/ddceteest/ /dcel. 2.2
dirreectooryy:  /myproject/dce/dcel.2.2/obj

Thus,dcetest_configwill install the DCE Threads functional tests at:
/dcetest/dcelocal/test/threads/

where /dcetest/dcelocalis the link to whatever path you supplied as the install
destination.

The advantage in usingcetest_configo install the functional tests is that it will install
all that is needed andnly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlynstall (if you choose) functional tests witticetest_config for
test configuration and execution you must follow the instructions in the sections below.

Refer to Chapter 11 of this guide for further information on usiogtest_config

3.1.2 Testing Dependencies

3-2

Several of the test cases require the presence of Berkeley 1/O, particulartinteé)
system call. If you are porting to an operating system that is not compatible with the
Berkeley Software Distribution (BSD) UNIX, you must link a compatibility library with

the test cases for them to work properly. The test cases also make use of the ANSI C
functionatexit(). If your system does not support this function, you will have to provide
an equivalent.

Note that one of the Threads test casesvb_nbi_005 which testscma_fcntl()) uses
lockd to create a write lock for a file which it uses. If the file is NFS-mounted, the test
will hang forever at this point ifockd andstatd are not running on both the local and

January 17, 1997



DCE Threads

remote machines. This means that you may have to make sure that the test is run on only
one machine if your platform does not supplatkd and statd (which is the case with
the OSF/1 platform).

Note: Both reference platforms require that a compatibility library be used.

3.1.3 Threads Test Case Categories

The following sections describe categories of testing done for threads, and a brief
description of the coverage of each category.

3.1.3.1 Test Case Naming Format

DCE Threads tests are named using the following format:
4 alphabetic characters,
a dash,
3 alphabetic characters,
a dash,
3 alphabetic characters.

For example,
abcd-efg-hij

is a test name where each of the following characters represents a certain type of test:
a C for tests using the CMA Threads interface
P for tests using the PThreads (POSIX) interface

E for “extended” test, which may apply to Pthreads entry
points, or to CMA threads entry points that are visible to them.
Tests starting with E examine thread operation under error,
exception, or excess conditions, such as writes to broken pipes,
or situations where thread operations exceed process limits.

b V for VMS specific test
U for U*IX specific test
R for reference implementation (portable) test

c P for performance test
Q for performance test using internal inteces
R for regression test
U for unit test using internal inteates
V for validation test

d B for batch mode test
| for interactive test (for example, needs user input)

January 17, 1997 -3



DCE Testing Guide

3-4

e, f, andg

h, i, and]j

The test topic. Tests having more than one topic have 3

additional characters (for examplabcd-efg-efg-hi). Topics
have the following meanings:

ALT
AQO
ATT

CAN
CVX

ERR
EXC
HAN
INI
MUT
NBI
OBJ
PTC
SAM
SIG
STK
THD
TIM
WRP

Alerts

Atomic queue operation
Attributes objects
Pthread cancel

Condition variable operations, including barrier
operations

Error reporting

Exceptions

Handles

One-time initialization

Mutex operations
Nonblocking (UNIX) I/O
Dynamic object management
Per threads context

Sample (or example) programs
U*IX signal handling

Stacks

Threads operations

Timer operations

Unix wrapper routines

The sequence number of each test. Tests whose names differ

only by this number typically exercise the same operations.
However, they usually are not versions or revisions of each
other, and may exercise the same operations quite differently.

For examplecrub_err_001 is an actual test name, specifying that it:

is a CMA test

is portable

is a unit test that uses internal inteces

is a batch mode test

is testing error reporting

is number 1 in the sequence of tests of this kind.

January 17, 1997



3.1.3.2 Test Topic Abbreviations

DCE Threads

The test topic abbreviations, representeddby in the preceding test name example,
specify test cases with the following functions:

Alerts (ALT)

These test cases attempt to alert threads with and
without exception handlers and verify correct thread exit
or handling. They alert compute-bound threads and
threads in atimed_wait state and also ensure that
deferred and synchronous alerts work.

Atomic Queue Operation (AQO)

Attributes Objects (ATT)

Pthread Cancel (CAN)

Condition Variables (CVX)

Error Reporting (ERR)

Exception Handling (EXC)

Handles (HAN)

One Time Initialization (INI)

Mutex Operations (MUT)

Nonblocking UNIX I/O (NBI)

January 17, 1997

Exercise the Atomic Queue Operations of the CMA
library services. The operations are currently available
only on VMS and are not part of DCE.

Verify that attribute objects can be created and deleted
for both default and specified values. They check
deferred delete, cache sequencing, and cache
reclamation and also verify locking during attribute
deletion.

Test the functionality of the thread cancellation
mechanism that allows a thread to terminate the
execution of any other thread in the process in a
controlled manner.

Measure wait/signal performance time when condition
variables are used. They also verify timed wait
functionality.

Ensure that callingma__error or cma__bugcheck
causes process termination and confirm the ability of the
functions to raise warning and failure exceptions. Error
return values are also ensured as per-thread.

Force various exceptions, including address and status
exceptions, which are handled per-thread.

Verify that the thread handle size is static.

Use one-time initialization and ensure that it executes
only once.

Lock and unlock a mutex, both with a single thread and
with multiple threads, while measuring elapsed time.
Threads attempt to lock and unlock mutexes to which
they do not have access, as well as friendly mutexes.
They also test nested locks and use global locks to gain
exclusive access to libraries.

Test the wrapper routines for the UNIX I/O system calls.
These wrapper routines provide thread-synchronous 1/0
through the use of select and nonblocking I/O mode.
This category verifies system calls such agen()

)



DCE Testing Guide

3.14

3-6

close() andselect() File descriptors need to be shared
between threads.

Object Management (OBJ) Test management of various dynamically allocated data
objects, such as thread control blocks, mutexes, and
condition variables.

Per Thread Context (PTC) Use a PTC destructor that locks a TCB, which ensures
proper behavior. A batch of threads is created with a
context associated with them, and proper behavior of
yields is verified.

Sample Program (SAM) Demonstrate the use of threads. It creates 10 threads,
terminates the odd-numbered threads with an alert, and
allows even-numbered threads to terminate normally.

Signal Handling (SIG) Test asynchronous, synchronous, terminating, and
nonterminating signals. The tests send all possible
signals and verify correct behavior.

Stack Handling (STK) Test the stack management services. Stacks are created,
deleted, reassigned, alternated, and shared.
Multithreaded operations are used on stacks. One test
case also checks limits by touching a stack guard page
to simulate a stack overflow by a thread.

Thread Operations (THD) Measure thread creation time, thread yield performance
time, and time elapsed during a context switch. They
also measure the time-slicing algorithm performance
and ensure thdahread_exit operations affect the current
thread only. Use varying process priorities and policies
when creating threads.

Timing (TIM) Verify timed waits.

UNIX Wrapper Routines (WRP) Test the implementation of CMA wrapper routines
around certain UNIX system calls, particularly /O calls
andfork() .

Test Case Execution

To execute the test cases, no parameters are required. A shell soripst, is provided
for serial execution. This script can be found in the

dce-root-difdce/objimachinetypéest/threads

directory, wheremachinetypds your system type (for exampleps or mips). The test
cases can be executed individually by entering the test case name on the command line.

Note: Any tests with “i” as the fourth character (such awvi_sig 003
cuvi_nbi_004 and puvi_nbi_004) are not executed byuntest because
they are interactive and must be invoked manually.

January 17, 1997



DCE Threads

3.1.5 Test Case Results

Standard output for a successful execution includBASSED message. Some test cases,
however, deliberately cause abnormal program termination, and may cause core dumps.
The following test cases have nonstandard output:

« crub_err_001, crub_err_002, crub_err_003
These tests correctly return a core dump.
« crvb_exc_ 001

The first 10 loops of this test complete with the message
Norma ffaall | ttthroough ENDIRY.

The eleventh loop correctly terminates with a core dump.

« crvb_sam_001prvb_sam_001
Even-numbered threads exit normally; odd-numbered threads exit prematurely due to
an alert. The test then prints

Proograam aver..

Note: In DCE 1.0.1, theprvb_sam_001test does not output the normal
header and trailer lines (START and PASSED). However, the test does
run correctly.

« crvb_thd_007
This test generates reports that must be verified manually for schedulmgacy.
« crvi_exc_001 prvi_exc 001

These tests require that theCtrl-Y> debug sequence be entered during test case
execution.

3.1.6 Test Plans

Refer to Chapter 1 of th©SF DCE Release Notéar the location of the DCE test plans
on the DCE distribution tape.

3.2 Debugging DCE Threads

In the course of porting DCE Threads, you will probably need to debug applications that
make use of them. These applications could be threads functional tests, DCE component
programs, or applications of your own design. Because any application that uses DCE

January 17, 1997 g



DCE Testing Guide

Threads maintains execution state for multiple threads of execution, it will probably
confuse your current debugger, unless the debugger has already been extended to
understand the current DCE Threads implementation.

The amount of work necessary to extend your debugger to work correctly with DCE
Threads applications will naturally depend on which one you use. Essentially, the
debugger must relate the execution state of the currently-running thread to the tables
internal to DCE Threads thatprovide information on all threads. Ideally, the debugger
should also permit you to find out information on threads that are not currently running.

A simple example of such capabilities is described in the following section. It consists
of additions that can be made to a standard, non-thread-aware vergjdhb, @f order to
find out information about the currently-executing thread in a DCE Threads application.

3.2.1 Debugging with gdb

gdb is not aware of DCE Threads, how threads affect the stack, multiple contexts, or
breakpointing in a particular thread. However, it is possible to find out which thread you
are currently executing in witgdb. Calling the internal DCE Threads routine:

cm@__get selff toch())

will return a pointer to the current thread’s TCB (thread control block).

The “.gdbinit File” section below contains a listing for.gdbinit file that contains three
commands for identifying the currently executing thread.

The commangbthd uses a fixed offset into the TCB to print the thread’s “sequence,” or
identifier. This integer identifier is the number output by DCE Threads to identify the
thread to which a particular error or status message applies.pifite command is
probably the one you will use the most from this package.

Note: This fixed offset may be DCE Threads-revision dependent, but is not likely
to cause problems in the near future.

The pthdx command prints this same thread sequence integer, but requires the module to
have included<cma.h>and<cma_tcb.h>and to be compiled with symbol information

(-0). This is a cleaner way to use the package, but most modules will not have
<cma_tch.h>included.

Finally, the commangtcb simply prints a pointer to the TCB. Likpthd, this command
does not require your program to be built with any CMA symbols.

3.2.1.1 Breakpointing in a Particular Thread

You can use gdb condition on a breakpoint to stop on a particular statement in a
particular thread. To do this easily, you should inclsaena.h>and<cma_tch.h>in the
module. For example, doing the following:

3-8 January 17, 1997



DCE Threads

break 180
condition 1 (cma__get_self _tcb () -> header.sequence == 15)

will stop execution on Line 180 of the current source file, whenever thread 15 is
executing. (It is not possible to write.gdbinit macro to do this breakpointingebause
gdb macros are not able to take arguments, such as line number or thread ID.)

3.2.1.2 The .gdbinit File

Put the following into a file calledgdbinit in your home directory:

defiime pthhd
xixx (cm@_get selff tccib()) + 8)
end

document ptthd
Primtss tthe CMA threead iddentiiffiieer iim tthe TCB in a praogram
comyil leed wittthout ddebug symitolss.

NB Trhiss command may lbe CMA reev dependent!!!!
end

defiime ptthdx

priimt ((cm@a_t it _toch *) cm@  get  selff tcib()))) --> header..ssequence
end

document ptthdx

Priimtss tthe CMA threead iddentiif fiieer iim trhe TCB
end

defiime ptcacih

priimt//aa cme@a__get selff tach())

end

document ptccih

Primtss tthe addreess of tthhiss thhreead’ss TCB
end

3.2.1.3 Debugging Shared Object Core Files

One approach to the problem of debugging core files generated with shared objects is as
follows. Begin by invokinggdb:

January 17, 1997 -3



DCE Testing Guide

%gdb program_to_be_debuggexbre

(If the application dumped core while executing code in a shared library rogite,
will at this point incorrectly report the name of the routine.) Continue as follows:

(gpdb) break main

(gpdb) run

(@db) kill

Killll ttthe imfecriicor process? (yy or m) y
(qgdb) where

—and at this point a correct backtrace will be produced.

While this may not be the best solution to the problem of debugging with shared objects,
running the application and breakingratin does allowgdb to build the shared object
symbol tables needed for a backtrace from the core file.

3.2.2 Debugging with dbx

3-10

This section contains code for three DCE Threads-avedme commands for Ultrix,
implemented aslbx scripts. Thesealbx scripts will allow you to display the call frames
of each DCE thread in a process. You can also continue execution after doing this.

Note: To use these scripts to debug a DCE application, you must have built the
application with a DCE Threads library with symbols (that is, with the
flag), and you must usgbx.

Following is the code fodbx_cma_stack_dump

#

#

set $dbxtach = (sstrruct COMR T INNT_TCB *)((((iimt))($dbxqueue) -- \\
(iinnt) )((B((((sstrrwict: MR T_INNT_TCBY)®)-->trhresads)))))

#

set $dbxsp = ((strruct MR T_INNT_TCB *)$dbxtocib). .ssteati icc ctxx.ssp

H#>>>

#>>> The fooll loowimg nunitierss obtaimed frraom /lustr//iinncluude/ssetj jnmphh
H#>>>

assiggn $s0 = *($addreess)((dbxsp + 19 * 41)
assiggn $sl = *($address)(dbxsp + 20 * 4)
assiggn $s2 = *($address)(Hdbxsp + 21 * 4)
assiggn $s3 = *($baddreess)((dbxsp + 22 * 41)
assiggn $s4 = *($addreess)((dbxsp + 23 * 41)
assiggn $sb = *($baddreess)((Bdbxsp + 24 * 41)
assiggn $s6 = *($addreess)(Hdbxsp + 25 * 4)
assiggn $s7 = *($addreess)(Hdbxsp + 26 * 4)
assiggn $s8 = *($baddreess)((dbxsp + 33 * 41)
assiggn $raa = *($addreess)(Hdbxsp + 34 * 4)

January 17, 1997



DCE Threads

assiggn $pc = *(Saddreess)(Sdbxsp + 34 * 4)

assiggn $sp = $dbxsp + 332
#>>> 332 shouldd be (_JBLEN = 84) * 4

wheres

set $dbxqueue = (((strrwct CMA T QUBLE *)%dbxgueue)-->fl li imk
#

#

Following is the code fodbx_cma_stack _dump_init

#
#
set $dbxhpc = $pc
set Sdbxhsp = $sp

set $dbxihs0 = $s0
set $dbxhsl = $s1
set $dbxhs2 = $s2
set $dbxihs3 = $s3
set $dbxis4 = $s4
set $dbxihss = $s5
set $dbxhsé = $s6
set $dbxhs7 = $s7
set $dbxihs8 = $s8
set $dbxira = $ra

set $dbxptrr = (&cma g kmown_threeads.qjueue)

set $dbxqueue = (((strruct CMRA T _QUBUE *)$dbxjptrr))-->>fi li imk
set $dbxtthdungimitt = 1;

#

#

Following is the code fodbx_cma_stack _dump_restore

#

#

assiggn $pc = $dbxihpc
assiggn $sp = $dbxhsp
assiggn $s0 = $dbxhs0
assiggn $s1 = $dbxhsl
assiggn $s2 = $dbxhs2
assiggn $s3 = $dbxhs3
assiggn $s4 = $dbxhs4
assiggn $s5 = $dbxhsb
assiggn $s6 = $dbxhs6
assiggn $s7 = $dbxhs7
assiggn $s8 = $dbxhs8
assiggn $raa = $dbxhra
set $dbxtthdumgmitt = 0
#

#

January 17, 1997 41



DCE Testing Guide

3.2.2.1 Description of dox Commands

Following is a description of what each of the three commands will do:
« dbx_cma_stack_dump_init

dbx_cma_stack_dump_initwill save some context and setup a pointer to the DCE
Thread control block linked list. It does not display anything.

« dbx_cma_stack_dump

dbx_cma_stack _dumpwill dump the stack of a thread using thdbx “where”
command. It will then increment the pointer to the next thread control block. Running
dbx_cma_stack _dumpagain will result in this thread’s stack being dumped and the
pointer being set to point to the next thread control block. The thread control block
linked list is circular: If executingdbx_cma_stack_dump causes numerous
simultaneous memory violations, this means that the pointer has looped around to the
front of the list. A subsequent invocation dibx_cma_stack_dumpwill then display

the first thread on the list again, and so on.

« dbx_cma_stack_dump_restore

dbx_cma_stack dump_restore will restore the context saved in
dbx_cma_stack _dump_init thus allowing you to use thedbx ‘“continue”
command.

3.2.2.2 Example

The following sample command lines are excerpted from a possliimesession, and
demonstrate how the three scripts should be invoked:

dbx> record output cma_dbx_stack _dump.log
dbx> source<location>/cma_dbx_stack _dump_init

dbx> source<location>/cma_dbx_stack _dump

dbx> source<location>/cma_dbx_stack _dump

3-12 January 17, 1997



DCE Threads

dbx> source<location>/cma_dbx_stack _dump_restore

dbx> continue

January 17, 1997 a3



Chapter 4. DCE Remote Procedure Call

4.1 Overview

The DCE Remote Procedure Call (RPC) facility is a network protocol used in distributed
systems. RPC is modeled after the local procedure call found in most programming
languages, but the called procedure is executed in a different process from that of the
caller, and is usually executed on another machine. The RPC facility makes the
construction of distributed systems easier because developers can focus on the
fundamentals of building distributed applications, instead of the underlying
communication mechanisms.

Making a remote procedure call involves five different bodies of code:
« the client application
« the client stub
« the RPC runtime library
- the server stub
« the server application

The client and server stubs are created by compiling a description of the remote interface
with the DCE Interface Definition Language (IDL) compiler. The client application, the
client stub, and one instance of the RPC runtime library all execute in the caller machine;
the server application, the server stub, and another instance of the RPC runtime library
execute in the called (server) machine.

January 17, 1997 4



DCE Testing Guide

4.2 Setup, Testing, and Verification

The following types of RPC test cases are shipped with DCE:
« IDL compiler tests (for testing compiled stubs)
« RPC application tests
« KRPC application tests
« RPC runtime library and IDL compiler tests

Before running the RPC runtime library and IDL compiler Name Service Interface (NSI)

test cases, you must configure the namespace and start the namespace daemon and clerk.
See the section on CDS setup in Chapter 5 of this guide for more information on
configuring and starting CDS.

Before running the RPC runtime library and IDL compiler RPC authentication test cases,
the DCE Security Service must be configured properly. See the section on DCE Security
Service setup in Chapter 8 of this guide for more information on configuring and starting

DCE Security Service.

Note: These setup steps are not required prior to running the IDL compiler tests.
They may be tested once their code has been built.

4.2.1 Installing RPC Functional Testswith dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guidieetest_config

will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocglto that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/testomponent_nanie

directory, where thdestcomponent_namelements of this path are equivalent to the
testicomponent_namelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locatiorfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the RPC functional
tests, this path should be the location, on your machine, of:

dce-root-dirdce/install

—which is the DCEnstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of th@SF DCE Release Notes

Thus,dcetest_configwill install the RPC functional tests at:

/dcetest/dcelocal/test/rpc/

4-2 January 17, 1997



DCE Remote Procedure Call

where /dcetest/dcelocalis the link to whatever path you supplied as the install
destination.

The advantage in usingcetest_configo install the functional tests is that it will install
all that is needed andnly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlynstall (if you choose) functional tests witticetest_config for
test configuration and execution you must follow the instructions in the sections below.

Refer to Chapter 11 of this guide for further information on usiogtest_config

4.2.2 RPC Setup

The following steps are necessary in order to run peef and v2test tests in normal
configuration (that is, using the namespace to handle binding information). If you are
testing only with full string bindings, the following steps are netassary.

To configure RPC for OSE DCE Version 1.2.2 testing, do the following:
1. Make sure that
/opt/dcel.2.2/etc/cds_attributes
is available from the DCE CDS component.
Make sure that thécedendpoint map service is running.

3. You can optionally configure DCE CDS famandidl nhame service tests and DCE
Security Service for authenticated RPC testing. For more information on
configuring these components, see the sections on component setup in the CDS
and Security Service chapters of this guide.

4.2.3 RPC Application Tests

The following test cases are shipped with DCE to test the user-mode version of RPC:
. perf
+ V2test

The source code for these test cases can be found inpéne and v2test lib
subdirectories of the

dce-root-dirdce/src/test/rpc/runtime
directory of the DCE source tree.

Both of these test cases let you test authenticated remote procedure calls. However,
running authenticated RPC requires special configuration of both the client and server
machines. See Chapter 8 of this guide for information on how to perform this
configuration.

January 17, 1997 -3



DCE Testing Guide

4.2.3.1 The perf Tests

4-4

The perf test case tests a larger subset of the RPC runtime libraryv2@st You must

start theperf server as one process and then start theaf client as another process
before running theerf test case. These processes can be run on the same or different
hosts, as long as the server process is started firstsditver andclient can be found in

the

dce-root-dirdce/installimachinédcetest/dcel.2.2/test/rpc/runtime/perf

directory. (Note that the contents of this directory are built from the contents of the
dce-root-dirdce/src/test/rpc/runtime/perf

directory in the source tree.)

To test using theerf test case, make a number of remote procedure calls frompdtfe
client to theperf server. Theperf server waits for remote procedure calls from peef
client and then gives a response. Tperf server then prints messages that give the
results of the remote procedure call. To fully test usiperf test, use different
combinations ofperf server andperf client testing options and observe the resulting
messages.

To start theserver, enter
server 1 ncadg_ip_udp
or:
server 1 ncacn_ip_tcp
at the command line. The following message will be printed:
Ga Bimdinng: mcadg _ipp_udp: ip_addf port]

whereip_addris the IP address of the server gmatt is the number of the port the server
is listening to.

To start theclient, enter a command similar to the following:
client 1 ncadg_ip_udpip_addf{port] 10 5ny 100
or:
client 1 ncacn_ip_tcpip_addfiport] 10 5 ny 100
at the command line, wheip_addris the IP address of the server (printed out when you

started the server) amubrt is the port number that the server is listening to (printed out
when you started the server).

See the
dce-root-dirdce/src/test/rpc/runtime/perffREADME

January 17, 1997



DCE Remote Procedure Call

file for further information, including information about several scripts that can be used

to run theperf tests.

4.2.3.1.1 Help Messages

You can get help messages on how to invoke bothséwer and client programs by
entering the program name at the command line with no arguments. You can get
additional help on a specifidient test case by entering the program name followed by
the test number. For example, enterglignt 2 prints help on test number 2.

4.2.3.1.2 The perf server Program

Theperf server testing options are listed below:

server [-sD] [-S server_loops] [-dswitch_leve] [-p auth_proto, principal [keytab_filg]

[-v{0]1}]

[-B bufsizé max_calls protseq_spédprotseq_spec ]..

where:

-S

-D

-Sserver_loops

-d switch_level

January 17, 1997

Enables remote shutdown of the server. This parameter is
optional, and is currently not implemented.

This optional parameter specifies the default level of debug
output.

Specifies the number of times to run the server listen loop. If no
value is specified for theerver_loopgparameter, the default value

is 1.

This optional parameter lets you specify the amount of debug
output desired. Some usefuswitch_level settings are the
following:

0-3.5 Maximum error/anomalous condition reporting
and mutex checking. This amount of output is
often too verbose for normal use. Also, there is
extra overhead for mutex checking.

0-1.10 Same function as 0-3.5, but drops some
transmit/receive informational messages.

2-3.4 Same function as 0-1.10.

0.10 Reports all error conditions plus a little more; no
mutex checking.

0.1 Report error conditions only (same as specifying
-d).

_,6



DCE Testing Guide

P

auth_proto

principal

-vO

-v1

bufsize

max_calls

protseq_spec

Specifies an authenticated RPC call. You must enter -the
parameter with theauth_proto parameter and theprincipal
parameter.

Specifies which authentication service to use when the server
receives a remote procedure call. The following values are valid
for auth_proto

0 No authentication is used.

1 OSF DCE private key authentication is used.

2 OSF DCE public key authentication is used. This
parameter is reserved for future use and is not yet
supported.

Note that if private key authentication is desired, a keytab file
must be set up (with thegy_edit ktadd command) before the
server program is run. Otherwise, the server will display the
following message at startup:

e fErroor ssetttiinng priimncippal -- ARequesteed key iiss wnavail leeblee (dice/ssec)

and terminate.

Specifies the principal name of the server to use when
authenticating remote procedure calls. The content of the name
and its syntax are defined by the authentication service in use.

Enables verbose output.

Disables verbose output. Verbose output is disabled by default if
no-v flag is used wittperf server.

Sets the connection-oriented protocol socket buffer size, specified
in bytes.

Specifies the number of threads that are created to service
requests.

Specifies one of the following:

protocol_sequence

Tells the server to listen for remote procedure
calls using the specified protocol sequence (for
example, network protocol) combined with the
endpoint information irperf.idl. Valid values for
this argument are described in the discussion of
the v2server program. The server calls
rpc_server_use_protseq_if to register the
protocol sequence with the RPC runtime.

all Tells the server to listen for remote procedure
calls using all supported protocol sequences. The
RPC runtime creates a different binding handle

January 17, 1997



allif

DCE Remote Procedure Call

for each protocol sequence. Each binding handle
contains an endpoint dynamically generated by
the RPC runtime. The server calls
rpc_server_use_all_protseqso accomplish this.

Tells the server to listen for remote procedure
calls using all the specified protocol sequences
and endpoint information iperf.idl. The server
uses rpc_server_use_all_protsegs_if to
accomplish this.

ep protocol_sequence endpoint

Tells the server to listen for remote procedure
calls using the specified protocol sequence and
endpoint  information  (for example, ep
ncadg_ip_udp 200Q. The server calls
rpc_server_use_protseq_efo accomplish this.

notif protocol_sequence

4.2.3.1.3 The perf client Program

Tells the server to listen for remote procedure
calls using the specified protocol sequence. The
RPC runtime dynamically generates the endpoint.
The server callsrpc_server_use_protseqto
accomplish this.

the perf client testing options are listed below:

client [-Disf] [-d switch_leve] [{-m | -M} nthread$[-t timeoui\
[-c timeoul [-w wait_point, wait_sec$
[-p auth_protq authz_protd, level, principal\
[-r frequency[-R frequency [-v {O|1}]\

[-f opf] [-B bufsizé[-o] [-s]\

testtest_parms

where:

-D This optional parameter specifies the default level of debug
output.

i This optional parameter causes statistics to be dumped at the end
of the test.

-S This optional parameter prints statistics at the end of the test.

-0 Specifies thaperf object UUID be used in bindings (default is
that no object UUID is used).

-f Repeats the test afterfark() .

-d switch_level Lets you specify the amount of debug output desired. Some useful

switch_levelsettings are the following:

January 17, 1997



DCE Testing Guide

-m nthreads

-M nthreads

-t timeout

-c timeout

0-3.5 Maximum error/anomalous condition reporting
and mutex checking. This amount of output is
often too verbose for normal use. Also, there is
extra overhead for mutex checking.

0-1.10 Same function as 0-3.5, but drops some
transmit/receive informational messages.

2-3.4 Same function as 0-1.10.

0.10 Reports all error conditions plus a little more; no
mutex checking.

0.1 Report error conditions only (same as specifying
-d).

This optional parameter causeshreadstasks to be run at the
same time.

This optional parameter has the same function as dime
parameter, but uses a shared binding handle.

Sets the communications timeout valuetitmeoutseconds. The
value specified fotimeoutmust be between zero and ten.

Sets the cancel timeout valuetimeoutseconds.

-w wait_point, wait_secs

P

-r frequency

-R frequency

auth_proto

authz_proto

Causes the client to wait at theait_pointfor wait_secsseconds.

Specifies an authenticated RPC call. You must enter the
auth_protoand authz_protoparameters when using; the level
andprincipal parameters are optional.

Resets bindings evefyequencynumber of calls in a single pass.

Recreates bindings evefyequencynumber of calls in a single
pass.

Specifies which authentication service to use. The following
values are valid foauth_proto

0 No authentication is used.

1 OSF DCE private key authentication is used.

2 OSF DCE public key authentication is used. This
parameter is reserved for future use and is not yet
supported.

Specifies the authorization service implemented by the server.
The following values are valid fauthz_proto

0 The server performs no authorization.

1 Server performs authorization based on the client
principal name.

2 Server performs authorization checking using the client
DCE privilege attribute certificate (PAC) information sent
to the server with each remote procedure call.

January 17, 1997



DCE Remote Procedure Call

level Specifies the level of authentication to be performed on remote

procedure calls. The following values are valid fevel:

0 Use the default authentication level for the specified
authentication service.

1 Perform no authentication.

2 Authenticate only when the client first establishes a
relationship with the server (only on "connect.")

3 Authenticate only at the beginning of each remote
procedure call.

4 Authenticate that all data received is from the expected
client.

5 Authenticate that none of the data transferred between

client and server has been modified.

6 Authentication includes all previous levels as well as
encrypting each remote procedure call argument.

principal Specifies the expected principal name of the server. The content
of the name and its syntax are defined by the authentication
service in use.

-v0 Enables verbose output.
-v1 Disables verbose output. Verbose output is disabled by default if
no-v flag is used wittperf client.
-f opt Repeats test after forkopt is a digit from 1 to 6, with the
following meanings:
1 Repeat test in the original and child processes.
2 Repeat test in the original process only.
3 Repeat test in the child process only.
4 Repeat test in the child and grandchild processes.
5 Repeat test in the grandchild process only.
6 Run test in the child process only.
-B bufsize Sets the connection-oriented protocol TCP socket buffer size,
wherebufsizeis the desired size, specified in bytes.
test Specifies which test to run. Each test requires different
test_parmsThe following values are valid fdest
0 Null call
1 Variable-length input argument
2 Variable-length output argument
3 Broadcast test
4 Maybe test

January 17, 1997 -9



DCE Testing Guide

5 Broadcast/maybe test
6 Floating-point test
7 Call unregistered server interface
8 Forwarding test
9 Exception test
10 Slow call
11 Shutdown server
12 Callback Note: This test is not supported.)
13 Generic interface test
14 Context test
15 Static cancel test
16 Statistics test
17 Interface identifiers test
18 One shot test
test_parms The followingtest_parmscorrespond to the test numbers:
Nr Test Parms
0 string_binding passes calls/pass verify? idempotent?

1 string_binding passes calls/pass verify? idempotent?
nbytes

2 string_binding passes calls/pass verify? idempotent?
nbytes

protocol_sequence

string_binding

protocol_sequence

string_binding passes calls/pass verify? idempotent?
string_binding

string_binding global?

© 00 N oo 0o b~ W

string_binding

10 string_binding passes calls/pass verify? idempotent?
seconds [mode]

11 string_binding
12 string_binding passes callbacks/pass idempotent?
13 string_binding

14 Host passedie?seconds

4-10 January 17, 1997



January 17, 1997

DCE Remote Procedure Call

15 Host passeislempotent?seconds[cancel_two_seconds]]
16 [host+ep]
17 [host+ep]

18 [host+ep] forward? idempotent?
where:

string_binding
Contains the character representation of a binding in the
form protocol_sequence:network _address[pprilvhere
protocol_sequencis one of the valid protocol sequences
discussed previouslynetwork_addresdss the network
address of the server, ambrt is the port the server is
listening to.

passes
Specifies the number of times to run the test.

calls/pass
Specifies the number of remote calls per pass.

verify?
Specifies whether the test case must verify that there were
no data transmission errors. Enterto verify, n to not
verify.

die?
For the context test, this parameter specifies if the server’s
context is freed at the end of each pass. Enterfree the
context.

idempotent?
Specifies whether or not to place an idempotent or
nonidempotent call (entsrto place an idempotent cai,
to place a nonidempotent call.)

nbytes
Specifies the number of bytes transferred per call.

protocol_sequence
Specifies one or more network protocols that can be used
to communicate with a client. Valid values for this
argument are specified in the discussion of ¥2server
program.

callbacks/pass
Specifies the number of times the server calls back the
client per pass.

seconds
The secondsparameter specifies the number of seconds
the server delays while executing a remote procedure call.
For the context test, this parameter specifies the number of
seconds the client willeepafter it checks if the test was
successful.

41



DCE Testing Guide

mode
For theslow call test, modespecifies the technique used
by perf to slow down the call. The following values are
valid for mode

0 Sleep
1 Slow I/O
2 CPU loop

global
This parameter is currently not checked. It can be set by
enteringy orn.

cancel_two_seconds
Specifies the number of seconds that the client's RPC
runtime will wait for a server to acknowledge a cancel.
Note that the value ofcancel_two_secondsnust be
greater than the value of tleecondsaargument (described
above); otherwise Test 15 cannot be runcessfully.

[host+ep]
Specifies the host IP address and endpoint.

4.2.3.2 The v2test Testcase

4-12

The v2test test suite tests the underlying packet-handling routines of the RPC runtime
library. You must start th@2server program as one process and then startvibdient
program as another process before runningv2testtest suite. These processes can be
run on the same host or on different hosts as long as the server process is started first.
Thev2serverandv2client can be found in the

dce-root-dirdce/installimachinédcetest/dcel.2.2/test/rpc/runtime/v2test lib
directory. (Note that the contents of this directory are built from the contents of the
dce-root-difdce/src/test/rpc/runtime/v2test_lib
directory in the source tree.)

Essentially, thev2test bypasses the IDL stubs to test parts of the underlying RPC
runtime. The following two scripts:

« v2test _tcp.sh
« v2test_udp.sh
contain useful test scenarios.

Note: It is possible to successfully pass illegal combinations of arguments to the
v2tests; the tests should therefore be used carefully.

To test using the2testsuite, make a number of remote procedure calls fronvBaient
to the v2server. The v2server waits for remote procedure calls from tk@client and
then gives a response. Th@server then prints messages that give the results of the

January 17, 1997



DCE Remote Procedure Call

remote procedure call. To fully test usingtest, use different combinations eRserver
andv2client testing options and observe the resulting messages.

To start the server, enter
v2server 1 ncadg_ip_udp
or:
v2server 1 ncacn_ip_tcp
at the command line. A message similar to the following will be printed:
Gat Bimding: mcadg_ipp_udp: ip_addr[port]

whereip_addris the IP address of the server apart is the port number the server is
listening to.

To start the client, enter a command similar to the following:
v2client io ncadg_ip_udpip_addr[port] 10 17 132 0
or:
v2client io ncacn_ip_tcpip_addr[port] 10 17 132 0
at the command line, wheip_addris the IP address of the server (printed out when you

startedv2server) andport is the port number that the server is listening to (also printed
out when you started2server).

You can get help messages on how to invoke bothv@server andv2client programs
by entering the program name at the command line with no arguments.

4.2.3.2.1 The v2server Program

Thev2servertesting options are as follows:

v2server [-Dbce] [-dswitch_leve] [-p auth_prot, auth_nanja
max_calls protocol_sequence

where:

-D This optional parameter specifies the default level of debug
output.

-b Enables a break between the RPC runtime calls.

-C This optional parameter causes the server to call back its clients.

-e This optional parameter causes the server to register its endpoint

with the local location broker daemon, unregister its endpoint, and
print a message indicating whether these operations were

January 17, 1997 43



DCE Testing Guide

successful.

-d switch_level This optional parameter lets you specify the amount of debug
output desired. Some usefuswitch_level settings are the
following:

0-3.5 Maximal error/anomalous condition reporting and
mutex checking. This amount of output is often
too verbose for normal use, and there is extra
overhead for mutex checking.

0-1.10 Same function as 0-3.5, but drops some
transmit/receive informational messages.

2-3.4 Same function as 0-1.10.

0.10 Reports all error conditions plus a little more; no
mutex checking.

0.1 Report error conditions only (same as specifying
-d).
-p Specifies an authenticated RPC call. You must enter -fhe
parameter with thauth_protand theauth_nameparameters.

auth_prot Specifies which authentication service to use. The following
values are valid foauth_prot

0 No authentication is used.
1 OSF DCE private key authentication is used.

2 OSF DCE public key authentication is used. This
parameter is reserved for future use, and is not yet
supported.

auth_name Specifies the principal name of the server. The content of the
name and its syntax are defined by the authentication service in
use.

max_calls Specifies the number of threads that are created to service
requests.

protocol_sequence Specifies one or more network protocols that can be used to
communicate with client applications. The following values are
valid for protocol_sequence

ncacn_ip_tcp NCA connection over Internet Protocol:
Transmission Control Protocol (TCP/IP).

ncadg_ip_udp NCA datagram over Internet Protocol: User
Datagram Protocol (UDP/IP).

4-14 January 17, 1997



DCE Remote Procedure Call

4.2.3.2.2 The v2client Program

Thev2client testing options are listed below:

v2client [-D] [-d switch_leve] [-p auth_prot, authz_proto, level, auth_najne
test string_binding num_calls num_buffs buff_size call_opts

where:
-D

-d switch_level

auth_prot

authz_proto

January 17, 1997

This optional parameter specifies the default level of debug
output.

This optional parameter lets you specify the amount of debug
output desired. Some usefswitch_levelsettings:

0-3.5 Maximum error/anomalous condition reporting
and mutex checking. This amount of output is
often too verbose for normal use, and there is
extra overhead for mutex checking.

0-1.10 Same function as 0-3.5, but drops some
transmit/receive informational messages.

2-3.4 Same function as 0-1.10.

0.10 Reports all error conditions plus a little more; no
mutex checking.

0.1 Reports error conditions only (same as specifying
-d).

Specifies an authenticated RPC call. You must enter -fhe
parameter with th@uth_prof authz_protg level, andauth_name
parameters.

Specifies which authentication service to use. The following
values are valid foauth_prot

0 No authentication is used.

1 OSF DCE private key authentication is used.

2 OSF DCE public key authentication is used. This
parameter is reserved for future use and is not yet
supported.

Specifies the authorization service implemented by the server. The
validity and trustworthiness of authorization data depends on the
authentication service and authentication level selected. The
following values are valid foauthz_prot

0 The server performs no authorization

1 Server performs authorization based on the client
principal name.

2 Server performs authorization checking using the client
DCE privilege attribute certificate (PAC) information sent

45



DCE Testing Guide

4-16

level

auth_name

test

string_binding

num_calls
num_buffs
buff_size

call_opts

to the server with each remote procedure call.

Specifies the level of authentication to be performed on remote
procedure calls. The following values are valid level:

0 Use the default authentication level for the specified
authentication service.

1 Perform no authentication.

2 Authenticate only when the client first establishes a
relationship with the server (only on “connect.”)

3 Authenticate only at the beginning of each remote
procedure call.

4 Authenticate that all data received is from the expected
client.

5 Authenticate that none of the data transferred between

client and server has been modified.

6 Authentication includes all previous levels as well as
encrypting each remote procedure call argument.

Specifies the expected principal nhame of the server. The content
of the name and its syntax are defined by the authentication
service in use.

Specifies one of the following tests:

n Null test. Makes remote procedure calls with no
parameters.

i Input test. Makes remote procedure calls with input
parameters only.

0 Output test. Makes remote procedure calls with output
parameters only.

io Input/Output test. Makes remote procedure calls with both
input and output parameters.

Contains the character representation of a binding in the form
protocol_sequence:network_address[port]

where protocol_sequences one of the valid protocol sequences
discussed previoushynetwork_addresss the network address of
the server, angort is the port the server is listening to.

Specifies the number of tim&2client calls the server.
Specifies the number of buffers that are sent with each call.
Specifies the number of bytes in each buffer.

Specifies one of the following call options:

0 Nonidempotent call

January 17, 1997



DCE Remote Procedure Call

Broadcast call
Idempotent call

Maybe call

o A~ N P

Nonidempotent call; actively keeps communications alive
with the server

9 Broadcast call; actively keeps communications alive with
the server

10 Idempotent call; actively keeps communications alive
with the server

12 Maybe call; actively keeps communications alive with the
server

4.2.4 1DL Compiler Tests

The test cases for IDL data types are found in the
dce-root-dirdce/src/test/rpc/idl

directory. The compatibility testcases are provided for information purposes only; they
do not compile properly. The

dce-root-dirdce/src/test/rpc/id/README
file contains additional information about the test cases.
Before running the IDL tests, be aware of the following:

« The stubs and theerver andclient programs for each test case are built when the
source tree is built.

« The IDL compiler will not report an error if there is nacf file corresponding to an
idl file, so always keep theacf file in the directory where thdouild or make
command is issued.

4.2.4.1 IDL Compiler Testcase Driver

To run the IDL compiler testcase driver, enter:
run_testsrepeat_counf testcase_name ]..

whererepeat_countspecifies the number of times to repeat a test, @stcase _name
specifies the testcase (or testcases ) to run.

To test connection-oriented RPC, you must setRREOTOCOL environment variable to
“ncacn_ip_tcp”; run_testsdefaults this to “ncadg_ip_udp”.

January 17, 1997 47



DCE Testing Guide

4.2.4.2 Running Individual Testcases

4-18

To run a test, you must first start theerver as one process, then start tbient as
another process. These processes can be run on the same or different hosts as long as the
server process is started first.

The server and client processes exist under each built subdirectory (for example, in the
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/rpc/idl/array

directory. In general these build locations correspond to subdirectories in the source tree;
for example, the contents of the subdirectory mentioned just above are built from the
contents of the

dce-root-dirdce/src/test/rpc/idl/array

directory). To start theerver for a test case, enter
server [ - | -f filename] protseq

where - specifies that binding information be written to standard outgufilename
specifies that binding information be written out to the filename and protseq
specifies the protocol sequence (usuailyadg ip_udp or ncadg_ip_tcp used. The
command prints the line

protocol ip_addr port

where protocol is the protocol specified with theerver command,ip_addr is the IP
address of the server, apdrt is the number of the port the server is monitoring. Unless
you specify a name fdilename information is written to a file calletiinding.dat.

To start theclient, enter
client protocol ip_addr port passes

whereprotocol, ip_addr, andport are the values obtained from the output of sesver
command, anghassess the number of times the client calls each remote procedure call
specified in the interface definition.

Enteringserver or client at the command line with no arguments prints a help message
on how to invoke the programs.

The test case automatically generates data and verifies correct data transfer. See the
dce-root-dirdce/src/test/rpc/id/README

file for more information.

Testcases are provided that test:

- Simple data types likechar, byte, and float, as well as structures that can be
transmitted using thpipe data type

« Reference pointers with null or non-null values and directional attributes

January 17, 1997



4243 |

DCE Remote Procedure Call

Reference pointers with directional attributes

The field attribute for arrays

Arrays of pointers and field attributes for arrays specified as pointers
Attributes

DL C++ Tests

The following are tests of the IDL compiler C++ functionality. The source for the tests is
located at:

dce-root-difdce/src/test/rpc/idicxx
account

Tests inheritance, binding to an object using another interface, binding to an object
with an unsupported interface, and the reflexive, symmetric, and transitive relation
properties of thebind() API. A Savings interface is derived from amccount
interface. AnowAccount implementation class is derived from tigavings and
Checking interfaces. AnoldAccount implementation class is derived from the
Savings but not theChecking class which implies that anldAccount does not
support aChecking interface.

account?2

Tests the same properties ascountbut combines the client and server stubs in the
test to also verify a local object with multiple interfaces as an RPC argument.

accountc
Tests the same propertiesacountbut uses the C interfaces for all the APIs.
bind

Tests the bind() APIs for binding to named objects; specifically, the
bind((unsigned_char_t *)), bind(uuid &) andbind(rpc_binding_handle_t) APlIs.

card

Tests the passing of C++ objects as parameters usirfgitkedelegate]attribute and
the polymorphism property of the base classPhRyer implementation class is a
generic sports card class. Derived frdttayer are aBaseballPlayerclass and a

BasketballPlayer class. The application interfaces with tRéayer class to invoke
virtual operations in the derived classes.

handle

Tests the invocation of a remote static procedure using explicit and implicit handles.
The operations are really remote construct@icxx_new]) which are static by
definition.

local_object

Tests thdlocal] IDL attribute in conjunction with inheritance to verify side casts in a
C++ class hierarchy. No RPC calls are made and the server is just a copy of the client

January 17, 1997 419



DCE Testing Guide

4-20

executable to be compatible with the test environment. C++ itself does not support
side casts, but IDL helps get around this problem with the object_reference
base class and thpc_object_reference::bind(rpc_object_reference *)API.

lookup

Tests the[cxx_lookup] attribute and the passing of @c_x_object_not found
exception from the server to the client.

matrix

Tests many different basic features, such as: local and remote objects as parameters;
structures; arrays and unions containing interfaces as paramétadt})) APIs;
registering named objects; and so on.

matrixc
Tests the basic C interfaces to member functions and IDL generated APIs.
native

Tests passing a native C++ object as a parameter usinjgeipeesent_as]attribute.

A system supplied C+5tring object is passed as an RPC argument. (This test is
used as a model in the pageaissing C++ Objects as DCE RPC Parametéam the

IDL WWW home page, and is included in the WWW examples link.)

refcnt

Tests the reference counting APIs and validates that the Object Table is maintained
properly on the server by creating lots of remote dynamic objects, and then deleting
them.

refmon

Tests the rpc_object_reference::get_binding_handle() and
rpc_object_reference::secure(APIs and uses a reference monitor. The client must
be logged into DCE in order to run this test. Titeémon.pwd contains the principal’s
passwords for thgail , idl andxidl cells. To port this test to another cell will require
adding the password t@fmon.pwd and creating a DCE principaéfmon_testwith

the password “dce”. During DCE 1.2.2 testing the client was run as follows:

dce_login refmon_test dce -exec client

retry

Tests the retry feature of a client proxy object. The server executable file produced by
the make file is a script that runs two server processes in the background using 2
different protocols. The client connects to one of the server processes. That server
process then exits. The client then tries to connect to the same process again; this
fails. The client then selects another binding handle to communicate with the second
server process. (The client and servers are synchronizedpttitbad_delay np()

rather tharsleep()because of a bug in th&deep()API on VMS, causing it to wake

up prematurely.)

stack

Tests the passing of C++ objects as parameters usirfgitkedelegate]attribute and
a user definedtack class. This test implements a reverse Polish notation algorithm

January 17, 1997



DCE Remote Procedure Call

where the binary arithmetic operations are performed on the server. (This test is used
as a model in the pap@assing C++ Objects as DCE RPC Parametén@m the IDL
WWW home page, and is included in the WWW examples link.)

- static

Tests the IDLstatic and ACF[cxx_static] and[cxx_static(arg)] attributes. There are
three ways to specify static member operations in IDL.

- stubexc

Tests the passing ofr@c_x_no_client_stubexception from a server to the client and
the raising of arpc_x_no_server_stubin the client application. These exceptions
are raised at runtime if the client or server stub is not linked with the server or client
application respectively and a RPC parameter requires it.

. tiered

Tests the passing of an object reference from one client to another. A client is built
as both a server and client of an interface. It creates a remote object on the server. A
second client connects to the first client to get the object reference to the server's
object.

Before running the tests, you should set REC_DEFAULT_ENTRY environment
variable to a CDS pathname consisting of an object name (named after the test to be run)
located in a CDS directory that can be set writable to all. For example, to create an
idltest directory for this purpose, do the following:

cdscp create dir /.:/idItest
acl_edit /.:/idltest << EOF
m unauthenticated:rwdtcia
m anyother:rwdtcia
co
EOF

After having done the above, you can run (for example)atmounttest as follows:

% cd dce-root-dirdce/installimachinédcetest/dcel.2.2/test/rpc/idlcxx/account
% setenv RPC_DEFAULT_ENTRY /.:/idltest/account myhost

% server &

% client

1.2.2,IDL C++ Extension Tests (statt)

4.2.4.4 IDL C++ Extension Tests

This test suite tests the capability added to IDL to generate and support C++. The tests
are located under:

January 17, 1997 21



DCE Testing Guide

src_tredtest/rpc/idicxx/...
The following areas are tested:
« Interface inheritance

+ Object bind calls:
bind(unsigned_char_t*)
bind(uuid &)
bind(rpc_binding_handle_t)

« C/C++ interface

« Passing of C++ objects:
[cxx_delegate]attribute
[represent_as]attribute

« Static member functions:
IDL file static attribute
ACF [cxx_static] attribute
ACF [cxx_static(arg)] attribute

+ [cxx_lookup] attribute:
passing ofpc_x_object_not_foundexception

+ [cxx_new]attribute

« rpc_object_referenceclass testing:
[local] attribute
rpc_object_reference::bind(rpc_object_reference?*)
rpc_object_reference::get_binding_handle()
rpc_object_reference::secure()

« Named objects:
register_named_object(unsigned_char_t*)

« Dynamic objects
« Coexistence of local and remote objects

« Enhanced enumeration types

4.2.4.4.1 Prerequisites foRunning the Tests

The following are prerequisites for running the tests:
« ODE 2.3.3 (or later version)
« C++and C compilers

« For the C/C++ interface tests, C++ constructors must be invoked even rifidig)
routine is written in C.

For the native C++/C compilers on current versions of Digital Unix and AlX this
happens automatically—you must only be sure to link using the C++ compiler itself
instead of either the C compiler or the linker. (Ud€ on AIX or cxx on Digital
Unix.) When using GNU'gy++ compiler for AlX, a call must be inserted into the C

4-22 January 17, 1997



DCE Remote Procedure Call

main() to __ do_global_ctors() For the accountc and matrixc tests this means
inserting the special call intolient.c. This necessity may or may not be consistent
among the g++ implementations. Other platforms may have different special
requirements for causing the constructors to be invoked, or they may do it
automatically when using the C++ compiler to link the C and C++ object modules.

4.2.4.4.2 Building TET and the Tests

To build TET, do the following:
1. Locate yourself in the
src_tredtest/tet
directory and typéouild.
2. Putthe directory
obj_tredtest/tet/src/posix_cltcc
into your path or copy the file
obj_tredtest/tet/src/posix_cltccl/tce
to some directory already in your path.
3. Adjust any necessary build flags for your particular platform.
To do so, edit the
src_tredtest/rpc/idicxx/idlcxx.mk

file, which is pulled into each Makefile for the tests below. Each machine may
have a separate section of IDL, compile, and link flags as shown below:

<..>

if {TARGET_MACHINE} == "RIOS"
# With TET builds

CFLAGS +=-DTET -DIDL_CHAR_IS_CHAR
IDLFLAGS += -lang cxx -v -cc_opt "-DTET -DIDL_CHAR_IS_CHAR -DAIX32"
RIOS LIBS += -lidicxx -Idce -ltetapi -ltettcm -ltetapi

.elif {TARGET_MACHINE} == "ALPHA"

<..>

The flags shown above for the AIX/RIOS platform are expected to be required for
all platforms with exception ofDAIX32. A circular link dependency requires
Itetapi to appear twice. Thecc_opt option for IDL must include all flags to be
handed to the compiler from IDL—they are not additions to the C flags that IDL
generates for the platform by default. You can find out what your default IDL-
spawned C flags are by using theoption with IDL on a testidl file.

4. Build the tests themselves. Go to

January 17, 1997 23



DCE Testing Guide

src_tredtest/rpc/idlcxx
and typebuild.

4.2.4.4.3 Running the Tests an@hecking Results

To execute these tests under TET, follow the directions below. It is not necessary to have
any special privileges (root or cell_admin) to follow these steps, but the segptpand
refmon/run assume that the password tmil_adminis “-dce-".

1. Gotothe test directory:
% cd object_tredtest/rpc/idlcxx

2. Run the 'setup’ script, which will create a CDS test directory and open up the
permissions for anyone to write to the directory:

% setup
3. Set TET's root directory to your current directory:
% setenv TET_ROOT ‘pwd
4. Begin execution of the tests with:
% tcc -e -j tet_jrnl -s tet_scen -x tetexec.cfg all
This final step will look for failures and summarize which tests passed, failed, or were
missing results. This summary will happen automatically throughdbexecution, but
can be repeated by executing themmary script which is created in the same current

directory as above.
1.2.2,IDL C++ Extension Tests (end)

4.2.5 RPC Runtime 118N Extension Functional Tests

This test suite tests the APIs for 118N extensions to the RPC runtime in OSF DCE 1.1.
The following APIs are tested:

« NSI management:
« rpc_ns_mgmt_set_attribute
« rpc_ns_mgmt _remove_attribute
« rpc_ns_mgmt _read_codesets

« rpc_ns_mgmt_free codesets

4-24 January 17, 1997



DCE Remote Procedure Call

« Codeset Registry
. dce_cs_loc_to _rgy
« dce_cs_rgy _to_loc
. rpc_rgy_get_max_bytes
. rpc_rgy_get_codesets
- Evaluation
« rpc_ns_import_ctx_add_eval
« rpc_cs_eval_without universal
« rpc_cs_get _taggdefault eval logic)
« rpc_ns_binding_lookup_next
« rpc_ns_binding_lookup_done
« rpc_cs_binding_set _tags
« rpc_cs_char_set _compat_check
«+ custom evaluationsQMIR /SMIR)
« Stub Support
. rpc_cs_get tags
+ cs_byte net_size
« wchar_t net_size
« cs_byte _to netcs
« wchar_t to_netcs
« cs_byte local_size
« wchar_t local_size
« cs_byte from_netcs
« wchar_t_from_netcs
The test sources are located at
dce-root-dirdce/src/test/functional/rpc/runtime/il8n_api
in the source tree; the built objects can be found at:

dce-root-dirdce/objplatformtest/functional/rpc/runtime/il8n_api

4.2.5.1 Prerequisites folRunning the Tests

The following things must be true in order to successfully run the 118N Extension RPC
runtime tests:

January 17, 1997 25



DCE Testing Guide

+ All platforms:
« OSF character and code set registry must be installed as
{usr/lib/nis/csricode_set_registry.db

This is a binary file, which is produced lmgrc (the code set registry compiler).
The input file should be found in:

dce-root-dirdce/src/test/functional/rpc/runtime/il8n_api/ts/cs_rgydlatform

« The Japanese EUC and SJIS locales are required. This is because the test input
data are Japanese. However, the content&&f input_data can be changed to
other data (for example, French), in which case the other appropriate locale will
be required.

« HP-UX Platform:

« HP-UX version 10 is required, sineg_langinfo() is broken with HP-UX version
9.

4.2.5.2 Running the Test and Checking Results

To run the tests, do the following:

1. Compile the code set registry:

% cd /ustr/lib/nls/csr

% csrc\
-i dce-root-dirdce/src/test/functional/rpc/runtime/il8n_api/ts/cs_rgydlatform/code_set_registry.txt\
-0 code_set_registry.db

(Note that this step requiresoot permission, becausgusr/lib/nls is a system
directory.)

2. dce_loginascell_admin:
dce_login cell_adminpassword

3. Gotothe
dce-root-dirdce/objplatform/test/functional/rpc/runtime
directory.
4. Execute the following shell commands (the following is givershsyntax):
% setenv [18N_SERVER_ENTRY "/.:/i18n_test"
% setenv TET_ROOT "pwd/i1l8n_api"

% setenv TET_EXECUTE "pwd‘/i1l8n_api"
% mkdir i18n_api/all

4-26 January 17, 1997



DCE Remote Procedure Call

5. Add TET's path to your current execution path, for example:
% setenv PATH /usr/dcetest/test/tet/bin:$PATH

6. Set the appropriate locale names for your system (locale names are system
dependent). For example, on an HP-UX system:

% setenv I18N_SERVER_LOCALE "japanese.euc"
% setenv [18N_CLIENT_LOCALE "japanese”

—or, on an OSF/1 system:

% setenv I18N_SERVER_LOCALE "usr/lib/nls/loc/ja_JP.AJEC"
% setenv I18N_CLIENT_LOCALE "usr/lib/nls/loc/ja_JP.SJIS"

7. Execute the test under TET with the following command:
% tcc -e -s i18n_apiltet_scen -x i18n_api/tetexec.cfgjgurnal all

wherejournal is the pathname of the journal file where test results will be written.
This command will execute all of the available test cases. Note that if you wish to
execute the test more than once, you will have to either remove the journal file
from the test’s previous run or specify a different journal filename.

To verify the test results, check the journal output. The journal will be located in a
numbered directory, where the number represents a test run. A numbered directory and
journal is created for each invocation of ttee command (for example)001e 0002¢

and so on).

For the evaluation/stub support test cases, go to the
dce-root-dirdce/objplatformitest/functional/rpc/runtime/il8n_api/ts/cs_evallcs_byte

and
dce-root-dirdce/objfplatform/test/functional/rpc/runtime/il8n_api/ts/cs_eval/wchar

directories, and run theesult_check.shscript. The script will verify that the generated
output is the same as the expected output.

4.2.6 RPC Runtime Library and IDL Compiler Tests

A suite of test cases is provided for verification of compiler and runtime interaction. Use
the testsh shell script, which allows for summary statements and uniformly formatted
output for each test case, to execute these test cases. Control program scripts are “built”
in the directory:

dce-root-dirdce/installimachinédcetest/dcel.2.2/test/rpc/rtandidl/control

(The scripts all have file names ending witbh.) Note that the contents of this directory
are built from the contents of the

January 17, 1997 27



DCE Testing Guide

dce-root-dirdce/src/test/rpc/rtandidl/control
directory.

Each control program imports an environment from one or more configuration files (with
names ending with the suffitxshrc) and invokes the test case with the appropriate input
parameters. Summary information can be printed prior to exit from the control program.
This structure lets the user ignore complicated parameter requirements for individual test
cases, thereby simplifying test case execution.

Before executing the Naming Service Interface (NSI) portion of this suite, be aware of
the following:

« The namespace must be configured.

« The NSTEST_DIR directory must be created in the nhamespace for use by the NSI
tests. See Chapter 5 of this guide, the chapters on configuring and starting up DCE in
the OSF DCE Administration Guide—Introductipand Appendix Aof the OSF DCE
Administration Guide—Introductiofor details on namespace configuration.

Before executing the RPC Authentication testcases, the DCE Security Service must be
properly configured. See Chapter 8 of this guide for information on configuring and
enabling the DCE Security Service.

You must also do the following before running authenticated RPC tests:
«+ Login as the privileged user (root).

« Authenticate as cell_admin, or any user with privileges to modify the registry, using
thedce_logincommand. The default password is “-dce-".

dce_login cell_admin -dce-

«+ Set the following environment variables:

BACKTREE The absolute path to the backing tree or sandbox.
CALLER_KEY Password for theell_admin account. The default igice-
CLIENT_KEY Password given to the client ussccount.
CLIENT_NAME Account name for the client user.

PROTOCOL Should be set to either “ncadg_ip_udp”

or “ncacn_ip_tcp”.

SERVERHOST Should be set to the machine name of the machine that is to
run the server daemon.

SERVER_KEY Password given to the servaccount.
SERVER_NAME Account name for the server user.

« Ensure theun_server shell script invokes theofservprocess with the appropriate
value for the server account asdrver_key

Note: Typically server_nameand server_keyare set to ‘“server,” and
client_nameandclient_keyare set to “client.”

To run these tests, you must first start thum_server shell script, and then start the
run_client shell script. Sinceun_server starts a server process, it must be executed

4-28 January 17, 1997



DCE Remote Procedure Call

prior to run_client. Therun_client script invokes the test case control files using the
testshprogram.

To start the server process, enter
run_server

at the command line. No parameters are required.

The run_client shell script executes the specified test cases and has the following
syntax:

run_client -testlist server_host testsh_dir testcase_dir include_dir testname

where

-testlist Provides a listing of all valid test case choices. Individual test
cases are valid choices, as are categories of tests suah, as
which requests execution of all test cases in this suite.

server_host Specifies the name of the machine on which tha_server
shell script was executed.

testsh_dir Specifies the name of the directory containing ttestsh
executable.

testcase_dir Specifies the name of the directory containing the test case
executables.

include_dir Specifies the name of the directory containing the DCE header
files. Itis used by the IDL compiler testeocodeandcmd_line
so these tests can be run prior to final installation of the DCE
RPC header files.

testname Specifies the name of the test to run, or category of test cases to
be run. Therun_client -testlist command can be used to
generate a list of valid test names.

See the

dce-root-dirdce/src/test/rpc/rtandid/README

file for further information, including information about th®_rpc_test script, which
will run the rtandid test suite.

4.2.6.1 The testsh Program

Thetestshprogram is a front end for execution of test programs. Source code for this
program can be found in the

dce-root-dirdce/src/test/rpc/rtandidl/testsh

directory. It provides a standard way for a test developer to create a test environment and
it tallies subtotals and summaries of test results. It also allows error conditions to abort a
test suite.

January 17, 1997 29



DCE Testing Guide

The default behavior forun_client is to run the test specified, and log results in
testnamdog.

Thetestshtesting options are as follows:
testsh [-d [output_leve]] [-e] [-] filenamel|\
-L filenamé [-s | -S] [-] path]
where:

-d Specifies an output level for all test programs. Using-theption with
nooutput_leveinteger returns a message only when a test fails.

output_level Specifies a specific output level for all test programs. The following list
shows the valid integer values foutput_leveland the output levels they

specify:
1 Prints message on failure.
2 Prints message on&tess.
3 Prints message on warning.
4 Prints message orsite.
5 Prints message on information.
63 Prints debug messages during test case execution.
-e Terminates the execution of the test case when an error is encountered.

-l Generates a log file and stores that log fildilename

-L Sends the expandetestsh script commands fromtestcase.tshto
filename

-S Prints output to the screen using the standard error.

-S Sends verbose output to the screen using the standard error.

-l Enablegestshto look in thepathdirectory for test case executables.

4.2.6.2 RPC API Function Tests

This test suite includes a test for all RPC API functions. The tests are located in the
dce-root-dirdce/src/test/rpc/rtandidl/control

directory and are grouped as shown in the following table:

4-30 January 17, 1997



DCE Remote Procedure Call

Test Group

Control File

Function Tested

Binding tests
NSI tests
Object tests

UUID tests
IDL tests

DCE error inquire text tes

all_ns.tsh

RPC authentication tests |all_auth.tsh
RPC management tests |all_mgmt.tsh
object_set type.tsh, object_inqg_type.tsh rpc_object_*(9alls

all_uuid.tsh
all_idl.tsh

all_binding.tsh
®rror_ing_text.tsh

rpc.binding_*() & string_()* calls
dce_error_ing_text()call

rpc_ns_*()calls

rpc_* _auth_*() calls

rpc_mgmt_*() & network _protseqs*calls

uuid_*() calls
IDL compiler and application tests

4.2.6.3 Specification for control file and Command Descriptions

The control file is a template that directs the execution of test cases. The control file
consists of commands that can be composed of keywords, function calls, literals, and
values that are interpreted by the script as parameters to pass to test cases.

The valid commands are as follows:

echostring

# string

include configfile

executerunfile

Prints the specified string.

The # (number sign) character specifies a comment, which is

ignored.

Executes theonfigfileconfiguration file.

Spawns a subshell and executesfile.

testoptions testcase_parameters
Executes a test case. Thg(iterations) option can be used to
execute multiple iterations of a test. The test case parameters
must coincide with the parameters expected by the individual
test case to be run.

run program

summary

subtotal

subtotal clear

remote host program testsh_options

setVAR=value

pause

January 17, 1997

Executes the specified program.

Generates and prints the number of successful andcaasaful
test cases. Itis typically the last line of a control file.

Prints the number of test cases that have passed or failed since

the lastsubtotal command.

Resets the subtotal counts to zero passes and zero failures.

Remotely executes grogram on the machinehost The
program is run under thetestsh controller with the options

specified bytestsh_options

Sets an environment variabl&®\Rto value

Prints the message

Preess RETURN to contiimue or ¢ tmo quitt

81




DCE Testing Guide

on the screen and delays the execution of the program until the
tester enters a valid response.

onerror option Specifies default behavior of the control program when errors
occur. The following values are valid foption

stop Causestestsh execution to halt if an
error is encountered.

continue Causes testsh execution to continue
regardless of errors.

default Consults the global parameter (set by
the -e option to thetestshcontroller) to
determine the appropriate behavior in
the event of a failure.

4.2.7 Name Service Interface Test

dcesxis a test of the CDS NSI (Name Service Interface). Refer to Chapter 5 of this guide
for information on running the test.

4.2.8 Test Plans

Refer to Chapter 1 of th©SF DCE Release Notéar the location of the DCE test plans
on the DCE distribution tape.

4.3 RPC Runtime Output and Debugging Output

The RPC component outputs server information of all kinds via the DCEcssability
component. The following sections describe how to control the various kinds of
information (including debugging output) available from RPC via sayability.

4.3.1 Normal RPC Server Message Routing

There are basically two ways to control normal RPC server message routing:

« At startup, through the contents of a routing file (which are applied to all components
that use serdgieability messaging).

4-32 January 17, 1997



DCE Remote Procedure Call

« Dynamically, through thelcecp logobject.

The following sections describe each of these methods.

4.3.1.1 Routing File

If a file called
dce-local-patlfsvc/routing

exists when RPC is brought up (i.e., wheced is executed or when the cell is started
throughdce_config, the contents of the file (if in the proper format) will be used as to
determine the routing of RPC seceiability messages.

The value ofdce-local-pathdepends on the values of twwake variables when DCE is
built:

DCEROOT its default value islopt

DCELOCAL its default value isSDCEROOT/dcelocal

Thus, the default location of the sece@abilityrouting file is normally:
/opt/dcelocal/svc/routing

However, a different location for the file can be specified by setting the value of the
environment variabl® CE_SVC_ROUTING_FILE to the complete desired pathname.

The contents of the routing file consist of formatted strings specifying the routing desired
for the various kinds of messages (based on message severity). Each string consists of
three fields as follows:

severityoutput_formdestination[output_formdestination. . . ]
Where:

severity specifies the severity level of the message, and must be one of the
following:

- FATAL

- ERROR

WARNING

NOTICE
NOTICE_VERBOSE

(The meanings of these severity levels are explained in detail in Chapter
4 of the OSF DCE Application Development Guide — Core Components
volume, in the section entitled “Specifying Message Severity”.)

output_form specifies how the messages of a given severity level should be
processed, and must be one of the following:

- BINFILE

January 17, 1997 83



DCE Testing Guide

Write these messages as binary log entries
« TEXTFILE
Write these messages as human-readable text
- FILE
Equivalent toTEXTFILE
+ DISCARD
Do not record messages of this severity level
« STDOUT
Write these messages as human-readable text to standard output
« STDERR
Write these messages as human-readable text to standard error

Files written asBINFILE s can be read and manipulated with a set of
logfile functions. See Chapter 4 of th©SF DCE Application
Development Guide — Core Componevtdume, mentioned above, for
further information.

Theoutput_formspecifier may be followed by a two-number specifier of
the form:

.genscount
Where:

gens is an integer that specifies the number of files (i.e., generations)
that should be kept

count is an integer specifying how many entries (i.e., messages) should
be written to each file

The multiple files are named by appending a dot to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specifieddoynt the file is
closed, the generation number is incremented, and the next file is
opened. When the maximum generation number files have been created
and filled, the generation number is reset to 1, and a new file with that
number is created and written to (thus overwriting the already-existing
file with the same name), and so on, as long as messages are being
written. Thus the files wrap around to their beginning, and the total
number of log files never exceedgns although messages continue to

be written as long as the program continues writing them.

destination  specifies where the message should be sent, and is a pathname. The field
can be left blank if theoutput_formspecified isDISCARD, STDOUT,
or STDERR. The field can also contain @ld string in the filename
which, when the file is written, will be replaced by the process ID of the
program that wrote the message(s). Filenames maaigontain colons or
periods.

4-34 January 17, 1997



DCE Remote Procedure Call

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings asae-separated

output_formdestination
strings.
For example,
FATALTTEXTFILLE/ /[Hev/cconsolee
WIRNINNGIDISSCARD:- —
NOTCEBINNALLE.550.1100/ /t trp loog%td  STDERR--
Specifies that:
« Fatal error messages should be sent to the console.
« Warnings should be discarded.

+ Notices should be written both to standard error and as binary entries in files located
in the/tmp directory. No more than 50 files should be written, and there should be no
more than 100 messages written to each file. The files will have names of the form:

/tmp/logprocess_ichn

whereprocess_ids the process ID of the program originating the messagesnand
is the generation number of the file.

4.3.1.2 Routing by the dcecp log Object

Routing of RPC server messages can be controlled in an already-started cell through the
dcecp logobject. See théng.8dcereference page in th@SF DCE Command Reference
for further information.

4.3.2 Debugging Output

Debugging output from RPC can be enabled (provided that RPC has been built with
DCE_DEBUG defined) by specifying the desired debug messaging level and route(s) in
the

dce-local-patlfsvc/routing

routing file (described above), or by specifying the same information in the
SVC_RPC_DBG environment variable, before bringing up RPC (i.e., prior to starting
the cell). Debugging output can also be enabled and controlled througiicéop log
object.

Note that, unlike normal message routing, debugging output is always specified on the
basis of DCE component/sub-component (the meaning of “sub-component” will be
explained below) and desired level.

January 17, 1997 -85



DCE Testing Guide

4-36

The debug routing and level instructions for a component are specified by the contents of
a specially-formatted string that is either included in the value of the environment
variable or is part of the contents of the routing file.

The general format for the debug routing specifier string is:

"componentsub_compevel,. . ..output_formdestination\
[output_formdestination...]"

where the fields have the same meanings as in the normal routing specifiers described
above, with the addition of the following:

component  specifies the component name (irpg)

sub_compevel specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

A star (“*”) can be used to specify all sub-components. The sub-
component list is parsed in order, with later entries supplementing earlier
ones; so the global specifier can be used to set the basic level for all
sub-components, and specific sub-component exceptions with different
levels can follow (see the example below).

“Sub-components” denote the various functional modules into which a component has
been divided for sereeabilitymessaging purposes. For RPC, the sub-components are as
follows:

general RPC general messages
mutex RPC mutex messages

Xmit RPC xmit messages

recv RPC receive messages
dg_state RPC DG state messages
cancel RPC cancel messages
orphan RPC orphan messages
cn_state RPC CN state messages
cn_pkt RPC CN packet messages
pkt_quotas RPC packet quota messages
auth RPC authorization messages
source RPC source messages

stats RPC statistics messages
mem RPC memory messages
mem_type RPC memory type messages
dg_pktlog RPC DG packetlog messages

January 17, 1997



DCE Remote Procedure Call

thread_id RPC thread ID messages
timestamp RPC timestamp messages
cn_errors RPC CN error messages
conv_thread RPC conversation thread messages
pid RPC pid messages

atfork RPC atfork messages
cma_thread RPC CMA thread messages
inherit RPC inherit messages
dg_sockets RPC datagram sockets messages
timer RPC timer messages

threads RPC threads messages

For example, the string
"rpc:*.1,cma_thread.3: TEXTFILE.50.200:/tmp/RPC_LOG

sets the debugging level for all RPC sub-componemrtscdpt cma_thread) at 1;
cma_threads level is set at 3. All messages are routedttop/RPC_LOG. No more

than 50 log files are to be written, and no more than 200 messages are to be written to
each file.

The texts of all the RPC sergability messages, and the sub-component list, can be
found in the RPC sams file, at:

dce-root-dirdce/src/rpc/sys_idl/rpc.sams

For further information about the secé@abilitymechanism and API, see Chapter 4 of the
OSF DCE Application Development Guide — Core Componealsme, “Using the
DCE ServiceabilityApplication Interface”.

January 17, 1997 87



Chapter 5. DCE Cell Directory Service

5.1 Overview

The DCE Cell Directory Service (CDS) provides the directory (naming) services for use
within a cell in a DCE environment. CDS allows users to assign names to resources and
then use those resources, without needing to know their physical locations in the
network. CDS uses the client/server model, and provides both command line and
programming interfaces for configuring services. CDS services can be accessed through
two Application Programming Interfaces (APIs), provided as palibofice.a The first is

the X/Open Directory Service (XDS) API, and the second is the Name Service Interface
(NSI) of the RPC component, which accesses CDS in an RPC-specific way.

CDS allows clients to register named objects with the server and to bind a set of
attributes, including an object's network addresses, to these objects. An object’s
attributes are stored in a distributed database, which is partitioned and partially
replicated. CDS is composed of three programs:

. cdsd

The CDS server. This program stores and maintains CDS names and handles requests
to create, modify, or look up data in the CDS database.

- cdsclerk

The CDS clerk. This is the interface between client applications and servers, and it
must exist on every node. Several of these may be running on each node since one is
spawned for each user.

. cdsadv

The CDS advertiser, the program which makes distributed CDS servers aware of
each other and known to clients. There must be one of these on every node.

In addition to these, there is also tldsbrowser utility and the cdscp administration
program (“CDS control program’).

January 17, 1997 3



DCE Testing Guide

5.2 Setup, Testing, and Verification

Eight types of CDS tests are shipped with DCE. Two ways to test CDS are provided:
cdstestand the CDS test scripts. These tests are described in more detail in the following
sections.

Thecdsd_diag cadump, andcatraverse programs, and thdcesxtest, are also useful in
debugging CDS.

Before executing the test cases, you must configure CDS for testing using either the DCE
Configuration script

dce-root-divdce/src/config/dce_config

or the instructions found in the next subsection. You can run tests on the configurations
described in that section.

5.2.1 Installing CDS Functional Testswith dcetest_config

5-2

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guidieetest_config

will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocglto that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/testomponent_nanie

directory, where thdestcomponent_namelements of this path are equivalent to the
testicomponent_namelements in the pathnames given in the “CDS Test Scripts” and
following sections below, which refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locatiorfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the CDS functional
tests, this path should be the location, on your machine, of:

dce-root-dirdce/install

—which is the DCEnstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of th@SF DCE Release Notes

Thus,dcetest_configwill install the CDS functional tests at:
/dcetest/dcelocal/test/directory/cds/

where /dcetest/dcelocalis the link to whatever path you supplied as the install
destination.

The advantage in usingcetest_configo install the functional tests is that it will install
all that is needed andnly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlynstall (if you choose) functional tests witticetest_config for
test configuration and execution you must follow the instructions in the sections below.

January 17, 1997



DCE Cell Directory Service

Refer to Chapter 11 of this guide for further information on ugdogtest_config

5.2.2 CDS Setup

You can set up CDS for testing purposes in two ways: with or without the CDS
advertisercdsadv Thecdsadvprogram automatically starts up a clerk-only system; you
must start the clerk manually when running CDS withodsadv for testing. You can
specify the-a switch with cdsd to create a namespace, a clearinghouse, and the root
directory. This process is called auto-initialization.

To debug the CDS commandsdscp cdsd cdsclerk, cdsady, cdsd_diag or
cdsbrowser, you need to have built the code with tli¥EBUG macro defined. The
debug output will go to a log file in:

dcelocalvar/adm/directory/cds/cdsd
(for server daemons) and:
dcelocalvar/adm/directory/cds/cdsclerk

(for clerk daemons) directories, if there exists a file with the command name and a file
extension.events (with an asterisk as the only character in the file) in the respective
directory. This file is checked only at startup.

Note: The CDS clerk will stop working if the contents of its events file:

dcelocalvar/adm/directory/cds/cdsclerk/cdsclerk.events

exceeds 100 entries.

Both cdsdandcdsadvtake-d and-e switches. Thed switch specifies debugging mode

(that is, it does not fork) and if specified with the switch, routes event output to the
standard output. Thee\* switch requests debug event logging for all events to go to
standard output. (The backslash is a shell escape character so that the asterisk is passed
through the shell. The asterisk indicates that all events should be reported.)

5.2.2.1 CDS Setup without cdsadv

To configure CDS for testing withoatdsady, you need to be logged in as root and do the
following:

1. Change directory tdcelocalbin.

2. Thedced (DCE host daemon) process must be running before you start any CDS
processes. See tleed(8dce)eference page for information on startidged

3. To start theedsddaemon, enter:

Jcdsd -a

January 17, 1997 3



DCE Testing Guide

where-a specifies auto-initialization. The auto-initialization information is stored
in the

dcelocaletc/cds_config

file, which is created bydsd and which can be used to configure clerks and
servers manually.

You may also use the following optional switches:

-d Debug mode, events tstdout, does not fork, turns on
tracing to your terminal.

-e Prints error messages. Use theharacter to escape the
shell. Use the character to indicate full error messages (-
e\*) or use a fully qualified filename.

-V Prints initialization progress messages; these verify that
initialization sucessfully completed.

4. On the server machine (the machine on which you started the server), enter:
Jcdsclerk -d -F

to start thecdsclerk process, since this configuration does not cgeadvto start
cdsclerk. The-d flag prohibits forking, and theF flag deletes the old socket on
startup.

You may also use the following optional switches wittsclerk:

-e Prints error messages. Use theharacter to escape the
shell. Use thef character to indicate full error messages
(-e\*) or use a fully qualified filename.

-m number Uses shared memory IBumber The shared memory ID
can be found in:

dcelocaletc/cdscache.shmid

5. If the machine on which you want to run the client is not the server machine, you
need to rurcdsclerk. Copy the

dcelocaletc/cds_config

from the server machine to the client machine. Enter:
Jcdsclerk -d -F
to start thecdsclerk process on the client machine, since this configuration does

not usecdsadvto startcdsclerk. The -d flag prohibits forking, and theF flag
deletes the old socket on startup.

5-4 January 17, 1997



DCE Cell Directory Service

5.2.2.2 CDS Setup with cdsadv

To configure CDS for testing witledsady, you must be logged in as root and do the

following:
1. Thedced(DCE host daemon) process must be running before you start any CDS
processes. See tleed(8dce)eference page for information on startidged
2. To start the CDS advertiser, enter:
Jcdsadv

You may also use the following optional switches:

-C Specifies cache size in kilobytes.

-e Prints error messages. Use theharacter to escape the shell. Use
the* character to indicate full error messages (-e\*), or use a fully
qualified filename.

-S Prohibits the sending or receiving of advertisements. This setting
is useful for debugging and for setting up multiple cells on one
LAN.

-v Prints initialization progress messages; these verify that
initialization completed stcessfully.

The cdsadv program solicits responses from CDS Servers on the same LAN by

broadcast RPC. The first response it receives becomes the default CDS Server used

by that clerk.

To promote some other server to default, edit

dcelocaletc/cds_config
and change the desired defaults. You must then stop any clerks that are running,
and restartdsadv
3. Inthe same directory, start tkdsddaemon by entering:

Jcdsd -a
where the-a flag specifies auto-initialization. The auto-initialization information
is stored in the

dcelocaletc/cds_config

file, which can be used to configure clerks and servers manually. You can also use
the optional switches described fodsd in the section on “CDS Setup Without
cdsadv” in this chapter.

January 17, 1997 5



DCE Testing Guide

5.2.2.3 Using gdad

Thegdad command starts the GDA daemon. The Global Directory Agent (GDA) enables
intercell communication, serving as a connection to other cells through the global
naming environment.

You may use the following optional switches:

-d For debugging use only. Ranges from dO through d12, with dO being the
simplest level and d12 the most complex. The most useful level of debug
output is d7 for diagnosing operational problems. Higher levels are
useful when debugging coding errors.

-f Does not fork the child process.

-F Deletes old socket on startup.

-r Alternate pathname a@étc/resolv.conf

-S Alternate pathname afamed.cafile.

-u Does not update GDA information in CDS server.

-V Prints initialization progress messages; these verify that initialization

completed socessftully.

5.2.2.4 Resetting the CDS Environment

If it is necessary to reset the CDS environment to a “clean” state, there are several files
that need to be removed and shared memory segments and semaphores to be deleted.

The shared memory segment(s) can be removed by performing the following steps:
1. Getthe SHMID (shared memory ID) from the first line of the file:
dcelocaletc/cdscache.shmid

2. Useipcsto find theshm_keyfor the SHMID. The semaphore used by CDS uses
the same key as the shared memory:

ipcs | awk /'SHMID_from_step_/{print $3}’
3. Remove the semaphore:

ipcrm -S shm_key_from_step_2
4. Remove the shared memory:

ipcrm -m SHMID_from_step_1

The CDS files can be removed with the following script:
rm -rf dcelocalvar/adm/directory/cds/*

rm -rf dcelocalvar/directory/cds*

5-6 January 17, 1997



DCE Cell Directory Service

rm -rf dcelocalvar/directory/cds/adm/cdsd/*
rm -rf dcelocalvar/directory/cds/adm/gdad/*
rm -rf dcelocaletc/cds_config

rm -rf dcelocaletc/cds_defaults

rm -rf dcelocaletc/gda_id

rm -rf dcelocaletc/cdsadv.pid

rm -rf dcelocaletc/cdscache.shmid

rm -rf dcelocaletc/cdsd.pid

See also thece.rm script.
It is sometimes useful to purge the CDS cache between runs. To remove the CDS on-disk
cache (e.g., before starting up a new CDS server), execute the following commands:

kill -9 cdsclerk PID

letc/dce.clean

cd /opt/dcelocall/var/adm/directory/cds

mv cds_cachemumbercds_cacheaumberBAD
letc/rc.dce

If the CDS server and client cannot broadcast, you must also do the following:

cdscp define cached serve€DS_Server_Hostnantewer \
ncadg_ip_udpCDS_Server_IP_Address

For example:

cdscp define cached server west tower ncadg_ip_udp:130.105.201.10

5.2.2.5 CDS Configuration Files

The following files are used in CDS configuration:

dcelocaletc/cds.conf This file contains security information for CDS, such
as the principal names of tleelsdandgdad, as well
as the names of theds-server and cds-admin
groups.

dcelocaletc/cds_config This file contains configuration information about
namespaces and clearinghouses, including the name

January 17, 1997 =4



DCE Testing Guide

dcelocaletc/cds_attributes

dcelocaletc/cds_globalnames

cdscp.bpt
cdscp.mbf

5.2.3 CDS Test Scripts

and UUID of each. In each case it also contains the
internet address of the server that supports the
clearinghouse.

This text file contains a list of the DCE attributes
and their OIDs. It maps OID, SYNTAX, and the
label used by CDS to identify the displayed
attribute. For example:

(0[1)] LABEL SYNTAX
1.38.22.11.38.42 CDS LastSkulkk Tinmestsamp

This file is a database of DCE-supported X.500
attribute types. Some of these are ‘“naming
attributes” (meaning that they occur in the names of
objects, as specified by the schema), but most are
not. The file maps the following for each Attribute

Type:

« OID

- LABEL

« ASN.1-IDENTIFIER
+ SYNTAX

+ MATCHING RULE
Used by thecdscpparser.
Used by thecdscpparser.

The test scripts for CDS are in the

dce-root-difdce/src/test/directory/cds

directory. To run a test, enter:
cp_test.sh-switch .] testhame

where

-switch This optional parameter specifies a certain testing option. The
following values are valid foswitch

-cdscpdir pathname Specifies an alternative pathname for

-cell namel

5-8

cdscp

Specifies namel as the cell name to
perform local tests on.

January 17, 1997



testname

January 17, 1997

-chlname?2

-ch2name3

-ch3name4

-dir dirname

-disable

-inet address
-keeplines
-nodeldir
-noch

-nochl

-noch?2

-noch3

-nopipe

-noshow
-noskulk

-pid

-remcell cellname

-restart

-use_alias

-V

DCE Cell Directory Service

Specifies name2 as the primary
clearinghouse (Clearinghouse 1).

Specifies name3 as the secondary
clearinghouse (Clearinghouse 2 - an
existing clearinghouse).

Specifiesnam4 as Clearinghouse 3 - a
clearinghouse to create.

Specifies dirname as the top level test
directory.

Do not strip disable commands from
scripts.

Specifies Internet address.

Do not delete the test script when done.
Stripsdeldir commands from scripts.
Strips all clearinghouse information.

Strips primary clearinghouse
(Clearinghouse 1) information.

Strips secondary clearinghouse
(Clearinghouse 2) information.

Strips create clearinghouse (Clearinghouse
3) information.

Specifies that commands not be piped into
cdscp

Stripsshowcommands from scripts.
Strip skulk commands from scripts.

Uses the process ID otp_test.sh to
generate unique log filenames. You can run
multiple simultaneous tests using this
option.

Specifies Remote cell name to reference for
intercell testing.

Specifies that the DCE servers be restarted
before starting the test.

Use/.: in tests to refer to the cellname.

Specifies verbose mode.

Specifies the CDS test to run. The following tests are provided:

cp_abuse.tests

Stress tests.

cp_childpointer.tests Tests childpointer operations.



DCE Testing Guide

cp_clearinghouse.test3ests clearinghouse operations.

cp_clerk.tests

cp_credir.tests

cp_directory.tests

cp_foreign.tests

cp_intercell.tests

Cp_misc.tests

cp_hegative.tests

Tests clerks.

Tests directory operations and is a subset
of cp_directory.tests

Tests directory operations.

Tests merges of foreign cell subtree dump
files.

Tests references to foreign cell data
(requires-remcell to be specified).

Tests confidence, preferred clearinghouse.

Tests multiple creates/deletes, and non-

extant references.

cp_object.tests Tests object operations.
cp_replica.tests Tests replica operations.
cp_server.tests Tests servers.
cp_softlink.tests Tests softlink operations.
Cp_subtree.tests Tests subtree operations.
The

dce-root-divdce/src/test/directory/cds/cp_killer.sh
script runs all the tests listed above except:

« Cp_misc.tests

« cp_abuse.tests

« cp_intercell.tests

« cp_credir.tests

To runcp_Kkiller.sh, enter:
cp_Kkiller.sh

Any of the cp_test.sh switches may be used when runnirgp_Kkiller.sh. The
cp_Kkiller.sh script usexp_test.sh

5.2.4 Distributed ACL Tests

The driver script
dce-root-dirdce/src/test/directory/cds/dacl_testing.sh
runs the distributed ACL tests:

5-10 January 17, 1997



DCE Cell Directory Service

dacl_creates.sh

dacl_deletes.sh

dacl_modifies.sh

dacl_reads.sh
« dacl_replicas.sh

It is invoked as follows:
dacl_testing.sh -chiclearinghouselch?2 clearinghouse2

whereclearinghouselnd clearinghouseare the names of two clearinghouses, both of
which must already have been created when the test is run, and neither of which should
be the cell default clearinghouse.

Note that the clearinghouse arguments mutbe specified with a leading/::/” or
“IL

The following things must be true in order for the ACL tests to be rwteasfully:
« The driver script is running as the principabtroot.
« The CDS server is called
/.../hosts/hostnameds-server
This is the default name as set updige config
« Thenotroot principal has write permission for the default clearinghouse.
« Thenotroot principal has insert and read permission for the root directory.

Because of these prerequisites for running the test, it is advisable tanlntesting.sh

in a newly-configured DCE cell which has been specially set up for this purpose. The
dacl_setup.shscript can be run to set up such a newly-configured cell so that it meets the
above requirements.

dacl_setup.shwhich should be run as theell_admin principal, is invoked as follows:
dacl_setup.sh -chXklearinghouselch2 clearinghouse2ch3 default_clearinghouse
wheredefault_clearinghouses the default clearinghouse for the cell; this usually has a

name of the fornhostnamech, wherehostnamas the name of the host machine.

Note that the clearinghouse arguments nutbe specified with a leading/::/” or
“ILI

The output of the tests is written to the following logfiles:

« dacl_creates.log

dacl_deletes.log

dacl_modifies.log

dacl_reads.log

dacl_replicas.log

January 17, 1997 31



DCE Testing Guide

5.2.5 NSl Test

dcesxis a test of the CDS NSI (Name Service Interface). It is invoked as follows:
decesx K W -FR W 4i 110 -im 10 -p 99 -tt 30

The flags have the following meanings:

Flag Meaning

-K Skulk whenever the namespace| is
changed.

-M Use multiple threads.

-R Re-randomize search context (only
used if a directory search fails).

-V Set maximum verbosity.

-i 10 Number of interfaces to enable (10
is the maximum).
-m 10 | Number of call threads to configure
(for RPC).
-p 99 | Number of passes 0 means go
forever).
-t 30 Number of seconds to delay after
failure to import an interce.

Note that you shouldice_loginascell_admin before running the&cesxtest, so that the
test will have the permissions necessary to perform the operations it will attempt on
specific directories and objects.

5.2.6 Testing Intercell Lookup

The GDA clerk, unlike the CDS clerk which is an integral part of CDS, exists for test
purposes only. Its source is located at:

dce-root-dirdce/src/directory/cds/gda/gda_clerk.c

The gda_clerk test program performs the same GDA lookup that the CDS clerk
performs; by running it you can eliminate all of the logic of the CDS clerk when testing
the GDA.gda_clerk uses the same interfaces and the same progress records as the CDS

clerk.
Its interactive inputs are:

« A string binding to the GDA. You can get this from the output of running the
command:

rpccp show mapping

5-12 January 17, 1997



DCE Cell Directory Service

« A/...[cellnamefor the GDA to look up.

You should make sure thatda clerk returns good results before you try remote cell
access through CDS.

5.3 CDS Runtime Output and Debugging Output

The CDS component outputs server information of all kinds via the DCE cataility
component. The following sections describe how to control the various kinds of
information (including debugging output) available from CDS via sezability.

5.3.1 Normal CDS Server Message Routing

There are basically two ways to control normal CDS server message routing:

« At startup, through the contents of a routing file (which are applied to all components
that use serdgieability messaging).

« Dynamically, through thelcecp logobject.

The following sections describe each of these methods.

5.3.1.1 Routing File

If a file called
dce-local-patlfsvc/routing

exists when CDS is brought up (i.e., when the CDS daemons are executed or when the
cell is started througdce_config, the contents of the file (if in the proper format) will be
used as to determine the routing of CDS sesaibility messages.

The value ofdce-local-pathdepends on the values of twwake variables when DCE is
built:

DCEROOT its default value islopt

DCELOCAL its default value isSDCEROOT/dcelocal

Thus, the default location of the sece@abilityrouting file is normally:
/opt/dcelocal/svc/routing

However, a different location for the file can be specified by setting the value of the
environment variabl®CE_SVC_ROUTING_FILE to the complete desired pathname.

The contents of the routing file consist of formatted strings specifying the routing desired
for the various kinds of messages (based on message severity). Each string consists of

January 17, 1997 33



DCE Testing Guide

5-14

three fields as follows:

severityoutput_formdestination[output_formdestination. . . ]

Where:

severity

output_form

specifies the severity level of the message, and must be one of the
following:

- FATAL

- ERROR

WARNING

NOTICE
NOTICE_VERBOSE

(The meanings of these severity levels are explained in detail in Chapter
4 of the OSF DCE Application Development Guide — Core Components
volume, in the section entitled “Specifying Message Severity”.)

specifies how the messages of a given severity level should be
processed, and must be one of the following:

- BINFILE
Write these messages as binary log entries
« TEXTFILE
Write these messages as human-readable text
- FILE
Equivalent toTEXTFILE
+ DISCARD
Do not record messages of this severity level
« STDOUT
Write these messages as human-readable text to standard output
« STDERR
Write these messages as human-readable text to standard error

Files written asBINFILE s can be read and manipulated with a set of
logfile functions. See Chapter 4 of th©SF DCE Application
Development Guide — Core Componevtdume, mentioned above, for
further information.

Theoutput_formspecifier may be followed by a two-number specifier of
the form:

.genscount
Where:

gens is an integer that specifies the number of files (i.e., generations)
that should be kept

January 17, 1997



DCE Cell Directory Service

count is an integer specifying how many entries (i.e., messages) should
be written to each file

The multiple files are named by appending a dot to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specifieddmynt the file is
closed, the generation number is incremented, and the next file is
opened. When the maximum generation number files have been created
and filled, the generation number is reset to 1, and a new file with that
number is created and written to (thus overwriting the already-existing
file with the same name), and so on, as long as messages are being
written. Thus the files wrap around to their beginning, and the total
number of log files never exceedgns although messages continue to

be written as long as the program continues writing them.

destination  specifies where the message should be sent, and is a pathname. The field
can be left blank if theoutput_formspecified isDISCARD, STDOUT,
or STDERR. The field can also contain @ld string in the filename
which, when the file is written, will be replaced by the process ID of the
program that wrote the message(s). Filenames maagontain colons or
periods.

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings asae-separated

output_formdestination
strings.
For example,
FATALTTEXTFILLE/ /[Hev/cconsolee
WRNINNGIDISSCARD:- —
NOTCEBINNALLE.550.1100/ /t trp loog%td  STDERR--
Specifies that:
- Fatal error messages should be sent to the console.
« Warnings should be discarded.

« Notices should be written both to standard error and as binary entries in files located
in the/tmp directory. No more than 50 files should be written, and there should be no
more than 100 messages written to each file. The files will have names of the form:

/tmp/logprocess_ichn

whereprocess_ids the process ID of the program originating the messagesnand
is the generation number of the file.

January 17, 1997 -85



DCE Testing Guide

5.3.1.2 Routing by the dcecp log Object

Routing of CDS server messages can be controlled in an already-started cell through the
dcecp logobject. See théng.8dcereference page in th@SF DCE Command Reference
for further information.

5.3.2 Debugging Output

Debugging output from CDS can be enabled (provided that CDS has been built with
DCE_DEBUG defined) by specifying the desired debug messaging level and route(s) in
the

dce-local-patlfsvc/routing

routing file (described above), or by specifying the same information in the
SVC_CDS_DBGenvironment variable, before bringing up CDS (i.e., prior to starting
the cell). Debugging output can also be enabled and controlled througiicéop log
object.

Note that, unlike normal message routing, debugging output is always specified on the
basis of DCE component/sub-component (the meaning of “sub-component” will be
explained below) and desired level.

The debug routing and level instructions for a component are specified by the contents of
a specially-formatted string that is either included in the value of the environment
variable or is part of the contents of the routing file.

The general format for the debug routing specifier string is:

"componensub_compevel,. . ..output_formdestination6
[output_formdestination...]"

where the fields have the same meanings as in the normal routing specifiers described
above, with the addition of the following:

component  specifies the component name

sub_compevel specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

A star (“*”) can be used to specify all sub-components. The sub-
component list is parsed in order, with later entries supplementing earlier
ones; so the global specifier can be used to set the basic level for all
sub-components, and specific sub-component exceptions with different
levels can follow (see the example below).

“Sub-components” denote the various functional modules into which a component has
been divided for sergeabilitymessaging purposes. For CDS, the sub-components are as
follows:

5-16 January 17, 1997



DCE Cell Directory Service

adver CDS Advertiser sub-component

child CDS Clerk/Child/Client sub-component
gda CDS GDA sub-component

server CDS Server sub-component

cache CDS Cache sub-component

library CDS Library sub-component

general CDS General sub-component

dthread CDS dthreads sub-component

cdscp CDS Control Program sub-component

For example, the string
"cds:*.1,server.3: TEXTFILE.50.200:/tmp/CDS_LOG

sets the debugging level for all CDS sub-componestséptserver) at 1;servers level
is set at 3. All messages are routedttap/CDS_LOG. No more than 50 log files are to
be written, and no more than 200 messages are to be written to each file.

The texts of all the CDS semgability messages, and the sub-component list, can be
found in the CDS sams file, at:

dce-root-dirdce/src/directory/cds/includes/cds.sams

For further information about the sec@abilitymechanism and API, see Chapter 4 of the
OSF DCE Application Development Guide — Core Componealsme, “Using the
DCE ServiceabilityApplication Interface”.

January 17, 1997 a7



Chapter 6. DCE Global Directory Service

6.1 Overview

The DCE Global Directory Service (GDS) provides an X.500-compliant directory
service. GDS includes the Directory User Agent (DUA), or client, and the Directory
Service Agent (DSA), or server, as specified by the X.500 standard.

In conjunction with the directory service, GDS supplies the following services and
interfaces:

Note: In the descriptions below, OSI means “Open System Interconnection,” an
internationally recognized (ISO) term. However, in Chapter 10 of this
guide, which covers porting and testing DFS, OSI means “Operating-
System Independent.”

« The standard XDS/XOM (X/Open Directory Servi¢eX/Open OSI-Abstract-Data
Manipulation) application programming interface to GDS

« The RTROS and CMX interface, and libraries for the OSI protocol stack upper layers
« An ASN.1 compiler (MAVCOD/MAVROS) and ASN.1 runtime library, used by GDS

A screen-based menu-oriented administration interface

+ A shell-based command interface to administer GDS

« A shell-based command interface to create and initialize a directory configuration

« An integrated ROS interface (RTROS) with AOM12 support for use by DME and
DME applications

Note: Reference pages for thmavros and mavcod commands can be found in
the OSF DCE Technical Supplement

January 17, 1997 4



DCE Testing Guide

6.2 GDS Testing Overview

6.2.1

6-2

The following types of GDS tests are shipped with DCE:
+ Admin
Tests the menu-driven administration interface and the functionality it provides.
- API
Tests the XDS/XOM/XOMS/MHS application programming intarés.
« DUA Switch
Tests the switching mechanism between CDS and GDS.
« gdscp
Tests the command line intade.
« gdssetup
Tests the command to create or initialize directory configuration.
« gds_sec
Tests the use of DCE authentication.
+ MAVROS
Tests for the MAVROS compiler.

In addition, hand procedures for testing GDS intercell operation can be found in the
section “Testing GDS Intercell Operation”, later in this chapter.

Compiler and linker flags for building the GDS test cases reside in:
dce-root-dirdce/src/test/test.mk

Machine-specific compiler and linker flags that affect the compilation or linking of the
GDS test cases should be included in this file.

The following subsections describe how to install and set up GDS, and how to run tests
for each of the categories in the previous list.

Note the following prerequisite conditions for testing various aspects of XDS:
« Inorder to test XDS access to GDS, you must have GDS running.

« You do not have to have GDS running in order to test XDS access to CDS.

Changes to the GDS Functional Tests Since DCE 1.0.3

The GDS and XDS functional tests were overhauled for DCE 1.1, and new functional
tests were implemented for new functionality. The tests were converted to use the
X/Open Test Environment Tool (TET) test harness. TET provides a common invocation
mechanism for all GDS/XDS functional tests, a consistent means of determining testcase

January 17, 1997



DCE Global Directory Service

outcome, and a common repository for testcase results.
Additionally, the administration tests are now completely automated.

The exception to the above statement is the MAVROS test. This still runs in the same
manner as it did in the previous release.

Following are the tests that are available:
- GDS Tests
+ The admin tests located under the
/dcetest/dcelocal/test/tet/functional/directory/gds/ts/admin
directory:

cacheadm cache administration testsuite

dsa DSA administration testsuite

shadow shadow administration testsuite
subtree subtree administration testsuite
scheme schema administration testsuite

« Thegdscptests located under the
/dcetest/dcelocal/test/tet/functional/directory/gds/ts/gdscp
directory tests the GDS command program.
« The GDS security tests located under the
/dcetest/dcelocal/test/tet/functional/directory/gds/ts/gds_sec
directory test the GDS security methods.
« Thegdssetuptests located under the
/dcetest/dcelocal/test/tet/functional/directory/gds/ts/gdssetup
directory test the GDS setup program.
- APl Tests
« The XDS API tests, located under the
/dcetest/dcelocal/test/tet/functional/directory/xds/ts/xds
directory:
xds_st single-threaded mode
xds_mtmulti-threaded mode
« XOM API tests, located under the
/dcetest/dcelocal/test/tet/functional/directory/xds/ts/xom
directory:
xom_stsingle-threaded mode

xom_mt multi-threaded mode

January 17, 1997 3



DCE Testing Guide

+ XOMS API tests, located under the
/dcetest/dcelocal/test/tet/functional/directory/xds/ts/xoms
directory:
xoms_stsingle-threaded mode
xoms_mtmulti-threaded mode
« MHS API tests, located under the
/dcetest/dcelocal/test/tet/functional/directory/xds/ts/mhs
directory:
mhs_stsingle-threaded mode
+ SWITCH API tests, located under the
/dcetest/dcelocal/test/tet/functional/directory/xds/ts/switch
directory:
switch_stsingle threaded mode
switch_mt multi-threaded mode
switch_DNStypeless tests (uses DNS Cell Name)
The MAVROS tests are located at:
/dcetest/dcelocal/test/directory/gds/mavrostest
The TET binaries and scripts are located at:

/dcetest/dcelocal/test/tet/bin
/dcetest/dcelocal/test/tet/lib

6.2.2 Installing GDS Functional Testsvith dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guidieetest_config

will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocglto that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/testomponent_nanie

directory, where thdestcomponent_namelements of this path are equivalent to the
testicomponent_namelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

The GDS and XDS functional tests are available via option 4 (“Global Directory
Service”) of the “DCE Test Installation (Functional Tests” menu. The TET binaries are
available via option 3 (“TET") of the DCE Test Installation menu.

Note thatdcetest_configwill prompt you for the locatiorfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the GDS functional

January 17, 1997



DCE Global Directory Service

tests, this path should be the location, on your machine, of:
dce-root-dirdce/installtarget_machinklcetest/dcel.2.2

—which is the DCEnstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of th@SF DCE Release Notes

Thus,dcetest_configwill install the GDS functional tests at:
/dcetest/dcelocal/test/tet/functional/directory/gds

and:
/dcetest/dcelocal/test/tet/functional/directory/xds

where /dcetest/dcelocalis the link to whatever path you supplied as the install
destination.

It is recommended that you not actually install the tests on your root filesystem; they are
quite large. You will need at least 8 Megabytes of space in order to installettessary
software, and you should have another 8 Megabytes to allow for the creation of log files
and test results journals.

The advantage in usingcetest_configto install the functional tests is that it will install
all that is needed andnly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlynstall the functional tests withicetest _config you must use
TET to run the tests (with the exception of the MAVROS tests). Information on running
the individual tests can be found in the following sections.

See “Overview of TET Use” in Chapter 11 for general information on TET.

6.2.3 Running GDS Functional Tests with TET

The following subsections describe and explain various aspects of running the GDS
functional tests that are run under TET.

6.2.3.1 Testing Tools: Test Drivers and Journal Filters

Several tools have been provided to make the testing process easier. These are not part of
either TET or the functional tests, but are additions to ease the testing work load.

In
/dcetest/dcelocal/test/tet/functional/directory/gds/tools

are the following scripts:

local_TET.admin GDS test driver

TET_filter.admin Filter foradmin test TET journal

January 17, 1997 B



DCE Testing Guide

TET _filter.gdscp Filter for gdscptest TET journal
TET _filter.gdssetup Filter for gdssetuptest TET journal
TET _filter.gds_sec  Filter for gds_sedest TET journal
Similarly, in
/dcetest/dcelocal/test/tet/functional/directory/xds/tools

are the following:

local_TET.api XDS test driver
TET_filter.api Filter for XDS tests TET journal
xt_test XDS test device

The test driver is a front-end to the TET test environment. It sets a number of
environment variables used by the GDS tests and determines the location of results files
produced by the tests. The filters scan the TET journal and produce a more concise and
understandable summary of the test results.

6.2.3.2 Setting Up to Run the Tests

6-6

Before running either the GDS or API tests you must do the following things:
1. SettheTET_ROOT environment variable to
/dcetest/dcelocal/test/tet

For example (in a C shell):
% setenv TET_ROOT /dcetest/dcelocal/test/tet

Note that the above configuration steps are required only if the user starts with a
newly-installed GDS. As soon as the tests have been started once, some Directory
IDs will always be configured already.

2. Set theOUTDIR environment variable to specify a location to which the test-
specific log files are to be written. If this variable is not set, the test driver will
specify the default logfile destination to be:

$TET_ROOT/functional/directory/gds/outdir. hostname
or

$TET_ROOT/functional/directory/xds/outdir. hostname
—depending on which tests are being run.

You may now run whichever of the TET-executed tests you wish.

January 17, 1997



DCE Global Directory Service

6.2.3.3

The tests listed below configure single-machine DCE cells as part of the test
environment. The cellnames are hard-coded into the test scripts; thus you cannot run
these tests on more than one machine on the same LAN at the same time. If two or more
cells of the same name exist on the same LAN they will intercept and respond to each
other’s cell broadcasts. This will cause problems with CDS which will result in failures
of calls torpc_binding_set_auth_info() typically by the CDS clerk.

The workaround is to do only one iteration of these tests at a time on any subnet.

Test Cellname configured
gds_sec c=ie/o=digital
switch_mt c=ie/o=digital
switch_st c=ie/o=digital
switch_DNS shidec.sni.com

6.2.3.4 Running the Admin Tests

The Administration test driver accepts options that specify which particular suite of tests
to run. The driver is invoked as follows:

local_TET.admin test_suite

wheretest_suitds one of the scenarios listed in thet_scenfile. The principal scenarios

are:

all All admin tests
gdscp GDSCP test suite
cadm Cacheadm testsuite
dsa DSA testsuite
scheme Schema testsuite
shadow Shadow testsuite
subtree Subtree testsuite

gdssetup GDS Setup test suite
gds_sec GDS Security test suite

For example:

% ./local_TET.admin gdscp
% ./local_TET.admin subtree

January 17, 1997 -9



DCE Testing Guide

6.2.3.5 Running the API Tests

For the API test driver, test suites are specified by switches followed by values. The
driver also will print a “help” message when this is specified with theswitch.

The driver is invoked as follows:

local_TET.api[-c] [-h] [-]] -s test_suite

6-8

where:

-C Specifies that XOMS Convenience functions be used (this is the default
whenall is specified as theest_suite see below).

-h Specifies that a help message be displayed.

-l Specifies that API test logs not be removed after test run.

-stest_suite  Specifies thdest_suitgo run;test_suitds one of the following:
xds_all_ST All single-threaded XDS tests
xds_all_MT All multi-threaded XDS tests
xds_all All XDS tests (single- and multi-

threaded)

xom_all_ST All single-threaded XOM tests
xom_all_MT All multi-threaded XOM tests
xom_all All XOM tests (single- and multi-

xoms_all_ST

xoms_all_MT

threaded)
All single-threaded XOMS tests
All multi-threaded XOMS tests

xoms_all All XOMS tests (single- and multi-
threaded)

switch_all_ST All single-threaded SWITCH tests

switch_all_MT All multi-threaded SWITCH tests

switch_all_DNS

All typeless SWITCH tests

switch_all All SWITCH tests (single- and multi-
threaded and typeless)
mhs_all All MHS tests

all_no_switch
all

For example:

% ./local_TET.api -h

All of the above except switch tests

All of the above

% ./local_TET.api -s switch_all_ST

January 17, 1997



DCE Global Directory Service

% ./local_TET.api -s xds_all

6.2.3.6 Howto Interpret Test Results

Two kinds of output are generated by the GDS functional tests run under TET:
« The TET journals, found at
$TET_ROOT/functional/directory/gds/results
and:
$TET_ROOT/functional/directory/xds/results

Journals produced by TET provide a synopsis of what happened during a test's
execution. Details about the kind of information contained in the journals may be
found in the TET documentation in the source tree, at

dce-root-dirdce/src/test/tet/doc

In general, the journals contain statements that indicate whether the testcase passed,
failed, or did something else.

The TET _filter.* scripts have been provided to help you organize the journal
information into a more manageable format. The formats of the reports output by the
filters vary, but each is self-explanatory. You run the filter by specifying the relative
path to the journal file you wish to filter; for example:

% tools/filter_TET.api results/0001e/journal

This will produce a file calledournal.log in your current working directory.
« The Test-Specific output files, found at
$OUTDIR

These files are not necessary for determining the pass/fail status of the test. They
contain supplementary information not contained in the journal file; this information
may be useful for debugging test problems, or simply as further verification that a
test has passed.

The number, content, and format of these files are all specific to the test being
executed.

6.3 The XDS Test Tool xt_test

The following sections describe the procedures necessary to use the XDS test tool,
xt_test, which can be used to run individual test cases. Note that the API test driver
should be used to run suites of tests; this driver udetest to invoke the individual

tests. See “Running the API Tests”, earlier in this chapter.

January 17, 1997 -®



DCE Testing Guide

6-10

Thext_testprogram is an interpretive Directory test driver using the XDS/XOM API. It
allows the construction of testcases using an interpreted notation which follows closely
the form of the XDS interface, without the disadvantages of compilation. The XOM
public objects used are hard-wired into the file parms.h. As a result, the creation of

new testcases using existing data is easy; however, alteration to the data or additions to it
require recompilation and linking.

Thext_testtool is invoked as follows:

xt_test{ -i testcasd -a testcase$
| -t testcase}| -o logfile] \
[-n numbej[-c] [-v] [-0]

Where the flags and parameters have the following meanings:

-i testcase Specifies that a single testcase (hamed by the testcase file parameter) be
run.

-a testcases Specifies that the parameter be interpreted as the name of a file
containing a list of testcase file names, each of which is to be run in turn.

If no parameter is present, the filenamestcasess used.

-t testcases Specifies that the parameter be interpreted as the name of a file
containing a list of testcase file names, which are to be run in parallel
using threads, except for the first and last entries in the list, which are to
be run in single-threaded mode before and after, respectively, the
testcases specified between them.

Option -t is available only if the client and tester are built with
THREADSAFE defined.

-0 logfile Specifies the logfile name (iD2_LOG_DIR is defined, the default is
$D2_LOG_DIR/xt_test.log otherwise the default is
$HOME/xt_test.log).

-n number Specifies the number of iterations (the default is 1).

-C Specifies conversion of objects to string and back (convenience library).
A subset of XOM objects is converted to a string, which is logged, and
then back to an objecom_get()is performed on this object to test its
syntactic validity. The subset of objects is that which is recognised by
the standard version of the XOM Object Information fil@ischema

Note that the-c flag is required when running convenience library
(xoms) testcases.

-V Specifies verbose output as an aid to debugging the tester itself;
additional output is logged.

-0 Prints version information and exits.

Whenxt_test is invoked with no parameters, or with invalid parameters, it produces a
brief message describing the usage options.

Before using the tester, GDS must be configured and activated. Since there are scripts to
do this when runnning tests under TET, the simplest way to configure GDS is to run
some tests under TET before usiigtest The Admin tests scheme could be used, since

January 17, 1997



DCE Global Directory Service

they run quickly.

6.3.0.1 XDS/XOM/XMH/Switch Tests

The following sections describe the XDS/XOM tests.

6.3.0.1.1 General

Thexom, xoms, xds, switch andmhs testcases are found at:

dce-root-dirdce/src/test/functional/directory/xds/ts/xom/lib
dce-root-dirdce/src/test/functional/directory/xds/ts/xoms/lib
dce-root-dirdce/src/test/functional/directory/xds/ts/xds/lib
dce-root-dirdce/src/test/functional/directory/xds/ts/switch/lib
dce-root-dirdce/src/test/functional/directory/xds/ts/mhs/lib

respectively.

The non-threaded tests in each suite are divided into four groups, whose expected result
is always to pass:

basic Basic functionality tests

valid More advanced tests, expectingceass
invalid More advanced tests, expecting failure
stress Tests of capacity limits

(These tests are slow.)

Assessing the results of the threads tests is not always as straightforward as for the other
tests, since the parallel-running tests can influence each other. There are four groups of
threads tests:

threads_as in which all actions are expected tocaieed
threads_af in which all actions are expected to fail
threads_os in which one success is expected
threads_up in which the outcome is unpredictable

The first two cases are easily interpreted: the outcome will be either success or failure of
the test’s action, which (if it is the outcome expected) will be equivalent to the test's
passing. Thus all these tests should pass.

The third case requires an inspection of the outcomes of all the tests, and confirmation
that only one action has succeeded. Since startup and shutdown should also succeed, the
expected (successful) result consists in three threads passing and the rest failing.

In the last group, success or failuper seis not so important, since this depends on the
non-deterministic interleaving of the tests: the purpose of these tests is to show whether

January 17, 1997 41



DCE Testing Guide

the directory system is robust enough not to crash or deadlock when confronted with a
complex mix of simultaneous interacting requests.

In summary, the desired outcomes are:

threads_as All tests will pass

threads_af All tests will pass

threads_os Three tests will pass, the rest fail

threads_up There will be no hanging or crashing (passes/failures

unimportant)

6.3.0.1.2 Runningndividual Threads Tests

Each thread testcase consists of four parts. For example, fahtesv, there exist four
files:

+ STARTthislv

« BODYthislv

+ SHUTDOWNTthislv
+ T10thislv

To run a test, for exampl€10listlv, do the following:
xt_test -t T10listlv

and the other three parts will be called implicitly.

In general, the names of runnable threads tests start with an initial capital “T”, followed
by a number indicating how many threads will be created, and ending with the name of
the test itself.

6.3.1 Examples

Following are some examples xff testusage.
« To run the testcase fileead1v
xt teest --ii rreeadlv
« To run the testcase files named in filestcasesequentially:
Xt_teest --a
« To run the testcase files named in fitey_testsequentially:
Xt _teest --aa my teestss

6-12 January 17, 1997



DCE Global Directory Service

« To run the threaded testcase fil&0add_entry37i

xt teest --tt Tr10add entrry37i

6.3.2 MAVROS Compiler Tests

The source files for the test drivers, input files, and reference output files for the
MAVROS tests are located in the

dce-test-diftest/directory/gds/mavrostest
directory.

Running the MAVROS compiler test consists of executing téet_mvr.sh script. The

script executes the test program to verify the coding routines can be executed correctly.
Thetest_mvr.shshell script executes the test programs initigtall tree. Bothtest_mvr
andoidt are executed. If these programs execute correctlytesteerrlog (for test_mvr)
andoidt.errlog (for oidt) error logs will be empty.

Note: Once llib-ltest.In is up to date,lint is not actually executed. After
reexecutingest_mvr.sh, lint.log may be empty even though there &rg
errors in the code.

6.3.3 Testing GDS Intercell Operation

This section contains the steps followed to hand-test using GDS for intercell
communications. The typical test scenario involves two single-machine cells configured
with X.500 names; in the steps given below, these machines are named “prague” and
“gemini”. The cell names used are, respectively:

I..... /lac=usloo=osfi/ /oou=dcelccm=prague
I..... /lac=uslco=osfi /oou=dcel/ccn=gemimi

The cell located on “prague” will be considered the foreign cell, and the cell located on
“gemini” will be considered the local cell.
1. Configure the foreign cell, with GDA.
2. Configure the local cell, with GDA.
3. Start GDS on the local cell.
4. Administer the DUA Cache in the local cell wigdssysadmas follows:
a. Prime cache with client address (option 5):

T-seleecttoor:: Client
NSAP: TCP/IP!internet=127.0.0.1+port=21010

January 17, 1997 43



DCE Testing Guide

b. Prime cache with name of default DSA (option 1):
name ac=us/a=osfi/ /oou=dcel/ccm=gemimi/ /ccm=gemimi--cisa

Select “DSA-Type” from the attribute list and provide the following
values:

dsa-ttyype: default/local’

T-sseleectoor::  Server

PSAP: TCP/IP!internet=127.0.0.1+port=21011
5. Get UUIDs and towers of foreign cell.

Logon to the foreign machine and type:
cdscp show cell as gds
You will get output that looks like this:

SHOW
CcHL /...../lc=uslm=osfi/ /oou=dcel/ccm=prague
AT  1994-19-28-115:001:002
Namespace Uuidd = 6e22b59f--ddad0-111cd-adac-0000c0alde56
Ckeariimmghouse Uuidd = 6d17b15e-dlad0-111cd-a4ac-0000c0alde56
Ckeariimnghouse Name = /......//cc=us/oo=osf/ /cou=dcel/ccn=prague/prague_ch
Repliicca Type =  Masteer
Tower = ncacm_ipp_tocp:1130.1105.5.833]]]
Tower = ncadg ipp_udp:1130.1105.5.833]]]

6. Create object for foreign cell in DSA of local cell:

a. Logon to the local DSA on the local cell.

b. Create all superior objects; for example:
c=us/m=osfl /oou=dce

C. Create object for the foreign cell:
c=usl/am=osf/ /mu=dce/ccn=praague
appli iccati icon-praocess

Select “CDS-Cell” and “CDS-Replica” from the attribute list and
provide the following values:
CDsS-Cell Cut and paste namespace UUID
Root directory UUID is same as namespace UUID
Name of cell is root directory name
CDS-Replica Replica type is MASTER
Cut and paste clearinghouse UUID

6-14 January 17, 1997



DCE Global Directory Service

Cut and paste clearinghouse name
Cut and paste towers
7. Have the cells exchange keys.
On the local celldce_login enterrgy_edit, and type the following:
rggy_editt=> cell /.../c=us/o=0sf/lou=dce/cn=haven
Enteer ggraooup name of ttthe loocal aaccount ffoor tthe fooresiggn celll:: none
Enteer ggraooup name of ttthe fooresiggn account ffoor ttthe loocal ccelll:: none
Enteer corgy name of ttthe loocal aaccount ffoor tthe fooresiggn celll:: none
Enteer corgy name of ttthe fooresiggn account ffoor ttthe loocal ccelll:: none
Enteer your ppassword: enter local cell cell_admin password
Enteer aaccount iidd too loog imtoo fooresiggn celll wiiktth:  cell_admin
Enteer ppassword] foor ffooreeiggn account::  enter foreign cell cell_admin password
Enteer eexpirraatiioon datee [yyy/mmitdd or ’mone’]:: (none)
8. Verify GDS intercell operation.

Test unauthenticated access. Type:
cdscp show dir /.../c=us/o=0sf/ou=dce/cn=prague’

You should perform this command not as root, but as an unauthenticated system
user. TypeKlist to verify that you in fact have no credentials.
9. Test authenticated access.

dce_loginand issue the sant@scpcommand as in the previous step.

6.4 GDS Runtime Output and Debugging Output

The GDS component outputs server information of all kinds via the DCE caataility
component. Th@©SF DCE Administration GuideChapter 5, Section 5.5 describes how
to control the various kinds of information (including trace output) available from GDS
via serviceability.

6.4.1 Test Plans

Refer to Chapter 1 of th©SF DCE Release Notéar the location of the DCE test plans
on the DCE distribution tape.

January 17, 1997 45



Chapter 7. DCE Distributed Time Service

7.1 Overview

The DCE Distributed Time Service (DTS) synchronizes the clocks on computer systems
connected by a network. DTS uses the client/server model and provides a command-
driven management interface for configuration and management functions. An
Application Programming Interface (API) is provided for application developers to write
programs that use DTS services. Finally, DTS provides a Time-Provider Interface to
obtain Coordinated Universal Time (UTC) from time-provider devices, as well as several
example time provider implementations.

The UTC-based time structure in DTS uses 128-bit binary numbers to represent the time
value internally. These binary timestamps consist of the time in terms of 100-nanosecond
units since 00:00:00:00, October 15, 1582, the count of 100-nanosecond units of
inaccuracy applied to the preceding time, the time differential factor expressed as the
signed number of minutes east or west of Greenwich mean time, and the DTS version
number. The inaccuracy represents the upper bound on all nonfaulty sources of
inaccuracy (for example, clock drift, resolution of discrete computer clock, software
communication path lengths, and so on). The clerks and servers compute a correct time
from time values obtained from several servers or from a time provider. The
synchronization is accomplished by intersecting intervals. This algorithm provides fault
detection and withstands the failures of a small number of servers.

7.2 Setup, Testing, and Verification

The following types of DTS tests are shipped with DCE:
- APl tests

January 17, 1997 -1



DCE Testing Guide

« Synchronization tests
- Control program tests
- Time conversion tests
« Kernel (or user-mode) tests

These tests are described in more detail in following sections. Results from tests
described in the test plan are also included.

The DTS test directory contains three subdirectogestrol, commonandservice. The
first, control, contains a script which testdtscp command line syntax. The second,
common, contains the tests. The thirskrvice, containsdtss-graph.g the graph tool for
displaying the test environment.

Before executing the test cases, you must configure DTS for testing, using the
instructions found in the following section of this chapter. You can run tests on the
configurations described in that section.

7.2.1 Installing DTS Functional Testswith dcetest_config

7-2

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guidieetest_config

will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocglto that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/testomponent_nanie

directory, where thdestcomponent_namelements of this path are equivalent to the
testicomponent_namelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locatiorfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the DTS functional
tests, this path should be the location, on your machine, of:

dce-root-dirdce/install

—which is the DCEnstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of th@SF DCE Release Notes

Thus,dcetest_configwill install the DTS functional tests at:
/dcetest/dcelocal/test/time/

where /dcetest/dcelocalis the link to whatever path you supplied as the install
destination.

The advantage in usingcetest_configo install the functional tests is that it will install
all that is needed andnly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlynstall (if you choose) functional tests witticetest_config for
test configuration and execution you must follow the instructions in the sections below.

January 17, 1997



DCE Distributed Time Service

Refer to Chapter 11 of this guide for further information on ugdogtest_config

7.2.2 Building the Tests

The tests are delivered as source: you must build the executables on your system. To do
so, you must pick up the appropriate headers to define structures sutheapeg
timeval, andutc_t. Depending on the platform to which you are porting, you may have

to change the include files. Kernel structures can differ from non-kernel structures of the
same name, so you will have to keep straight which structures correspond with which
symbols. For example, you may have to modifyst kernel.c in the common
subdirectory to defineTIMESPEC_T_ and include dtctime.h>. In addition, you may

have to include sys/time.l» instead of 4ime.h>. Once you start to build the tests,
these constraints will become obvious; if the wrong files are included, you are likely to
get compiler warnings.

7.2.3 DTS Setup

Before running many DTS tests, you must first configure a DCE cell. Refer to the
following chapters of th®©SF DCE Administration Guide—Introductidar information
on configuring a DCE cell:

« Overview of The DCE Configuration Script
« Phase One: Initial Cell Configuration

« Phase Two: Configuring a DCE Client and Other DCE Services

7.2.4 APl Tests

Therantest_api.cfile in the
dce-root-difdce/src/test/time/common

directory generates random test cases for the API. The program stops and displays
information if a failure is found.

Note that these tests do not require to be executed in a DCE cell; only a built and
installedlibdce (DCE library) is needed.

The test is invokes as follows:
rantest_api [coun{

wherecountis an integer specifying how many iterations the test should execute.

January 17, 1997 -B



DCE Testing Guide

The following compiler arguments, which are defined¢inrmmon/Makefile
+ -Dunix
« -DSYSTEM_FIVE

generate test invocations of the standard C library functipnime() andlocaltime(),
respectively.

Note: Certain operating systems have a bug in tbealtime(3) code which
manipulates the Daylight Savings Time switch on the last Sunday of
October 1974. The presence of this bug will cause a failure in the
rantest_api test for that date. See the comments undéfdef
NOV1974 BUGIin rantest_api.cfor further information.

7.2.5 Synchronization Testing

7-4

In order to perform useful synchronization testing, you should have at least disée
servers running (in a running DCE cell).

Thedtscp control program commanskt synch trace truetells the time service daemon
dtsd (see theMakefiles undercontrol andservice) to write the input and output values
for each synchronization to:

dcelocalvar/fadm/time/dts-inacc.log
A separate prograndtss-graph located in the

dce-root-dirdce/installimachinédcetest/dcel.2.2/test/time/service

directory (wheremachineis your system type), processes the trace into a PostScript file

of a graph of the synchronization. See Makefile under:

dce-root-dirdce/src/test/time/service

The dtss-graph command allows the user to see a large number of synchronizations
quickly and in detail. The last page of the output includes statistics describing the

interaction between the tracing node and all the servers it queried during the test.
To use these tools to perform synchronization testing, do the following:
1. Setup atest environment that includes one or more (preferably three) servers.

2. Enable the graph trace (using ttitscp control program commanskt synch trace

true) on a sample of the nodes, including at least one client and one server. This

causes DTS to write a trace file for thess-graphcommand in:

dcelocalvar/adm/time/dts-inacc.log

If there is a time-provider in the test, the test should include a trace from the
daemon connected to the time-provider. (Note that DTS starts a new trace file each

time the service restarts.)

3. Process the traces witfitss-graph when the test run is complete. Entétss-
graph -help for options.

January 17, 1997



DCE Distributed Time Service

4. Print the graphs on a PostScript printer and examine the output.

7.2.6 dtscp Testing

Thetest_dtscp.kshscript is a functional test which rumtiscp commands and compares
the resulting output to the contents of an “expected results” file.

The test consists of the following parts, all located in the

dce-root-dirvdce/src/test/time/control

directory:

test_dtscp.ksh Test driver script.

dtscp.ksh The test script.

test_dtscp_clerk.templ Expected results template fdtscp clerk.
test_dtscp_server.templ Expected results template fdtscp server.

The test is invoked as follows:
test_dtscptype[remote_hostnani¢machine_typg

— wheretypeis eitherserver or clerk, depending on what type of DTS machine the test
is being executed on, server or clerk; andchine_typeas AlX , OSF1, or HPUX.

When invoked, the test edits the template files with local information such as the
machine’s hostname, clock adjustment rate, and the next TDF change. This information
is placed in a file nametkst_dtscp_clerk.expor test_dtscp_server.expdepending on
whether the clerk or server form of the test is running. (The contents of this file is used to
determine the expected results when the remote test is executed.)

The test will report whether the expected matches the actual output, and will record any
differences between the two in a file nantedt_dtscp.diff. test_dtscp.kshwill also test
commands which have variable output (such as the current time) and report any failures.
The actual results of running the test will be placed in a file natest dtscp.act

Note that the server test should be run with a server that has just been started, with no
time provider, in a cell with no other DTS servers running. The clerk test should be run
with a clerk that has just been started, in a cell withghabal servers, and at least one
local server running.

Sample output from a clerk test:

START DCE tiinme functiioonal tteest:: ditsscp.kksih; MATE: TThu Ot 21 11:%3:441 EDI 1993
The valwe of NNODE TYPE iss cleerkk

Begim teest cof ditsscp command strrwctwree (TThu Ot 21 11:53:43 EDI 1993)

You aree rwnnimg thiss teest an a dtss clleerik (rriigght??)

Actwal ooutput iiss im fiillee tesst dtsscp.aact

Expecteed output iiss im fiillee teest dtsscp_cleerkk.eexp

Comparee actwal coutpput ttoo expecteed outpput
Actwal ooutpput matcches expecteed output

January 17, 1997 -b



DCE Testing Guide

Executee variicablee commands
PASSED, TTest 11 "TTEST DISCP" :: tteest rraan suiccessfll lyy
END DCE tiinme functiioonal tteest:: ditsscp.kksih; MATE: TThu Ot 21 11:%9:116 EDI 1993

Sample output from a server test:

START DCE tiinme functiioonal tteest:: ditsscp.kksih; MATE: TThu Ot 21 12:110:339 EDI 1993
The valwe of NNODE TYPE iss serwer

Begim teest oof ditsscp command strrwctwree (TThu Ot 21 12:110:442 EDT 1993)

You aree rwnnimg thiss teest on a dtss lloocal sserwer ((rrigght??)

Actwal ooutput iiss im fiillee teest dtsscp.aact

Expecteed outpput iiss im fiillee teest dtsscp_serwer..eexp

Actwal ooutpput matcches expecteed outpput

Executee variicablee commands

PASSED, TTest 11 "TTEST DISCP" :: tteest rraan suiccessfll lyy

END DCE tiinme functiioonal tteest:: ditsscp.kksih; MATE: TThu Ot 21 12:115:22 EDI 1993

7.2.7 Additional DTS Testing

The following subsections describe how to run and interpret the output of some
additional tests.

7.2.7.1 Timezone Conversion Test

The DTS timezone conversion tegtgt zonecv} is invoked as follows:
test/time/common/test_zonecvt < time/common/zonecvt.dat

Note that you must install all of the files built féetc/zoneinfoin order to run this test
(however, a running DCE cell isotrequired). The files should be located at:

dcesharefktc/zoneinfo

wheredceshareds a link thatdce_configwill try to create from/etc/zone/info (note
however that your operating system may already have something at this location and if it
doesdce_configwill not overwrite it).

How To Set up DTS to use Local Zone Information

By default, DTS uses the GMT time zone, so time information you get from either

dtscp show current time

7-6 January 17, 1997



DCE Distributed Time Service

or the API functionutc_gettime()will be in GMT.

The default time zone information used will be thatdcaltime; dce_configwill usually
link this name to the correct zone, so that (for exampddg/zoneinfo/localtimeon an
HP-UX machine will have been linked tetc/zoneinfo/US/Easternlf this has not been
done, simply set th&Z environment variable to the desired zone. For example:

TZ=US/Eastern
or:
TZ=ESTS5EDT

for a POSIX system.

If necessary, you can obtain the full distributionle¢altime from:
ftp.uu.net:usenet/comp.sources.unix/volumel18/localtime3/patiX.Z

whereXXruns from 01 to 07.
When using API functions, remember to ciset()before anything else.

To change the localtime to a new zone, you canazis&ith the -1 option.

7.2.7.2 Kernel Library Tests

The following tests:

. test_kernel

« test_kernel-kernel

. test_kernel-user
are built from source in the

dce-root-difdce/src/test/time/common

directory. The tests have similar output. The firgtst kernel links in libdce. The
test_kernel-kernel test links in libutc-kernel.a and runs in kernel mode; the
test_kernel-usertest links inlibutc-user.a and runs in user mode.

Note that your platform must support both the kernel-mode and the user-mode DTS
libraries in order for all three versions of this test to be built. See “Building and
Linking” earlier in this chapter.

January 17, 1997 -



DCE Testing Guide

7.2.7.3 DTS Hand Tests

The text file
dce-root-dirdce/src/test/time/hand-tests

consists of instructions for performing, by hand, further DTS functional testing. These
tests are intended to be run by hand in the configurations specified.

7.2.8 Test Run Examples

7-8

Some annotated examples of test runs follow.
# test_kernel

> reesolutiioon = 3970000 nanosecs
> driifftt = 1/20000
> frreequency = 1000000000 nanosec / ssec

This test checks various pieces of information that the kernel knows and DTS needs. The
3.97 milliseconds shown is the correct clock tick for the DECstation 3100. (The clock
ticks at 256 hz = 3.90625, but since the kernel actually uses micro-seconds, once a
second there’s an extra 64 micro-seconds added to keep the clock correct; thus the
longest tick is: 3.906 + 0.064 = 3.970). The drift is equal to 1 part in 20,000. The
frequency of 1,000,000,000 nanosecs/sec indicates that no clock training is occuring
(yet). Note that the first two numbers will be different on different platforms.

> 1992-M6-M9 22:004:440.0045538

> 1992-M6-M9 22:04:440.0045537000 +/-- D 00:000:000.0052798900 (&M

> 1992-M6-M9 17:004:440.0045537000 +/-- @ 00:000:000.0052798900 (&MIFH:00 = -118000)
> 1992-M6-M9 22:104:440.0049443000 +/-- (D 00:000:000.0052798900 (&M

> 1992-M6-M9 17:004:440.0049443000 +/-- @ 00:000:000.0052798900 (&MIFH:00 = -118000)

This section shows the output of three system calls: orgetimeofday(), and two to
utc_gettime() They should give the same answer to within a few milliseconds. (If two
calls toutc_gettime()should monotonically increase, they do.)

1992-M6-M9 22:(04:440.0068973000 +/-- @ 00:000:000.0052799900 (M)

1992-M6-M9 17:004:440.0068973000 +/-- M 00:000:000.0052799900 (EMIFH:000 = -118000)
1992-M6-M9 22:(04:440.0088504

Setttiimng tiinme forwardd 1 second

1992-M6-M9 22:004:441.0088504
1992-M6-M9 22:(04:441.0084597000 +/-- @ 00:000:000.0004021000 (M)

>
>
>
>
>
>
>
> 1992-M6-M9 18:004:441.0084597000 +/-- @M 00:000:000.0004021000 (GMIF44:000 = -114400)

January 17, 1997

Leap second set ttm: 11992-M6-M9 22:004:445.0088504000 +/-- M 00:000:000.0000000000 (M)



DCE Distributed Time Service

This section show aet of the time forward 1 second. Note that the time did in fact go
forward about one second (from 40 to 41).

1992-M6-M9 22:004:444.1108035
1992-M6-M9 22:(04:444.1104127000 +/-- @ 00:000:000.0004171000 (GwM)

1992-M6-M9 18:004:444.1104127000 +/-- MO 00:000:000.0004171000 (E&@MIF4:000 = -114400)
1992-M6-M9 22:004:447.1111939000 +/-- @ 00:000:001.0004322000 (&)
1992-M6-M9 18:004:447.1111939000 +/-- O 00:000:001.0004322000 (E&@MIF4:000 = -114400)

>
>
>
> 1992-M6-09 22:004:447.1115847
>
>
>

1992-M6-M9 22:004:447.1127564

This section verifies that the inaccuracy increases, due to drift, and also the second
should be increased by one second because of the (possible) leap second.

> Adjwstiinng tiinme backwardls 0.11 second
> Leap second set ttm: 11992-M6-09 22:004:52.1127564000 +/-- @ 00:000:000.0000000000 (VM)
> 1992-M6-M9 22:004:447.1127565

> 1992-06-09 22:004:447.1123657000 +/-- @ 00:000:000.1103971000 (&)

> 1992-M6-M9 18:004:447.1123657000 +/-- @ 00:000:000.1103971000 (GEMIF44:000
> 1992-M6-M9 22:004:30.1109214
>
>
>
>
>

-114400)

1992-M6-M9 22:(04:50.1105306000 +/-- @ 00:000:000.0074675000 (M)
1992-M6-M9 18:004:50.1105306000 +/-- M 00:000:000.0074675000 (EMIF4:000
1992-M6-M9 22:(04:53.0090863

1992-M6-M9 22:(04:53.0086955000 +/-- @ 00:000:001.0045340000 (M)
1992-M6-M9 18:004:53.0086955000 +/-- M 00:000:001.0045340000 (EMIF4:000

-114400)

-114400)

This section executes aadjust and verifies that the inaccuracy decreases. The
inaccuracy decreases duringadjust under the assumption that the clock is being made
more correct.

Endimg adjwstment preematuireslyy

1992-M6-M9 22:004:53.0098596

1992-M6-M9 22:(04:53.0094689000 +/-- @ 00:000:001.0045262000 (M)
1992-M6-M9 18:004:53.0094689000 +/-- @ 00:000:(01.0045262000 (EMIF4-X0
1992-M6-M9 22:(04:53.1110314

1992-M6-M9 22:004:53.1106407000 +/-- @ 00:000:(01.0045263000 (ENMM)
1992-M6-M9 18:004:53.1106407000 +/-- ® 00:000:001.0045263000 (GEMIF4:00
1992-M6-M9 22:(04:53.1118126

-114400)

-114400)

>
>
>
>
>
>
>
>

This section stops the adjustment and verifies that inaccuracy starts increasing again.

Adjwistiinng tiinme backwardls 0.11 second
Leap second set ttm: 11992-M6-M9 22:004:58.1118126000 +/-- M 00:000:000.0000000000 (&)
TDF change set tto : 11992-06-M9 22:005:003.0000000000 +/-- M 00:000:000.0000000000 (G&NMM)
1992-M6-M9 22:(04:53.1118127

1992-M6-M9 22:(04:53.1114219000 +/-- @ 00:000:000.1103971000 (GNM)
1992-M6-M9 17:004:53.1114219000 +/-- @ 00:000:000.1103971000 (EMIFS5:00
Adjwstmrent sshouldd have complecte=d.

1992-M6-M9 22:(06:52.4417993

1992-M6-M9 22:006:52.4414085000 +/-- @ 00:000:(00.2268508400 (W)
1992-M6-M9 18:(06:552.4414085000 +/-- @ 00:000:000.268508400 (GEMIF4:00

-118000)

>
>
>
>
>
>
>
>
>
>

-114400)

January 17, 1997 -B



DCE Testing Guide

> 1992-M6-M9 22:006:52.4445062
> 1992-M6-M9 22:06:52.4441154000 +-- D 00:000:000.268275400 (&N
> 1992-M6-M9 18:006:352.4441154000 +/-- @ 00:000:000.2268275400 (&MIF44:000 = -114400)

This section allows the adjustment to complete by itself and verifies that doeunacy
starts increasing again. It also verifies that the timezone changes back from -5:00 to
-4:00.

> Endimg adjuwstrment aagaim

> 1992-M6-M9 22:006:352.4452795

> 1992-M6-09 22:006:52.4448888000 +/-- @ 00:(00:(00.2268198400 (&)

> 1992-M6-09 18:006:52.4448888000 +/-- O 00:000:000.268198400 (EMIF44:000
>

>

>

= -114400)
1992-06-M9 22:106:52.4460607
1992-16-09 22:106:352.456700000 +-- @ 00:000:000.2268198400 (G
1992-06-M9 18:006:552.4456700000 +/-- @ 00:000:000.268198400 (GMIF4:000 = -114400)

This section confirms that ending tljust (after it has run out) does not cause any
problems, and that the inaccuracy increases (or stays the same).

7.3 DTS Runtime Output and Debugging Output

component. The following sections describe how to control the various kinds of
information (including debugging output) available from DTS via sexability.

7.3.1 Normal DTS Server Message Routing

There are basically two ways to control normal DTS server message routing:

« At startup, through the contents of a routing file (which are applied to all components
that use serdgieability messaging).

« At startup, via thew option todtsd.
« Dynamically, through thelcecp logobject.

The following sections describe each of these methods.

7.3.1.1 Routing File

If a file called

dce-local-patlfsvc/routing

7-10 January 17, 1997



DCE Distributed Time Service

exists when DTS is brought up (i.e., whdtsd is executed or when the cell is started
throughdce_config, the contents of the file (if in the proper format) will be used as to
determine the routing of DTS sendability messages.

The value ofdce-local-pathdepends on the values of twwake variables when DCE is
built:

DCEROOT its default value islopt

DCELOCAL its default value isSDCEROOT/dcelocal

Thus, the default location of the sece@abilityrouting file is normally:
/opt/dcelocall/svc/routing

However, a different location for the file can be specified by setting the value of the
environment variabl® CE_SVC_ROUTING_FILE to the complete desired pathname.

The contents of the routing file consist of formatted strings specifying the routing desired
for the various kinds of messages (based on message severity). Each string consists of
three fields as follows:

severityoutput_formdestination[output_formdestination. . . ]
Where:

severity specifies the severity level of the message, and must be one of the
following:

- FATAL

- ERROR

WARNING

NOTICE
NOTICE_VERBOSE

(The meanings of these severity levels are explained in detail in Chapter
4 of the OSF DCE Application Development Guide — Core Components
volume, in the section entitled “Specifying Message Severity”.)

output_form specifies how the messages of a given severity level should be
processed, and must be one of the following:

- BINFILE
Write these messages as binary log entries
« TEXTFILE
Write these messages as human-readable text
- FILE
Equivalent toTEXTFILE
+ DISCARD
Do not record messages of this severity level
« STDOUT

January 17, 1997 -11



DCE Testing Guide

Write these messages as human-readable text to standard output
- STDERR
Write these messages as human-readable text to standard error

Files written asBINFILE s can be read and manipulated with a set of
logfile functions. See Chapter 4 of th©SF DCE Application
Development Guide — Core Componevtdume, mentioned above, for
further information.

Theoutput_formspecifier may be followed by a two-number specifier of
the form:

.genscount
Where:

gens is an integer that specifies the number of files (i.e., generations)
that should be kept

count is an integer specifying how many entries (i.e., messages) should
be written to each file

The multiple files are named by appending a dot to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specifieddoynt the file is
closed, the generation number is incremented, and the next file is
opened. When the maximum generation number files have been created
and filled, the generation number is reset to 1, and a new file with that
number is created and written to (thus overwriting the already-existing
file with the same name), and so on, as long as messages are being
written. Thus the files wrap around to their beginning, and the total
number of log files never exceedgns although messages continue to

be written as long as the program continues writing them.

destination  specifies where the message should be sent, and is a pathname. The field
can be left blank if theoutput_formspecified isDISCARD, STDOUT,
or STDERR. The field can also contain @ld string in the filename
which, when the file is written, will be replaced by the process ID of the
program that wrote the message(s). Filenames maaigontain colons or
periods.

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings asae-separated

output_formdestination
strings.
For example,
FATALTTEXTFILLE/ /[Hev/cconsolee

WARNNNGIDISSCARD: -
NOMGEBINVALLE.550.1100:/ /ttmypl loog%dd STDERR:--

Specifies that:

7-12 January 17, 1997



DCE Distributed Time Service

- Fatal error messages should be sent to the console.
« Warnings should be discarded.

« Notices should be written both to standard error and as binary entries in files located
in the/tmp directory. No more than 50 files should be written, and there should be no
more than 100 messages written to each file. The files will have names of the form:

/tmp/logprocess_ichn

whereprocess_ids the process ID of the program originating the messagesnand
is the generation number of the file.

7.3.1.2 Routing by the dcecp log Object

Routing of DTS server messages can be controlled in an already-started cell through the
dcecp logobject. The name used to manipulate the routes is the server entry name,
which is usually:

hostsmachine_nanmf@ts-entity

See thelog.8dce reference page in th©SF DCE Command Referender further
information.

7.3.2 Debugging Output

Debugging output from DTS can be enabled (provided that DTS has been built with
DCE_DEBUG defined) by specifying the desired debug messaging level and route(s) in
the

dce-local-patlfsvc/routing

routing file (described above), or by specifying the same information in the
SVC_DTS_DBGenvironment variable, before bringing up DTS. Debugging output can
also be enabled and controlled through doecp logobject.

Note that, unlike normal message routing, debugging output is always specified on the
basis of DCE component/sub-component (the meaning of “sub-component” will be
explained below) and desired level.

The debug routing and level instructions for a component are specified by the contents of
a specially-formatted string that is either included in the value of the environment
variable or is part of the contents of the routing file.

The general format for the debug routing specifier string is:

"componensub_compevel,. . ..output_formdestination6
[output_formdestination...]"

January 17, 1997 -13



DCE Testing Guide

where the fields have the same meanings as in the normal routing specifiers described
above, with the addition of the following:

component  specifies the component name

sub_compevel specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

A star (“*”) can be used to specify all sub-components. The sub-
component list is parsed in order, with later entries supplementing earlier
ones; so the global specifier can be used to set the basic level for all
sub-components, and specific sub-component exceptions with different
levels can follow (see the example below).

“Sub-components” denote the various functional modules into which a component has
been divided for sereeabilitymessaging purposes. For DTS, the sub-components are as

follows:

general General server administration
events Events received and acted upon
arith Math operations

ctimsgs Control message®ceived

msgs Messagesaceived

states Server state transitions

threads Thread interactions

config Server/cell configuration

sync Server/synchronization interactions

For example, the string
"dts:*.1,events.3: TEXTFILE.50.200:/tmp/DTS_LOG

sets the debugging level for all DTS sub-componeaxeépteventg at 1;eventss level
is set at 3. All messages are routedttap/DTS_LOG. No more than 50 log files are to
be written, and no more than 200 messages are to be written to each file.

The texts of all the DTS serséability messages, and the sub-component list, can be
found in the DTS sams file, at:

dce-root-dirdce/src/time/common/dts.sams

For further information about the secé@abilitymechanism and API, see Chapter 4 of the
OSF DCE Application Development Guide — Core Componealsme, “Using the
DCE ServiceabilityApplication Interface”.

7-14 January 17, 1997



DCE Distributed Time Service

7.3.3 Test Plans

Refer to Chapter 1 of th©SF DCE Release Notéar the location of the DCE test plans
on the DCE distribution tape.

January 17, 1997 -15



Chapter 8. DCE Security Service

8.1 Overview

The DCE Security Service manages the rights and identities of users within a given cell.
It does so primarily by representing and certifying that identity to applications running
on separate systems in the environment

Some local system functions are also provided in an effort to preserve the location
transparency of the distributed environment. By supplanting the conventional machine
login and account management utilities with replacements that consult the network user
registry, users are free to use any system in the environment, provided that the local
administrator does not restrict access. In this way, systems become sharable resources
related to objects in the file or name system.

The DCE Security Service consists of the following cooperating subcomponents:
« Registry Service

The Registry Service manages user, group, and account information and stores
administrative policies regarding the characteristics of accounts that can access the
distributed system. The Registry Service is composed of a set of client services to

add, manipulate, and delete entries in the server's registry database. The Kerberos
database, containing the secret keys of all registered principals, is contained in the
registry database. You can replicate the registry database within a cell, and any

changes to the master registry are propagated to the replicas. With this single logical

registry, a user can log in and authenticate from any system in the cell.

- Authentication Service

The Authentication Service is an encryption-based authentication protocol that uses a
modification of the Needham-Schroeder authentication algorithm.

The Authentication Service allows principals defined as accounts in the registry to
exchange credentials and establish mutually authenticated communications. The
Authentication Service is the network service that supplies the simple tickets and

January 17, 1997 4



DCE Testing Guide

session keys necessary for such communications. DCE’s Authentication Service is
analogous to Kerberos’ Key Distribution Center (KDC).

« Access Control List (ACL) facility

All objects in DCE can have an ACL. The ACL facility consists of a single ACL
editor tool @cl_edit) and a set of APIs for ACL manipulation. Each DCE component
implements its own ACL managers to process and interpret the ACL when access to
the object is requested.

« Privilege Service

The Privilege Service is a certification authority that provides a trusted mechanism to
derive authorization information about principals. Authorization information
includes a principal’s identity expressed as a universal unique identifier (UUID) and
the principal’s group memberships. The Privilege Service packages this information
into a privilege attribute certificate (PAC), which is then sealed in a Kerberos V5
ticket's authorization data area. After the target principal receives and verifies the
ticket, the unsealed authorization data is trusted and used to make access decisions.

The Privilege Service and the ACL facility provide authorization services to the cell.

The servers — the registry server, the authentication server, and the privilege server —
are encompassed within one daemon, cadlecd

8.2 Setup, Testing, and Verification

The following types of DCE Security Service tests are shipped with DCE:
« Basic functionality tests
« Theupdateandquery tests
« Command tests
- APl tests
These tests are described in more detail in the following sections.

Before executing the test cases, you must configure the DCE Security Service for testing
using either the DCE configuration script

dce-root-dirdce/installimachinéopt/dce1.2.2/etc/dce_config

or the instructions found in the next section of this chapter. You can run the tests on the
configurations described in that section.

8.2.1 Installing DCE Security Functional Tests with dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guidieetest_config

8-2 January 17, 1997



DCE Security Service

will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocglto that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/testomponent_nanie

directory, where thdestcomponent_namelements of this path are equivalent to the
testicomponent_namelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locatiorfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the DCE Security
functional tests, this path should be the location, on your machine, of:

dce-root-dirdce/install

—which is the DCEnstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of th@SF DCE Release Notes

Thus,dcetest_configwill install the Security functional tests at:
/dcetest/dcelocal/test/security/

where /dcetest/dcelocalis the link to whatever path you supplied as the install
destination.

The advantage in usingcetest_configo install the functional tests is that it will install
all that is needed andnly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlynstall (if you choose) functional tests witticetest_config for
test configuration and execution you must follow the instructions in the sections below.

Refer to Chapter 11 of this guide for further information on ugdogtest_config

8.2.2 Basic Security Setup

Before running the test, configure your machine as a DCE client machine, or configure
your machine as a DCE Security Server machine and run the test there. To configure the
DCE Security Service for basic testing, do the following:

1. Usingmkdir, create thekrb5 directory on your machine.

2. Use thedce_configscript to install the necessary files on your machine. You may
install the Security Server code, the security client code, or both. Note that the
dce_configscript places the executables in

dcelocalbin

and creates symbolic links tasr/bin. Therefore, you should not need to add any
paths to youSPATH environment variable to execute the tests.

3. Creatalcelocaldce_cf.dh

This file is used by the Security Service to find the machine name and the name of
the cell. This file should be in the following format:

January 17, 1997 B8



DCE Testing Guide

8-4

celllmame [/......// cellname
hostmame hostss/ machine

wherecellnameis the name of your cell anchachineis the IP host name of your
machine.
Create the master registry database.

The sec_create_dhkool is used to create the initial database. This database is
populated with the default principals and accounts needed to bootstrap the system.
The accounts are created with the default passwalce™" An alternative may be
specified with the-password option to sec_create_db This tool creates the
database in the directory:

dcelocalvar/security/rgy_data

Runsec_create_dkas the privileged user (root) so that the database is protected
appropriately.

The sec_create_dlrommand must be issued with thmynameswitch to identify
the CDS name of the server entry for this server. This name can be anything, but
by convention is:

/...Icellnamésubsys/dce/security/master

« To create the database, enter
sec_create_db -myname subsys/dce/security/master

at the command line.

At that point,sec_create_dlwill issue the prompt:
Enteer kkeyseed foor iimittiiaal ddateabase masteer Key:

In response, enter any character string, to a maximum length of 1024 characters.

This string seeds a random key generator, which generates a random master key
used to encrypt keys in the database. The master key is stored in

dcelocalvar/security/.mkey
and can be read and written only by the privileged user (root).

A default keytab file/krb5/v5srvtab, is created to store the server keys created at
this time

Thesec_create_dhool also creates the file
dcelocaletc/security/pe_site

which contains the name of the machine runninggbed This file contains one
or more lines with the name of the target cell and the RPC string binding for a
server providing security services for that cell. It has the following format:

I...../I cellname UUIO@eadg_ipp_udp: XXX XX XXX.XXK

January 17, 1997



DCE Security Service

whereUUID is the cell's security service object UUID antXX. XX . XXX.XXXs
the host machine’s IP address.

This file provides access to security services in the absence of CDS. Therefore, if
you are setting up a client machine, be sure to copy this file from the Security
Server machine.

Note: The BIND_PE_SITEenvironment variable controls client use of
NSI. If the environment variable is set to any value other than 0, the
security code will not bother to make NSI calls. Set and export this
environment variable if your configuration does not include a
running CDS.

When running sec_create_dbmore than once on a host (for
example, when installing a new release), you must delete the old
registry database files and the default keytab file by entering:

rm -r dcelocalvar/security/rgy_data
rm /krb5/v5srvtab

at the command line.

If you fail to delete thergy data directory, you will see the
following error message

Regisstrry: Hataal Eemror -- at |liime 426 of ffilllee rgyy cresatee.cc -
- Mx171220ab - cannot ccrecatee dateabase (dice / ssec)

If you fail to deletev5srvtab, you will see the following error:

Regisstrry: Hmroor -- Emror setttiing loocal hhost''ss key — ttrry
delectiimg oldd entrryy -

- (Mx17122048 - Speciffiieed key alrreeady exisstss i key
stooree (dice / ssec)

5. Run the servers.

The progransecdis the process that provides the Authentication Server, Privilege
Server, and Registry Server. This program must be run as the privileged user
(root) and must be run on a machine that contains the database created by
sec_create_db In addition, the Authentication Server requiregslogdto be
running on the local server machine.

Running the server with thelebugswitch causes it to run in the foreground. The
-verbose switch prints diagnostic and auditing information. This mode is
recommended for early integration testing. Itis also recommended that you enable
syslogand examine the log while running the authentication server.

To do so, use the followingyslog.confinformation:

*.mark.info /usr/spool/adm/syslog
*.err lusr/spool/adm/syslog

January 17, 1997 o)



DCE Testing Guide

andtail the
{usr/spool/adm/syslog
output file.
6. Make sure thelced secvakervice is running.
7. Setup a Security client.
Use thedce_configscript to install the Security client executables.

Assume that a registry has been created and a Security Server started on host
“laurel” which has IP address 15.22.144.215. Assume that the cell name is
“/.../com/hp/apollo.”

The contents of the
dcelocaldce_cf.db
file should appear as follows:
cell Imame /..... //ccomthp/zapoll loo
hostmame hostss/l lsaureel
The contents of the
dcelocaletc/security/pe_site

file should appear as follows:
I..... /lccomhplaapoll loo UUID @weadg ipp udp:115.22.1144.215]]]

To make host “hardy” a client, follow these steps:
1. On “hardy”, create:
dcelocaldce_cf.db
Its contents should appear as follows:
cell lmame /..... //ccomthp/zapoll loo
hostmame hostss/thardly
2. On “hardy”, create:
dcelocaletc/security/pe_site

Its contents should appear as follows:
I..... /lccomhplaapoll loo UUID @weadg ipp udp:115.22.1144.215]]]

You may copy this file directly from the Security Server machine.
3. Returnto the host “laurel”. On “laurel”, do the following:

« Run dce_loginto login as a user with privileges to edit the registry
database. See the following section, “The dce_login Utility,” for more
information aboutice_login

8-6 January 17, 1997



DCE Security Service

« Runrgy_edit. Add the principal “hosts/hardy/self” and an account for
that principal. Remember the key (password) you specified for
“hardy’'s” account. See the “DCE Security Service” part of tleSF
DCE Administration Guide—Core Componefs instructions on how
to usergy_edit.

4. Returnto the host “hardy,” and perform the following steps.

« Runrgy_edit unauthenticated (without usirdge_login). Use thektadd
command to add the key for “hosts/hardy/self.”

« Make sure thelced secvakervice is running on “hardy”.

Now you can run the security tests on either the server machine “laurel”
(which is also a client) or on the client machine “hardy.”

8.2.2.1 The dce_login Utility

The dce_login sample application allows users to obtain DCE credentials without
modifying their local OS state. This application constructs a credential cache that
supports authorization servidee and then execs the user’s shell. The shell is inherited
from the parent process if tf#HELL environment variable is set. Command usage is:

dce_login [user_namg password ]

If the user’s password or the user name is not specified on the commanddadogin
will prompt you for the data.

You can usedce_loginto login as a registry user with privileges to edit the registry
database. You will have to have these privileges for most of the tests described in this
chapter.

8.2.3 Basic Functionality Tests

These tests can be used to ensure that the basic functionality of the Security Service is
working properly.

8.2.3.1 The update Test

You must execute thelce login command as a user with privileges to modify the
registry before running this test. If you configured your machine usingdtiee config
script, then whatever user the scrip€elladmin variable was set to has registry-
modifying privileges.

January 17, 1997 g



DCE Testing Guide

8-8

The

dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/commands/rgy/update

test checks basic update functionality by adding some specified number of principals,

groups, and organizations to the registry database.
organization) and account objects are checked; policy and property updates are not

checked.

Only PGO (principal, group,

To run theupdatetest,cd to its directory and enter (on one line):

update -a | -r [ -p principal -pw password \
num_accts site [ person_prefix [ group_prefix [ org_prefiX ] ]\
[-d | -drpc_debug_flags

where:

-a

-p <principal>

-pw <password>

-d

-drpc_debug_flags

num_accts

Specifies that entries are to be added to the registry.
Note that either thea or the-r flag mustbe specified.
Specifies that entries are to be removed from the registry.
Note that either ther or the-a flag mustbe specified.

Specifies the principal name to be loggedgrincipal should be a
principal with registry-modifying privileges.

Specifies the password of the principal.

Note that eitherboth -p and -pw must be specified oneither
should be specified. In the latter case, the test will prompt for the
name and password of the principal.

Specifies the minimal level of debug output. This parameter is
optional.

Allows you to specify the amount of debug output desired. Some
usefulrpc_debug_flagsettings are the following:

0-3.5 Maximum  error/anomalous  condition
reporting and mutex checking (note that
this amount of output is often too verbose
for normal use, plus there is extra overhead
for mutex checking).

0-1.10,2-34 Same reporting as the preceding text, but
drops some transmidceive informational
messages.

0.10 Reports all error conditions plus a little
more; no mutex checking.

0.1 Reports error conditions only (same as
specifying-d).

Specifies the number of new accounts to add to the registry
database.

January 17, 1997



DCE Security Service

cellname Specifies the cell whose registry is to be updated. This cellname
should include the global prefix/:../".

person_prefix Specifies a prefix for all update entries added to pe¥son
domain. The default prefix igp.da.te._.te.st/per

group_prefix Specifies a prefix for all update entries added to treup
domain. The default prefix igpd_test/grp.

org_prefix Specifies a prefix for all update entries added todhg domain.
The default prefix isipd_test/org

For example, enter
update 100cellname

where100is the number of new accounts aoellnameis the name of the cellpdate

will then prompt you for your principal name and password. Note that if you are not
authorized to edit the registry (if you have not executed_loginto login as a user with
those privileges), then the test will fail. If the update is successful, the output looks like
the following:

Qpenimg reegisstrny at ssittee /......// cellname

TINUNNG: AAccount aadd [11.3380000]wser+sys [20.1100334] rrecal ttiinme (20 im, 20 out))
TINUNNG: ((FPer ccalll aaggreegates) [[(0.0069000]wiser+sys [11.0005017] rresal ttiinme
TINUNNG: ((FPer ccalll pperiicod 20) [[(00.0069000]wser+sys [11.0005017] rresal ttiinme
TINUNNG: AAccount sadd [2.6690000]wser+sys [39.8317963] rrecal ttiinme (40 im, 440 out))
TINUNNG: ((FPer ccalll aaggreegates) [[(0.0067250]wser+sys [(0.9995449] rrecal ttiinme
TINUNNG: ((FPer ccalll pperiicod 20) [[(0.0065500]wser+sys [00.985881] rrecal ttiinme
TINUNNG: AAccount aadd [44.0020000]wser+sys [[660.1174643] rrecal ttiinme (660 im, 650 out))
TINUNNG: ((FPer ccalll aaggreegates) [[(0.0067000]wser+sys [11.0002911] rresal ttiinme
TINUNNG: ((FPer ccalll pperiicod 20) [[(0.0066500]wser+sys [11.0017834] rrecal ttiinme
TINUNNG: AAccount sadd [5.200000]wser+sys [880.262026] rrecal ttiinme (80 im, 80 out))
TINUNNG: ((FPer ccalll aaggreegates) [[(0.0065000]wser+sys [11.0003275] rresal ttiinme
TINUNNG: ((FPer ccalll pperiicod 20) [[(00.0059000]wser+sys [11.0004369] rrecal ttiinme
TINMNNG: AAccount aadd [65.3360000]wser+sys [1100.262032] rrecal ttiinme (1100 im, 1100 out))
TINUNNG: ((FPer ccalll aaggreegates) [[(0.0063600]wser+sys [11.0002620] rresal ttiinme
TINUNNG: ((FPer ccalll pperiicod 20) [[(00.0058000]wser+sys [11.0000000] rresal ttiinme

No errraors diuriilng updates teest

Note thatupdate also provides information about the time needed to perform blocks of
20 updates. This information varies among systems.

You can use thegy edit tool to view the registry to verify that the correct number of
principals, groups, organizations, and accounts are added. See the “DCE Security
Service” part of theOSF DCE Administration Guide—Core Componeiotsinstructions

on usingrgy_edit.

January 17, 1997 8



DCE Testing Guide

8.2.3.2 The query Test

8-10

You mustdce_loginbefore running this test. You do not need to have registry-modifying
privileges, but you must be authenticated to query the registry.

The
dce-root-dirinstall/machinédcetest/dce1.2.2/test/security/commands/rgy/query

test checks basic query functionality. It searches through the registry database,
performing every query operation. The data returned for a particular object is checked for
consistency when it can be returned using different query paths. Only PG@candnt
objects are checked; policy and property queries are not made.

To run thequery test,cd to its directory and enter
query [-d | -drpc_debug_fladq cellnamg

where:

-d Specifies the minimal level of debug output. This parameter is
optional.

-drpc_debug_flagéllows you to specify the amount of debug output desired. Some
usefulrpc_debug_flagsettings are the following:

0-3.5 Maximum error/anomalous condition reporting
and mutex checking (note that this amount of
output is often too verbose for normal use, plus
there is extra overhead for mutex checking).

0-1.10,2-34 Same reporting as the preceding text, but drops
some transmitéceive informational messages.
0.10 Reports all error conditions plus a little more; no
mutex checking.
0.1 Report error conditions only (same as specifying
-d).
cellname Specifies the cell whose registry is to be queried. The default (if

cellnameis not specified) is that the registry of the cell from which
query is being run will be queried.

For example, entering
query cellname

performs thequery test forcellnamewith no RPC debug output. Hellnamés registry
has been updated successfully by 100 accoupisty displays the following:

Contzactiinng reegisstrry at ssittee /......// cellname
Processing Peoplec.....
10 20 30 40 50 60 70 80 90 100
110

January 17, 1997



DCE Security Service

Processing Gioups.. ...
10 20 30
Processimg Ogs......
No errraorss diuriinng queny teest

8.2.4 ERA, Delegation, and Extended Login Tests

The ERA, Delegation, and Extended Login functional tests were new in DCE 1.1. They
are run under TET.

The test sources are located at:
dce-root-dirdce/src/test/security/tet-tests

The following subsections explain how to build, install, and run the tests. For more
information on TET, see “Overview of TET Use” in Chapter 11.

8.2.4.1 Building and Installing

To build and install the tests, do the following:
1. Build TET (if you have not already done so):

cd dce-root-dirdce/src/test/tet
build

2. As root, execute the following command, which will create an install arédtihe
root directory), and install TET there:

build TOSTAGE=/ install_all

Note that in order to get thEOSTAGE value specified in the command line to
take effect, you must comment out the following line in the
dce-root-dordce/src/test/test. mk

file:
TOSTAGE = ${SOURCEBASEY/. .. /fiimstezall I/ /$${tteargget  mechimne}//ddeetesst/ /ddeel. 2.2
Note also that TET (and the tests) can be installed elsewhere by supplying a

different value fofTOSTAGE in the command line in the example above (and, for
the tests, in the following examples).

3. Build the ERA, Delegation, and Extended Login tests:

cd ../security/tet-tests
build

January 17, 1997 41



DCE Testing Guide

4. Asroot, execute the following command to install the tests:
build TOSTAGE=/ install_all

5. Asroot, do the following:
In -s ../../tet/test /test/tet/test
mkdir /test/tet/tet_tmp_dir

chmod 777 /test/tet/tet_tmp_dir
mkdir /test/tet/test/security/results

8.2.4.2 Running the Tests

To run the tests, do the following:

1. Setthe following environment variables:
TET_ROOT=/your_path_to_installed_tegtsst/tet
If security replication is being tested, set the following environment variables:

SEC_TEST_REPLICATION=True
SEC_REPLICA_SITE_NAME=replica_name_of the_ slave security server

For example:
SEC_REPLICA_SITE_NAME=/...Ir_d.com/subsys/dce/sec/rs_serveR50 2

or:
SEC_REPLICA_SITE_NAME=ncacn_ip_tcp:15.22.144.248

If security replication is not being tested, set the following environment variable:
SEC_TEST_REPLICATION=False

2. Add the following to your execution path:

${TET_ROOT}bin

dce_loginascell_admin.

4. To execute all of the security TET test cases, execute the following command:
tcc -e test/security

Specific test cases can be executed individually. For example:

8-12 January 17, 1997



DCE Security Service

tcc -e test/security sec_rgy_attr-tc

The following test cases are available:
.+ sec_rgy_attr
Tests to verify that the functions withsec_rgy_attr.care working correctly.
« sec_rgy_attr_sch

Tests to verify that the functions withisec_rgy attr_sch.care working
correctly.

« pwd_expiration

Tests to verify that the locaec_pwd_mgmt_strength_chk_prvcyunction is
functioning correctly.

This test case makes the following assumptions:
+ The host machine is a DCE client.
« The tester isice_logirid ascell_admin and that the password{idce-
« pwd_strength

Tests to verify that the locaec_pwd_mgmt_strength_chk_prvcyunction is
functioning correctly.

This test case makes the following assumptions :
« Machine is a DCE client

« The Password Strength Server is running and exporting the
sec_pwd_mgmt_strength_chk_prvcyperation.

« The Password Strength Server running is the sample server
(pwd_strengthd) provided with DCE 1.2.2.

« The tester isice_logird in ascell_admin.

« The PWD_STRENGTHD_STRING BINDING TET configuration
variable has been set correctly.

+ login

Tests to verify that the locasec_login functions associated with the new
EPAC/Delegation work are functioning correctly.

8.2.4.3 Verifying the Results

Following is an example of output from a successful run of all the tests on an HP-UX
platform. Note that on€AILED message for theec_pwd_mgmt_strength_chk_prvcy
test should be expected.

# tcc -e test/security
joourmal ffiillee name iss: // path_to_installed_testest/tet/test/security/results/0007e/journal

January 17, 1997 43



DCE Testing Guide

PASSED sec rgyy_atttrr_updates()) iinnteeger tteest

PASSED sec rgyy atttrr_loookup by idd()) iimtesger ttecst..
PASSED weriiffiiccatiioon of iimteeger tteest..

PASSED sec rggy atttrr_updates()) tteest  voidd

PASSED sec rggy_atttrr _loookup by idd()) ttesst voidd.

PASSED weriiffiiccatiioon of tteest voidd.

PASSED sec rggy atttrr_updatee()) tteest any

PASSED sec rgyy_atttrr_loookup by idd()) tteest any.

PASSED weriiffiiccatiioon of tteest any.

PASSED sec rggy atttrr_updatee()) tteest priimntsstrriinrng
PASSED sec rgyy_atttrr _loookup by idd()) ttesst priimtsstrriinng.
PASSED weriiffiiccatiioon of tteest priimntsstrriinng.

PASSED sec rgyy atttrr_updates()) tteest  priimtsstrriinng_anraay
PASSED sec rggy_atttrr _loookup by idd()) ttesst priimtsstrriinng_anraay.
PASSED weriiffiiccatiioon of tteest priimntsstrriinng_arrray..
PASSED sec rgyy atttrr_updates()) tteest  bytecs

PASSED sec rgyy_atttrr_loookup by idd()) tteest bytees.
PASSED weriiffiiccatiioon of tteest bytees.

PASSED sec rgyy atttrr_updates()) tteest confiiddentiizal bytees
PASSED sec rgyy_atttrr_loookup by idd()) tteest confiiddentiical _bytees.
PASSED weriiffiiccatiioon of tteest confiiddentiical bytecs.
PASSED sec rgyy atttrr_updatee()) tteest i118n_datea

PASSED sec rggy atttrr _loookup by idd()) tteest i118n_datza.
PASSED weriiffiiccatiioon of tteest i118n_datea.

PASSED sec rgyy atttrr_updates()) tteest  uuidd

PASSED sec rggy_atttrr_loookup by idd()) ttesst uuidd.

PASSED weriiffiiccatiioon of tteest uuidd.

PASSED sec rgyy atttrr_updatee()) tteest  atttrr set

PASSED sec rggy atttrr_loookup by idd()) tteest atttrr set..
PASSED weriiffiiccatiioon of tteest atttrr set..

PASSED sec rgyy atttrr_updates()) tteest bimdinng

PASSED sec rgyy_atttrr_loookup by idd()) tteest bimdinng.
PASSED weriiffiiccatiioon of tteest binmndimng.

PASSED sec rgyy atttrr_updatee()) tteest ttthem all |

PASSED sec rggy_atttrr_loookup by idd()) tteest ttthem alll..
PASSED weriiffiiccatiioon of tteest ttthem alll..

PASSED sec rgyy atttrr_loookup by idd()) ffoor 11 atttrr iidd.
PASSED sec rggy atttrr_loookup by idd()) ffoor @ atttrr iidds.
PASSED sec rgyy_sittee open_update())

PASSED sec rgyy atttrr_scih_cresatee_entrny()

PASSED sec rgyy_atttrr_scih_loookup by idd()

PASSED sec rgyy atttrr_scih_loookup by name())

PASSED sec rggy_atttrr_scih_curssor__imitt(())

PASSED sec rggy_atttrr_sch_scan()

PASSED sec rgyy atttrr_sch_cursor _reclecase())

PASSED sec rgyy atttrr_scih_updates_entrny())

PASSED sec rgyy atttrr_scih_delectes _entrny()

PASSED SEC LOGW DHEG: ssec loogimm_become imit ti iaatoor(())
PASSED SEC LOGMWN DHEG: ssec loogim _creed get imit ti iaatoor(())
PASSED SEC LOGWN DHEG: ssec _creed get pa dataa()
PASSED SEC LOGWN DHEG: ssec_creed get delecgatiicon tyype()

8-14 January 17, 1997



DCE Security Service

PASSED SEC LOGW DHEG: ssec loogim_creed imitt _curssor(()

PASSED SEC LOGMWN DHEG: ssec loogim_creed get delecgates()

PASSED SEC LOGMNN DHEG: ((aatttrrss) sec loogim_set exteended atttrrss())
PASSED SEC LOGWN DHEG: ((atttrrss) sec loogim creed get imit ti iaatoor(()
PASSED SEC LOGNN DHEG: ((aatttrrss) sec creed imittiizali izze_atttrr _ curssor(()
PASSED SEC LOGWN DHEG: ((aatttrrss) sec creed get exteended atttrrss())
Staarttwp foor ssec_pwd mgnit_strreengtth clhk prwey()) ttesstss

FAILLED: FPWIDSTRENGIHD STRINNG BINNDINNG mot ddefiimned im testeexec.cacfigg
Staarttwp foor passwordd exypirraatiioon teestss

pwd_expirratiioon, tteest pourpose 1, lloogim attteempt wisinmng exypirreed password
PASSED passwordd expirraatiioon: |loogimn wiktth expirreed passwordd

Ckecanup foor ppassworcd expirraatiioon teestss

1.2.2,PKSS Tests (start)

8.2.5 PKSS Functional Tests

The Public Key Storage Server (PKSS) is supplied with five functional tests that
specifically exercise different portions of the API. All tests begin with a call to
sec_pvtkey pkss_openo obtain a handle to use the API, and all tests end with a
complementary call taec_pvtkey_ pkss_clost detach from the API. Most of the tests
demonstrate that once inserted, a PKSS client can retrieve a record (that is, an
asymmetric key pair) from the PKSS database. Most of the tests also demonstrate that the
same record may be deleted. Note that all of the tests exercise the PKSS database as well
as PKSS client/server communication.

Moduletest _pkss_1.cxxs primarily intended to demonstrate that, given an asymmetric
key pair, the PKSS can store it, retrieve it, and delete it. It makes the following PKSS
API calls:

sec_pvtkey pkss_open
sec_pvtkey pkss_store
sec_pvtkey pkss_get
sec_pvtkey pkss_delete
sec_pvtkey pkss_close

Module test_pkss_2.cxxs primarily intended to demonstrate that when requested by a
PKSS client, the PKSS server can generate a hew asymmetric key pair on the client’s
behalf, retrieve it, and delete it. It makes the following PKSS API calls:

sec_pvtkey pkss_open
sec_pvtkey pkss_generate
sec_pvtkey pkss_get
sec_pvtkey pkss_delete
sec_pvtkey pkss_close

Note thattest_pkss_2.cxxdiffers fromtest_pkss_1.cxxonly in who generates the new
asymmetric key pair.

Moduletest_pkss_3.cxis primarily intended to demonstrate that, after asking the PKSS
server to generate a new asymmetric key pair on the client’'s behalf, using the

January 17, 1997 45



DCE Testing Guide

8-16

management APl one can:
1. Change the asymmetric key pair by supplying a new one; and
2. Change the asymmetric key pair by requesting that the PKSS server generate one.

It also demonstrates that it can retrieve the latest version of the asymmetric key pair and
delete it. It makes the following PKSS API calls:

sec_pvtkey pkss_open

sec_pvtkey pkss_generate

sec_pvtkey pkss_updatémgmt client version)
sec_pvtkey pkss_update_generafengmt client version)
sec_pvtkey pkss_get

sec_pvtkey pkss_delete

sec_pvtkey pkss_close

Moduletest_pkss_4.cxxs primarily intended to demonstrate that, after asking the PKSS
server to generate a new asymmetric key pair on the client’s behalf, using the login client
API that client can:

1. Change that client's asymmetric key pair by supplying a new one; and

2. Change that client's asymmetric key pair by requesting that the PKSS server
generate one.

It also demonstrates that it can retrieve the latest version of the asymmetric key pair and
delete it. It makes the following PKSS API calls:

sec_pvtkey pkss_open

sec_pvtkey pkss_generate

sec_pvtkey pkss_updat@ogin client version)
sec_pvtkey pkss_update_generaféogin client version)
sec_pvtkey pkss_get

sec_pvtkey pkss_delete

sec_pvtkey pkss_close

Note that test_pkss_4.cxxdiffers from test_pkss_3.cxxonly in who initiates the
asymmetric key pair change requests, either a PKSS login client or a PKSS management
client.

Module test_pkss_5a.cxxand test_pkss_5.cxxwork in tandem to demonstrate that a
PKSS management client can insert a record and a PKSS login client can retrieve the
record and modify it by supplying a new asymmetric key pair.

Moduletest_pkss_5a.cxxalls:

sec_pvtkey pkss_open
sec_pvtkey pkss_store
sec_pvtkey pkss_close

Moduletest_pkss_5.cxxcalls

sec_pvtkey pkss_open
sec_pvtkey pkss_get
sec_pvtkey pkss_updat@ogin client version)

The test sources are located in

January 17, 1997



DCE Security Service

dce-root-dirsrc/test/security/api/pkss
In the build tree, the built objects can be found at:

dce-root-dirobj/platform/test/security/api/pkss

8.2.5.1 Running the Tests

To run the tests, do the following:
1. Inyour sandbox, you should build TET, if you have not done so already:
% cd sandboxsrc/test/tet
% build
Next, go into
sandboxsrc/test/functional/security
to build the tests:
% build
This will build images in the object treleut does notnstall the scripts or create a
usable test directory.
2. Runthe “build install_all” pass:
% cd sandboxsrc/test/tet
% build install_all TOSTAGE= full path to sandbafinstall
% cd sandboXsrc/test/functional/security
% build install_all TOSTAGE= full path to sandbafinstall
All this will install the obj's and scripts under
sandboxinstall/test/tet

The tests will be run out of this directory. (Note that these directories are now
owned by root.)

3. Thetet_* files were installed under:
sandbo¥install/test/tet/functional/security
4. Setup an environment for running tests as follows:
a. Become root.
b. Make sure thgpkssd(as well as the other DCE daemons) is running.
c. Do the following:
% cd sandbofinstall/test/tet

% setenv PATHsandboXnstall/alpha/test/tet/bin:$PATH
% setenv PATHsandboxXinstall/test/tet/lib/ksh:$PATH

January 17, 1997 a7



DCE Testing Guide

d. Setup some TET environment variables:

% setenv TET_ROOT sandbo¥install/test/tet
% setenv TET_EXECUTE sandboXnstall/test/tet/functional/security

5. Torun the tests, choose from different scenarios in

sandboinstall/test/tet/functional/security/tet_scen

To run the first functional test for pkss, do:
tce -e functional/security test-pkssl.sh

To run the second functional test for pkss, do:
tcc -e functional/security test-pkss2.sh

To run the third functional test for pkss, do:
tcc -e functional/security test-pkss3.sh

To run the fourth functional test for pkss, do:
tcc -e functional/security test-pkss4.sh

To run the fifth functional test for pkss, do:
tcc -e functional/security test-pkssb5a.sh

and:
tcc -e functional/security test-pkss5.sh

1.2.2,PKSS Tests (end)

1.2.2,Certification API Tests (start).

8.2.6 Certification API Tests

8-18

This section describes how to run the Certification API tests on the reference platform
(IBM AIX). Where necessary, problems are mentioned that you may encounter in
running tests on platforms other than the reference platform.

Note: Before running the Certification API tests, it is important to apply changes

described in OT CRs 13665 and 13667 to your DCE1.2.2 code.

The tests can be run standalone (withtwat the TET controller program), or they can be
run usingtcc. The stand-alone tests are built under

dce-root-dirdce/objfplatform/test/security/api/capi

January 17, 1997



DCE Security Service

where dce-root-dir is the top directory of your source distribution, apthtform is
“rios”, if you are running on the reference platform.

The test versions that can be run usiogare installed in
dcetest/dceloc#est/tet

wheredcetest/dcelocas the following path:
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

The Certification API tests are divided into three basic phases:

A. Testing Certification API with the registry retrieval policy (RRP).

B. Testing Certification APl with the hierarchical retreival policy (HRP)
with CDS.

C. Testing Certification API with the HRP with a GDS server.

For each part, it is necessary to have a specific DCE or GDS server configuration before
running the tests. Below are described the exact configuration required and the steps
necessary to run these tests (either standalone or thtodgh

8.2.6.1 Testing the Certification APl with the Registry Retrieval Policy

You need to configure your machine as a DCE client or DCE server. The name of the
DCE cell is not important to these tests. However, it is required that geliradmin
principal name be tell_admin’ and that the password farell_admin be “-dce-".

8.2.6.1.1 Running the Testander TET

There are two tests under this part:
. test-registry
. test-registry-second

To run these tests, do the following:
su(Become superuser)
cd dcetest/dcelodtest/tet
setenv TET_ROOT ‘pwd

setenv PATH ${PATH}${TET_ROOTY}../test/test/bin
tce -e functional/security test-registry

The last command creates a journal file. At the end of the journal file a summary of all
parts of the test that succeeded or failed will be listed.

You must also do the following:

tce -e functional/security test-registry-second

January 17, 1997 49



DCE Testing Guide

This will create another journal file. At the end of the journal file, a summary of all parts
of this test that succeeded or failed will be listed.

8.2.6.1.2 Running the TestStandalone

Alternatively, you can run without the overheadtof by doing the following
1. su(Become super user)
2. cd foot-dir/obj/platformtest/security/api/capi
3. dce_login -c cell_admin -dce-
Note: It is important to get certified credentials by specifying-thswitch.
rgy_edit < create_foo
dcecp <create_era
Jtest_registry direct > first.log

kdestroy

© N o 0 &

dce_login cell_admin -dce-

Note: Credentials are this time not certified @eswitch).
9. ./test_registry untrusted > second.log

10. rgy_edit < delete_foo

Checkfirst.log andsecond.logo verify test results.

8.2.6.2 Testing Hierarchical Policy Retrieval (HRP) with CDS

« The DCE cell name must bg../dceak2_cell

The machine where you run the tests can be a DCE client or the DCE server
machine.

« Thecell_admin principal name must becell_admin”

« Thecell_admin password must be-tce-’

8.2.6.2.1 Running the Testander TET

To run the tests under TET, do the following:
1. su(Become superuser on UNIX machines)
2. cddcetest/dcelocékest/tet

8-20 January 17, 1997



DCE Security Service

setenv TET_ROOT ‘pwd'
4. setenv PATH ${PATH}:${TET_ROOTY}../test/test/bin
tce -e functional/security test-hierarchy

This will create a journal file. At the end of the journal file, a summary of all parts
of the test that succeeded or failed will be listed.

8.2.6.2.2 Running the TestStandalone

Alternatively, you can run without the overheadtof by doing the following:
1. su(Become superuser)
2. cdroot-dir/obj/platform/test/security/api/capi
3. dce_login cell_admin -dce-
4. .Jtrycase_a pcl pc2 pc3 pcd pe5 pe6 pe7 > hierarchy _cds.log

Afterwards, checkhierarchy_cds.log for a summary of all testcase components that
succeeded or failed.

8.2.6.2.3 Possible Problems

If the journal or log file indicates failure, check whether you have applied changes to
modules in

src/directory/gds/dua/switch
as specified in OT CRs 13665 and 13667. If necessary, rebuild and install the tests.

If the tests fail even after you have applied these fixes, the reason may be that the XDS-
CDS API on your platform does not allow “Attribute/Value” pairs to be added to CDS
directory entries. If this is the case, it is hecessary to change theéilepc2, pc3, pc4,

pc5, pc6, andpc?. Each of these files is present in two directories:

dcetest/dceloc#kst/tet/functional/security/ts/capi/testcases
root-dir/obj/platforntest/security/api/capi/testcase

If you are usingcc, you need to modify these files under the first directory (as described
below); otherwise, modify them under the second directory.

Change the string X500” to “ CDS” in all lines in files pcl, pc2, pc3, pc4, pc5, pc6,
andpc? that begin with one of the following strings:

ca
« “cross”
. “userll

. “urevoke”

January 17, 1997 21



DCE Testing Guide

. “carevoke”
For example, in the filgcl, the following lines:

ca:ll 0 0 O.ccertt: XX500//..... /Idceaix2_cell I /ocapi/ /aaltb
user.::00_4 0 0.ccertt: :XX500://..... //dceaix2_cell I/ /ccapi/ /aalac

must be changed to:

ca:ll 0 0 O.ccertt::CIDS//..... //dceaixx2_cell V /ocapi/ /aaltb
user.::00_4 0 O.ccertt :@DSY//..... //dceaix2_cell |/ /ccapi/ /aalac
Make the same changes in any similar linepd?2, pc3, pc4, pc5, pcé andpc?.

After modifying these files, rebuild the tests and run them as described above.

8.2.6.3 Testing Hierarchical Policy Retrieval (HRP) with GDS Server

It is necessary to configure your machine either as a GDS server or as a GDS client in
order to run these tests. The configuration parameters are as follows:

« The GDS namespace must be capable of storing entries below the DN:
/C=us/O=dec/OU=dceaix2

Thus, you must create this entry when you configure GDS. Refer t@8ie DCE
GDS Administration Guide and Refererfoe information on configuring GDS.

« The schema for the GDS server must be updated.

To perform this update, you must become root, invokegtieditadm program, log
on to the default DSA, and select “2” (Schema Administration). This should bring
you to Mask 9, which is the common starting point for each of the following changes:

1. Allow for creation of at least three-lev€lU entries under:
/C=us/O=dec/OU=dceaix2

The default schema shipped with GDS allows only a sidi@&=RDN within
an Organizational Unit object. The tests uU3ls containing up to 3 levels of
Oou.

To allow this, you must add rules to the schema SRT as follows:
Select 4 (Add SRT entry) to add the following rules:

Rulee Numiter 20
Superiicor FRulee Nuiter 4

Acroonymms of NNamimg Atttrriibbutees OU
Strrwuctwraal Ghjeect Chass ou
Rulee  Numiter 21
Superiicor FRulee Nuiter 20

Acroonymms of NNamimg Atttrriibbutees OU

8-22 January 17, 1997



DCE Security Service

Strrwuctwraal Gijeect Chass ou
Rulee  Numiter 22
Superiicor FRulee Numiter 21
Acroonymms of NNamimg Atttrriibbutees OU
Strrwuctwral Gijeect Class ou
Rulee Numiter 23
Superiicor FRulee Nuitier 22
Acroonymms of NNamimg Atttrriibbutees OU
Strrwuctwral Gijeect Chass ou
Rulee  Numiter 24
Superiicor FRulee Nuiter 23
Acroonymms of NNamimg Atttrriibbutees OU
Strrwuctwraal Gijeect Chass ou

2. Allow for adding Auxiliary Object ClasseSAU and CA to the Organizational
Unit object class. This requires you to modify the Object Class Table (OCT).

Go back to Mask 9, select 10 (Modify OCT entry), and sefetkas the Object
Class Acronym.

In the Menu presented after you have done this, change the Auxiliary Object
Classes Field as follows:

Auxill li iearyy Qlijeect Clbasses: SAU CA

3. Modify the SAU andCA object classes so that adding Certificates, CRLs, and
Cross-certificates is optional.

Go back to Mask 9, select 10 (Modify OCT entry), and sel8étU as the
Object Class Acronym.

In the Menu presented after you have done this, change the following two
fields:

Mandatoory Afttrriibbutees:
Quptiiconal AAtttrriitbutess: uc

Now removeUC from Mandatory Attributes and add it to Optional Attributes.
Perform this step for Object ClaA as follows:

Go back to Mask 9, select 10 (Modify OCT entry), and seféétas the Object
Class Acronym.

In the Menu presented after you have done this, change the following two
fields:

Mandatoory Afttrriibbutees:
Quptiiconal AAtttrriitbutess: @P CAC ARL ARL

RemoveCAC, CRL, andARL from Mandatory Attributes and add them to
Optional Attributes.

January 17, 1997 23



DCE Testing Guide

4. Modify the Attribute Table (AT) to allow use of ASN.1 encoding for the five
certificate attributeQAC, UC, CRL, ARL, andCCP) types as follows:

Go back to Mask 9, select 14 (Modify AT entry), and sele&C as the Object
Class Acronym.

In the Menu presented after you have done this, change the Attribute Syntax
field to the following:
Atttrriibbutee Symtaax: ASN1 Syntax

Repeat these steps for Object Clagdd€s CRL, ARL, andCCP.

After you have made these changes, commit them by choosing selection 1 (Store
Schema) in the Mask 9 menu screen.

8.2.6.3.1 Running the Testander TET

To run the tests under TET, perform the following steps:
1. su(Become super user on UNIX machines)
2. cddcetest/dceloc#kst/tet
3. setenv TET_ROOT ‘pwd’
4. setenv PATH ${PATH}:${TET_ROOTY}/../test/test/bin
5. tcc -e functional/security test-hierarchy-second

This will create a journal file. At the end of the journal file, a summary of all parts of this
test that succeeded or failed will be listed.

8.2.6.3.2 Running the TestStandalone

Alternatively, you can run withoutc by doing the following:
1. su(Become super user)
2. cdroot-dir/obj/platform/test/security/api/capi
3. ./trycase_a xcl xc2 xc3 xc7 > hierarchy_xds.log

Checkhierarchy_xds.logfor a summary of all testcase components that succeeded or
failed.

1.2.2,Certification API Tests (end)

1.2.2,Kerberos Tests (start)

8-24 January 17, 1997



DCE Security Service

8.2.7 Kerberos 5 Functional Tests

The following security functional tests were developed as part of the Kerberos 5
integration work.

All the tests are coded to run under TET, and were developed to run in a single-machine
cell environment. The first two tests use TET's C-binding API and the second two use
TET's TCL-binding APIs.

8.2.7.1 Sample Client Test

This test was developed to run in a single-machine cell environment. It uses TET's C-
binding API.

Before building the test, you must update the
dcel.2.2-root-difdce/src/test/functional/security/tetexec.cfg
file with the following lines:

KRB5 SAMRLE PORI=sample_server port#
KRB6 SAMRE SERVER HOBT=sample_server host

After you have made the above changes and built the test, it can be invoked as follows:

cd dcetest/dcelocal/test/tet

set TET_ROOT="'pwd’

set PATH=$TET_ROOT/bin:$PATH

tcc -e -jjournal_path-vRUN_TIME=.1 functional/security sclient

where:
/dcetest/dcelocal Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thenctional security

directory) for the test results journal file.

-VRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security ~ Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

sclient Specifies the name of the test (TET scenario) to be run.

January 17, 1997 25



DCE Testing Guide

8.2.7.2 User-to-user Test

This test was developed to run in a single-machine cell environment. It uses TET's C-
binding API

Before building the test, you must update the
dcel.2.2-root-difdce/src/test/functional/security/tetexec.cfg
file with the following information:

KRB5 _UU PORI=user-to-user port#
KRB5 UU SEHRVMER HOST=user-to-user_server host

After you have made the above changes and built the test, it can be invoked as follows:

cd /dcetest/dcelocal/test/tet

set TET_ROOT="'pwd’

set PATH=$TET_ROOT/bin:$PATH

tce -e -jjournal_path-vRUN_TIME=.1 functional/security uu-client

where:
/dcetest/dcelocal Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thenctional/security

directory) for the test results journal file.

-VRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security ~ Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

uu-client Specifies the name of the test (TET scenario) to be run.

8.2.7.3 Rsh Test

This test was developed to run in a single-machine cell environment. It uses TET's
TCL-binding APIs.

Before building the test, you must update the

dcel.2.2-root-difdce/src/test/functional/security/lib/test_setup.tcl

8-26 January 17, 1997



DCE Security Service

file with the following information:

# celll aadmim’ss

set eenv(KKRBb CHL. ADMNN) cell_admin name
set eenv(KKRBb CHL ADMNN PW) cell_admin pw

# teest wser mame has tm be leess tthan 8 char ffoor ssatiissfyyinng ADX i inmif teati icons
set eenv(KRBb TESTER) test user name
set eenv(KRBb TESTER PW) test user pw

After you have made these changes and built the test, it can be invoked as follows:

cd /dcetest/dcelocal/test/tet

set TET_ROOT="'pwd’

set PATH=$TET_ROOT/bin:$PATH
tce -e -jjournal_path-vRUN_TIME=.1 functional/security rsh

where:

/dcetest/dcelocal

-e

-j journal_path
-vVRUN_TIME=0.1
functional/security

rsh

8.2.7.4 Rlogin Test

Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

Specifies to run the test.

Specifies a file pathname (relative to thenctional/security
directory) for the test results journal file.

Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

Specifies the name of the test (TET scenario) to be run.

This test was developed to run in a single-machine cell environment. It uses TET's

TCL-binding APIs.

Before building the test, you must update the

dcel.2.2-root-difdce/src/test/functional/security/lib/test_setup.tcl

file with the following information:

January 17, 1997

27



DCE Testing Guide

# celll aadmimn’ss
set eenv(KKRBb CHL. ADMNN) cell_admin name
set eenv(KKRBb CHL ADMNN PW) cell_admin pw

# teest wser mame has tm be leess tthan 8 char ffoor ssatiissfyyinng ADX i inmif teati icons
set eenv(KRBb TESTER) test user name
set eenv(KRBb TESTER PW) test user pw

After you have made these changes and built the test, it can be invoked as follows:
cd /dcetest/dcelocal/test/tet
set TET_ROOT="'pwd’
set PATH=$TET_ROOT/bin:$PATH
tce -e -jjournal_path-vRUN_TIME=.1 functional/security rlogin
where:
/dcetest/dcelocal Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thenctional/security
directory) for the test results journal file.

-VRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security ~ Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

rlogin Specifies the name of the test (TET scenario) to be run.

8.2.7.5 ASN.1 Test

This test was developed to run in a single-machine cell environment.
The test is invoked as follows:

cd /dcetest/dcelocal/test/tet

set TET_ROOT="'pwd’

set PATH=$TET_ ROOT/../téket/bin:$SPATH

tce -e -jjournal_path-vRUN_TIME=.1 functional/security asn.1

where:

/dcetest/dcelocal Represents the path

8-28 January 17, 1997



-e

-j journal_path

-VRUN_TIME=0.1

functional/security

asn.l

8.2.7.6 kinit Test

DCE Security Service

dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

Specifies to run the test.

Specifies a file pathname (relative to thenctional/security
directory) for the test results journal file.

Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

Specifies the name of the test (TET scenario) to be run.

This test was developed to run in a single-machine cell environment.

The test is invoked as follows:

cd /dcetest/dcelocal/test/tet

set TET_ROOT="'pwd’

set PATH=$TET_ROOT/../teket/bin:$PATH
tce -e -jjournal_path-vRUN_TIME=.1 functional/security kinit

where:

/dcetest/dcelocal

-e

-j journal_path

-VRUN_TIME=0.1

functional/security

Kinit

January 17, 1997

Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

Specifies to run the test.

Specifies a file pathname (relative to thenctional/security
directory) for the test results journal file.

Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

Specifies the name of the test (TET scenario) to be run.

-29



DCE Testing Guide

8.2.7.7 ccache Test

This test was developed to run in a single-machine cell environment.

The test is invoked as follows:

cd /dcetest/dcelocal/test/tet

set TET_ROOT="'pwd’

set PATH=$TET_ROOT/../teket/bin:$PATH
tcc -e -jjournal_path-vRUN_TIME=.1 functional/security ccache

where:

/dcetest/dcelocal

-e

-j journal_path

-VRUN_TIME=0.1

functional/security

ccache

8.2.7.8 keytab Test

8-30

Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

Specifies to run the test.

Specifies a file pathname (relative to thenctional/security
directory) for the test results journal file.

Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

Specifies the name of the test (TET scenario) to be run.

This test was developed to run in a single-machine cell environment.

The test is invoked as follows:

cd /dcetest/dcelocal/test/tet

set TET_ROOT="'pwd’

set PATH=$TET_ROOT/../teket/bin:$PATH
tce -e -jjournal_path-vRUN_TIME=.1 functional/security keytab

where:

/dcetest/dcelocal

Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC

January 17, 1997



DCE Security Service

System/6000 running AlX).
-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thenctional/security
directory) for the test results journal file.

-VRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security ~ Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

keytab Specifies the name of the test (TET scenario) to be run.
1.2.2,Kerberos Tests (end)

1.2.2,Public Key Tests (start)

8.2.8 Public Key Login API Tests

The source for all of these tests is located under:

dcel.2.2-root-difdce/src/test/functional/security/ts/client/login/pk_login

8.2.8.1 Exportability Check Test

This test checks that there are s®c_pvtkeyor sec_bsafesymbols in dibdce built for
export.

The test is invoked as follows:
cd /dcetest/dcelocal/test/tet
set TET_ROOT="'pwd’
set PATH=$TET_ ROOT/../téket/bin:$PATH
tce -e -jjournal_path-vRUN_TIME=.1 functional/security export_check
where:
/dcetest/dcelocal Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thenctional/security
directory) for the test results journal file.

January 17, 1997 81



DCE Testing Guide

-VRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security ~ Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

export_check Specifies the name of the test (TET scenario) to be run.

8.2.8.2 Kerberos Public Key Cache Test

This test tests the Kerberos public kegche.
The test is invoked as follows:
cd /dcetest/dcelocal/test/tet
set TET_ROOT="'pwd’
set PATH=$TET_ ROOT/../téket/bin:$PATH
tce -e -jjournal_path-vRUN_TIME=.1 functional/security rsec_pk
where:
/dcetest/dcelocal Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thenctional/security
directory) for the test results journal file.

-VRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

functional/security ~ Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

rsec_pk Specifies the name of the test (TET scenario) to be run.

8.2.8.3 sec_psm_ API Test

The test is invoked as follows:

cd /dcetest/dcelocal/test/tet

set TET_ROOT="'pwd’

set PATH=$TET_ROOT/../teket/bin:$PATH

tce -e -jjournal_path-vRUN_TIME=.1 functional/security sec_psm

8-32 January 17, 1997



where:

/dcetest/dcelocal

-e

-j journal_path

-VRUN_TIME=0.1

functional/security

sec_psm

DCE Security Service

Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

Specifies to run the test.

Specifies a file pathname (relative to thenctional/security
directory) for the test results journal file.

Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

Specifies the name of the test (TET scenario) to be run.

8.2.8.4 Public Key API Test

The public key API test is invoked as follows:

cd /dcetest/dcelocal/test/tet

set TET_ROOT="'pwd’

set PATH=$TET_ROOT/../teket/bin:$PATH
tce -e -jjournal_path-vRUN_TIME=.1 functional/security sec_pubkey

where:

/dcetest/dcelocal

-e

-j journal_path

-VRUN_TIME=0.1

functional/security

sec_pubkey

January 17, 1997

Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

Specifies to run the test.

Specifies a file pathname (relative to thenctional/security
directory) for the test results journal file.

Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

Specifies the name of the test (TET scenario) to be run.

83



DCE Testing Guide

8.2.8.5 Private Key API Test

The private key API test is invoked as follows:

cd /dcetest/dcelocal/test/tet

set TET_ROOT="'pwd’

set PATH=$TET_ROOT/../teket/bin:$PATH
tce -e -jjournal_path-vRUN_TIME=.1 functional/security sec_pvtkey

where:

/dcetest/dcelocal

-e

-j journal_path

-VRUN_TIME=0.1

functional/security

sec_pvtkey

Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

Specifies to run the test.

Specifies a file pathname (relative to thenctional/security
directory) for the test results journal file.

Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

Specifies the name of the test (TET scenario) to be run.

8.2.8.6 Registry Public Key API Test

8-34

The test of Registry public key functionality is invoked as follows:

cd /dcetest/dcelocal/test/tet

set TET_ROOT="'pwd’

set PATH=$TET_ROOT/../teket/bin:$PATH
tcc -e -jjournal_path-vRUN_TIME=.1 functional/security sec_rgy

where:

/dcetest/dcelocal

Represents the path
dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2

(whereplatform is the name of the platform on which you are
testing DCE (for exampleplatform is rios for the IBM RISC
System/6000 running AlX).

January 17, 1997



-e

DCE Security Service

Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thenctional/security

directory) for the test results journal file.

-VRUN_TIME=0.1 Sets theRUN_TIME environment variable, which specifies the

number of hours the test should run.

functional/security ~ Specifies the “test suite” name, equivalent to the component

subdirectory of the test to be run.

sec_rgy Specifies the name of the test (TET scenario) to be run.

1.2.2,Public Key Tests (end)

8.2.9 GSSAPITests

The GSSAPI test program, the source code for which is located at:

dce-root-dir'src/test/security/api/gssapi/test-gssapi.c

is not compiled as part of an ODE DCE build. It must be compiled manually, against an
installed DCE environment.

To build and run the GSSAPI tests, do the following:

1. Compiletest-gssapi.@s a nhormal DCE application.
2. Create two DCE principal accounts (for exampéstlandtest?).
3. Usergy_edit’s ktadd command to create a keytable (calleglytab in the example
below) containingest2s key.
4. Usedce_loginto login as theaestl principal.
Run the test program as follows:
% test-gssapi{-i ftestl_principal test2_principal keytable-]
where:

(“interactive”) requests a menu of individual separately-runnable tests.

(“long-form”) specifies that additional logging information be sent to standard
output.

Once invoked, the above command will:

run the specified test(s)

determine whether the GSSAPI is exportable or not (i.e., whether it has been
compiled to support privacy protection)

print out various progress messages during execution

print out either a final success or failure message

January 17, 1997 -85



DCE Testing Guide

8.2.10 Commands Tests

Theacl_edit.shandrgy_edit.shshell scripts test DCE Security Service commands.

8.2.10.1 The acl_edit Tests

Because the tests are not put into an install tree like the source executables, these tests
can be cumbersome to execute. This section includes explicit instructions for executing
theacl_edittests directly from the

dce-root-dirdce/install

tree. You may find it easier to copy or link all of the control files, located in the
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/control

directory, as well as all shell scripts and test case executables, located in the
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/moretests

directory, and the test case drivestsh located in the
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/testsh

directory. You must execute each test case from the directory in which its control file

resides. The general syntax for tests run bytdstshdriver is:

path-to-testshdoutput-level-I path-to-test-exeosontrol-file

If you have copied or linked all of the relevant files into a single directory, the command
for running a test case reduces to:

testsh -doutput-level-l. control-file

The
dce-root-dirdce/installimachin@lcetest/dcel.2.2/test/security/api/moretests/acl_edit.sh

shell script runs tests for thecl_edit command. Thecl_edit tests are structured in the
same way as the RPC and IDL unit tests except for the fact that there is no shell script
driver to invoketestsh

To run theacl_edit.shtests, do the following:
1. Change tothe
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/moretests

directory and enter:

chmod +x *.sh

8-36 January 17, 1997



DCE Security Service

to make sure that necessary shell scripts are executable.
2. dce_loginas a user with privileges to modify the registry.

If you configured your machine using tdee_configscript, then whatever user the
script’'scelladmin variable was set to has registry-modifying privileges.

3. Changetothe
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/moretests

directory and enter:
acl_edit_setup.sh
This script creates an account for “flintstone.none.none” in the registry. This

account has the password “yabadabado.” The script then modifieastie obj
entry on the ACL on this account so that user “flintstone” may modify the ACL.

4. dce_loginas “flintstone™:
dce_login flintstone yabadabado

Change to the
dce-root-dirdce/installimachin@lcetest/dcel.2.2/test/security/api/control

directory and enter:

.[testsh/testsh -d¢utput_leve] -I../moretests acl_edit.tsh >output_file

where:

-d Specifies an output level for all test programs. Using-the
option with nooutput_levelinteger returns a message only
when a test fails.

output_level Specifies an output level for all test programs. The

following list shows the valid integer values for
output_leveland the output levels they specify:

1 Prints message on failure.

2 Prints message on&tess.

3 Prints message on warning.

32 Prints message orate.

33 Prints message on trace with failure.

34 Prints message on trace wittcsass.

63 Prints debug messages during test case
execution.

The log information generated ioutput_filevaries with theoutput_levelspecified, but
test run and execution results are obvious in the log.

January 17, 1997 87



DCE Testing Guide

8.2.10.2 The Local Registry Test

You must log in as as a user with privileges to modify the registry before running the test.
If you configured your machine using the dce_config script, then whatever user the
script’s celladminvariable was set to has registry-modifying privileges. The following
examples assume theglladminis set tocell_admin and the password faell_adminis

-dce-

Note: This test uses the prograrminlogin, which in turn uses the call
sec_login_valid_and_cert_ident(yhich is a privileged operation. Hence
the need for Step 4 outlined below.

To run the local registy test do the following:
1. Login as the privileged userqot) on the system.
2. dce_login cell_admin -dce-

3. This test uses theec_admin command to stopsecd so the location of the
sec_admincommand must exist in yolrATH environment variable.

4. Change tothe
dce-root-difdce/installimachinédcetest/dcel.2.2/test/security/api/moretests
directory, and execute the following commands:

chmod +x *.sh
chmod u+s binlogin

(Note that you may not have to do tlmhmod u+s binloginif you are already
logged in as root.)
5. Change directory to
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/control

and type the following:

.[testsh/testsh -d[output_level] -I../moretests local_rgy.tsh

8.2.10.3 The Locksmith Test

8-38

There is no automated script for testing locksmith functionality. Instead, the tests have to
be done manually as described below. Furthermore, the tests useltleslit test for
which the setup must be done as described in Section 8.2.11.1, “The acl_edit Tests,”
Steps 1, 2, and 3.

Note: This test uses theec_admincommand to stogecd so the location of the
sec_admin command must exist in youPATH environment variable.
Whensecdis started in the locksmith mode, it runs in the foreground.

January 17, 1997



DCE Security Service

Test 1: Testing the Basic Locksmith Mode
1. Kill secdusing the scripkill_secd.sh

2. Restarsecdin locksmith mode as follows:
secd -locksm locksmith-principal

3. dce_loginasflintstone
dce_login flintstone yabadabado

4. Runtheacl_edittest.

Test 2: Testing the -rem option

This test requires a cell to be configured with at least one client machine and one server
machine. To test, do the following.

On the server:
1. Kill secdusing the scripkill_secd.sh

2. Restarsecd using the -remoption as follows:
secd -locksm locksmith-principal -rem

On the client;

1. Verify that principals other than locksmith-principal can stite_login

2. dce_loginasflintstone
dce_login flintstone yabadabado

3. Runtheacl_edittest.

Test 3: Testing without -rem option

This test requires a cell to be configured with at least one client machine and one server
machine. To test, do the following.

On the server:
1. Kill secdusing the scripkill_secd.sh

2. Restarsecdwithout the-rem option as follows:
secd -locksm locksmith-principal

On the client:
1. Verify that the locksmith-principal canndte_login
2. \Verify that other principals (e.gcell_admin) can stilldce_login

January 17, 1997 -89



DCE Testing Guide

Test 4: Testing the -lockpw option
1. Kill secdusing the scripkill_secd.sh

2. Restarsecdwith the-lockpw option as follows:
secd -locksm principal -lockpw

3. Verify that the principal can onlgce_loginwith the password set by théockpw
option.

8.2.10.4 Thergy_edit Tests

You mustdce_loginas a user with privileges to modify the registry before running this
test. If you configured your machine using tthee_configscript, then whatever user the
script’'scelladmin variable was set to has registry-modifying privileges. There idsto
control file for thergy _edit tests.

The
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/moretests/all_rgy_edit.sh
shell script runs tests for thrgy_edit command.
To run thergy_edit tests, do the following:
1. Change directory to the
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/moretests

directory and enter:
chmod +x *.sh

to make sure that all of thegy_edit test scripts are executable.
2. Inthe

dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/moretests

directory, enter:

all_rgy_edit.sh -d[output_level] >output_file

where:

-d Specifies an output level for all test programs. Using-the
option with nooutput_levelinteger returns a message only
when a test fails.

output_level Specifies a specific output level for all test programs. The

following list shows the valid integer values for
output_leveland the output levels they specify:

8-40 January 17, 1997



DCE Security Service

1 Prints message on failure.

Prints message on&Less.

3 Prints message on warning.

32 Prints message orate.

33 Prints message on trace with failure.

34 Prints message on trace wittcsass.

63 Prints debug messages during test case
execution.

The log information generated ioutput_filevaries with theoutput_levelspecified, but
test run and execution results are obvious in the log.

8.2.11 APITests

The APl tests in the
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/moretests

directory are structured similarly to thecl_edit tests; also similarly, there is no shell
script driver to invokeestshfor these tests. See the section describingattieedit tests
for information on how the test cases using thstshdriver are structured and hints on
how to make executing them easier.

Note: This section gives explicit instructions for executing the API tests directly
from the

dce-root-dirdce/install

tree.

The sec_aclAPI test assumes that the principal with registry modifying privileges is
cell_admin and that the password iglce- If either of these is different, then the script
sec_acl.tshmust be modified. Currently only subtest case 18én_acl.tshneeds to be
modified.

Note: Some tests use the prograbinlogin, which in turn uses the call
sec_login_valid_and_cert_ident(yhich is a privileged operation. Hence
the need for Step 3 outlined below.

To run the API tests, do the following:

1. Make sure you are starting with a clean registry. It is not necessary to re-create the
registry after each individual API suite is run.

2. Run thedce_login tool to login as the registry principal “cell_admin” or the
registry privileged user so that the test process (which inherits your credentials)
has the necessary privileges. To run gasswd_importtest, you need to define a
variableCELLADMIN to either “cell_admin” or the registry privileged user.

January 17, 1997 81



DCE Testing Guide

3. Before running the passwd_import test ensure that:

« The location of the passwd_import command exists in yd®RATH
environment variable.

« The registry is clean.

« The variableCELLADMIN is defined to be eithegell_admin or the registry
privileged user.

4. Change tothe
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/moretests
directory, and execute the following commands:

chmmd +x *.ssh
chmmd u+s Ibimloogim

(Note that you may not have to do tlmhmod u+s binloginif you are already
logged in as root.)
5. Change to the
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/moretests

directory, and enter:
shrgy setup.sh

This script sets up necessary accounts in the registry.
6. Alsointhe
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/moretests

directory, enter:
sh key_mgmt_setup.sh

This script creates keyfiles necessary for the key management API tests.
7. To actually run the tests, change to the
dce-root-dirdce/installimachinédcetest/dcel.2.2/test/security/api/control
directory and enter:

.[testsh/testsh -d¢utput_leve] -I../moretests\
control_file > output_file

where:

-d Specifies an output level for all test programs. Using-the
option with nooutput_levelinteger returns a message only
when a test fails.

output_level Specifies an output level for all test programs. The

following list shows the valid integer values for

8-42 January 17, 1997



DCE Security Service

output_leveland the output levels they specify:

1 Prints message on failure.
2 Prints message onaeess.
3 Prints message on warning.
32 Prints message orate.
33 Prints message on trace with failure.
34 Prints message on trace wittcsass.
63 Prints debug messages during test case
execution.
control_file Specifies what control file to use. All files in the

dce-root-dirinstall/machinédcetest/dcel1.2.2/test/security/api/control

directory which have ash extension are valid control files.
Refer to the table at the end of this chapter to find which
control file will test a given API.

The log information generated ioutput_filevaries with theoutput_levelspecified, but
test run and execution results are obvious in the log.

8.2.11.1 Registry Group Override Tests

The Registry Group Override tests are found in:

dce-root-dirdce/src/test/functional/security/grp_override

There are two tests:

« grp_override.c

This test exercises a non-documented functional API that supports group overrides.
The new, documented, routireec_rgy_pgo_get by eff _unix_num(is also tested

here.

« passwd_export_grp_override.c

This test ensures thapassswd_export correctly conveys overriden registry

information to/etc/group.

Note that the DCE 1.2.2 versions of these testsdiorun under TET, although some of
the files and some aspects of the tests’ directory structure may make it appear as if they

do.

To build the tests under ODE (see Chapter 11 of the DCE 1.2.2 version &fSreDCE
Porting and Testing Guid&r more information on ODE), change directory to

dce-root-dirdce/src/test/functional/grp_override/ts

and runbuild. To run the tests, change directory to the

January 17, 1997

83



DCE Testing Guide

dce-root-dirdce/objplatformtest/functional/security/grp_override/ts

directory,dce_loginascell_admin, and execute:

# ./grp_override

# ./passwd_export_grp_override

No failure messages should appear in output.

8.2.11.2 Additional API Test Information

8-44

The following table shows the available suites of API tests along with the control file that

will execute all of the tests for each suite:

Control File
all_login.tsh
all_pgo.tsh
all_acct.tsh
all_auth_pol.tsh
all_policy.tsh
all_props.tsh
all_key _mgmt.tsh
all_misc_test.tsh
site_bind.tsh
site_mgmt.tsh
sec_acl.tsh
id_map.tsh
local_rgy.tsh

passwd_import.tsh

passwd_override.tsh

most_sec.tsh

unix.tsh

Function Tested

sec_login

sec_rgy(PGO management)
sec_rgy(account management)
sec_rgy(auth policy management)
sec_rgy(policy management)
sec_rgy(properties management)
sec_keykey management)
sec_rgymiscellaneous interfaces)
sec_rgy(site bind)

sec_rgy(site management)
sec_acl

sec_id

sec_loginlocal registry)
passwd_import
passwordoverride

Most of the.tsh files besidesacl_edit.tsh, rgy_edit.sh,
local_rgy.tsh, passwd_import.sh, passwd-override.tsh
andunix.tsh.

unix (UNIX interfaces)

Additional API test information is available secp.gpsmin the

dce-root-dirdoc/testplans/security

directory.

January 17, 1997



DCE Security Service

8.2.12 Use of the “compile_et” Program

The following command is used in testing.
« compile_et

This command is used to create message catalogs from error table files. It is part of
Kerberos and is used by Security and DFS. Its source directory is:

dce-root-dirdce/src/security/krb5/comerr

Error table files (usually ending with .@t) are input tocompile_et, and a.h and a.msf
are output. Theh file is included in source code to have macros defined for each error
code and themsfis used as input tgencatto create message catalog files.

The following is excerpted from the filrc/security/h/sad_err.et

Thiss symifoli icc message source fiillee (SM3) dlefiimes tthe ernrmrs praoduced by
tthe secuwriitty admim toolss. Trhe fiirrst ttooken on each liime iss tthe symitoli icc
name of aan enmror.. Trhe reest oof ttthe liime iss tthe teext ttthat ddescriibbes thhat
errraor.. An SME- iss liikke an XPG message source fiillee (WESF) except
thhat ssymifoli icc message iddentiiffiicerss aree used imnstecad of mumiierss.

Example lines from theetfile are as follows

ec ek nulll _handles, "Wnablee too allloocatee handlee (FRegisstrry Editt KKermel))™
ec ek bad foormat,, "'Dataa strriimg foormat mot waliidd foor ttthe specif fiieed
fiieeldd (FRegisstrry Editt K<ermel))™
ec ek requirreed fiieeldd, "'Kermel ocoperatiioon imvoked on imcomgectee dataa
set ((FRegisstrry Editt K<ermel))™

The.h file produced contains lines as follows:

#defiime ek nulll__handlee (386412545L)
#defiime ek bad foormat ((386412546L)
#defiime ek reequirreed fiiecldd (386412547L)

The.msffile is used as input tgencatto generate message catalogs. Its contents have
the following appearance:

1 Umablee too allloocatee handlee (FRegisstrry Editt K<ermel))

2 Dataa strriimmg format mot waliidd foor ttthe speciffiieed fiieeldd
(FRegisstrryy Editt KKermel))

3 Kemel ooperatiicon imvoked on imconplectee datza set ((FRegisstrry
Editt KKermel))

January 17, 1997 -85



DCE Testing Guide

8.2.13 Test Plans

Refer to Chapter 1 of th©SF DCE Release Notéar the location of the DCE test plans
on the DCE distribution tape.

8-46 January 17, 1997



Chapter 9. DCE Audit Service

This chapter contains porting and testing information for the DCE Audit Service.
9.1 Audit Service Overview

Audit plays a critical role in distributed systems, where there is widespread sharing of
data and resources, as well as the use of remote systems management facilities. Adequate
audit facilities are necessary for detecting and recording critical events in a distributed
application.

Audit is a key component of DCE and is provided by the DCE Audit Service. It has the
following features:

« An audit daemon is provided which performs the logging of audit records based on
specified criteria.

« Application Programming Interfaces (APIs) are provided which can be used as part
of application server programs to actuate the recording of audit events. These APIs
can also be used to create tools that can analyze the audit records.

« An administrative command interface to the audit daemon is provided which directs
the daemon in selecting the events that are going to be recorded based on certain
criteria.

« An event classification mechanism is used to logically group a set of audit events,
allowing for ease of administration.

« The display of audit records can be directed to logs or to the console.

January 17, 1997 =1



DCE Testing Guide

9.2 Testing and Verification

The test cases provided for the DCE Audit Service test the audit APl and the command
line interface.

There are three types of audit test cases:
- APl Tests
These test the audit logging and analysis APIs.
« Command Tests
These test the use dtecpto control the audit daemon.
+ Event Class File Tests
These test the configurability of event classes.

Each of these types and their corresponding test cases are described in the following
sections. Eight audit test cases are shipped with DCE.

9.2.1 Description of the Audit API Test Cases

9-2

In the API test cases, the audit and logging APlIs are first tested together independently of
the filters. The filter mechanism is then tested by invoking the audit logging API
functions. Finally, the audit logging API functions are invoked, specifying the audit
daemon as the target of audit records.

The audit analysis API functions are used to prove the correctness of test results.

Following are the API test cases and their descriptions:

api_log Invokes the logging APIs without using filters.
api_filter Invokes the logging APIs and use filters.
api_log_to_daemon Invokes the logging APIs without using filters, and logs

to the audit daemon (that is, the central audit trail file).

In the Command test cases, the audit daemon is started and stopped using different
combinations of command line parameters. All other features are tested by having the
audit daemon audit its own control interface operations by linking the audit library with
the audit daemon, and starting the daemon usingalogtion.

The DCE Control Progrand€ecp) is used to check how the audit daemon handles filters
and the audit trail file.

Following are the Command test cases and their descriptions:

cp_filter Issuesdcecp commands that display and manipulate
filters.
cp_auditd Issuesdcecp commands that display and modify the

attributes of the audit daemon, as well as well as to

January 17, 1997



DCE Audit Service

enable or disable audit logging, or stop the daemon.

auditd_startup Starts the audit daemon using the different options of the
auditd command.
auditd_acl Checks that the default ACL of the audit daemon object

contains the specified ACL entries.

9.2.2 Description of the Event Class Test Case

In this test case, an event is added to an event class file. The test case then verifies that
the event generates an audit record when the event class is selected by a filter.

The event is then excluded from the event class. The test case verifies that the event does
not generate an audit record when the same filter is used.

The name of the test caseds filter.

9.2.3 Installing theAudit functional tests with dcetest_config

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guidieetest_config

will install the tests you select at the path you specify, and will create a softlink (called
/dcetest/dcelocglto that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/testomponent_nanie

directory, where thdestcomponent_namelements of this path are equivalent to the
testicomponent_namelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

The DCE Audit functional tests are available via option 8 (“Audit”) of the “DCE Test
Installation (Functional Tests” menu. The TET binaries are available via option 3
(“TET”) of the DCE Test Installation menu.

Note thatdcetest_configwill prompt you for the locatiorfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the Audit functional
tests, this path should be the location, on your machine, of:

dce-root-dirdce/install

—uwhich is the DCEnstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of th@SF DCE Release Notes

Thus,dcetest_configwill install the Audit functional tests at:
/dcetest/dcelocal/test/tet/functional/security/audit

where /dcetest/dcelocalis the link to whatever path you supplied as the install
destination.

January 17, 1997 3



DCE Testing Guide

The advantage in usingdcetest_configo install the functional tests is that it will install
all that is needed andnly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlynstall (if you choose) functional tests witthcetest_config you

must use TET to run the tests. Information on running the individual tests can be found in

the following sections.

Refer to Chapter 11 of this guide for further information on usitogtest config See
“Overview of TET Use” in Chapter 11 for general information on TET.

9.2.4 Audit Test Configuration Requirements

All Audit test suites are run from the TET environment. Before running the Audit test
suites, ensure that:

« You are logged in as root.

« The DCE cell is up and running; that is, that the DCE daemegsd cdsd, and the
DCE client daemons) have been started.

« The Audit daemonduditd) is notrunning.

« You are not authenticated in the cell. The tests are designed to be run using the
machine principal.

« Inthe CDS namespace, the Audit ACL object
../lhostshostnamgaudit-server

does not contain server binding entries (i.e., RI@C_ObjectUUIDs attribute for
both entries should be null). If it does contain such entries, you should remove the
object from the namespace before running the tests.

Note that since the test suites are run under TET, many of the configuration requirements

are taken care of in the test code.

9.2.5 Running the Audit Test Cases

To run the audit test cases, enter the following command:
tcc -e functional/security/audit

The test results can be viewed from the journals that TET creates in the

/dcetest/dcelocal/test/tet/functional/security/audit/results

directory. The journal is located in a numbered directory, where the number represents a

test run. A numbered directory and journal is created for each invocation dtthe
command (for exampl€001e 0002¢ and so on).

January 17, 1997



DCE Audit Service

Following is an example of an Audit TET journal which shows the test cases that
succeeded and those that failed:

0[11.110 12:559:118 19940525|Wser:: wweissz () TTOC Seartt,, Command Lime:

dce-install-pathimstzall ¥ /rriicosiiceteest/ (e 11 teest/ et/ it oo e fuuncti iconal /ssecuri it tyyleaudit t

20| dce-install-pathiimstzall I friicos/chiceteest /ice . 1t teest Atest! ffunct ioonall /ssecurit tyy/saudit ¢ A testeexec. ooy 1j@onfiigy Steartt

30|| [TTET_VERS@NAL 110

30| [TTET_OUIPUT_CAPTURE=Falsse

30|| [TTET_RESOODES FILLE=fest_code

30|| [TTET_EXEC INV PLACE=Falsse

30|/ [TTET_NSIG=31

30|| [TTET_SIGS IGIN=34

40]| [Confiigy End

70| [ Stearttiimg AUDITT Test SSuit tee”

10|00 Aitsslaapifiil ltteer//aapi_fiil tteer 112:559:118[TTC Seartt,, sscenariico resf 111-11

150 1.9 1[TTOM Skartt

520|0 0 18265 1 1JSSTART DCE auditt ffuunctiiconal tteest :

dce-install-pathimstzall I /rriicos/ciceteest/ cticel. 1 teest frtest/ et dir//224146alepi_fiil iteer//eapi_fil kiteer;; \\
DATE: Weel Miy 25 12:59:22 EDT 1994

400j00 1 1 12:H9:48lIC Steartt

200j00 1 12:59:48[TTP Stzarit

520j00 1 18265 1 2|START: capi_fiilltteerll stearticed
520j00 1 18265 1 3|FPASS: aapi_fiil ltteer®1 passed
520j00 1 18265 1 A|FPASS: aapi_fiilltteer®2 passed
520j00 1 18265 1 5|EERROR zapi_fiilltteer®3 foail leed
520j00 1 18265 1 6|FPASS: aapi_fiil ltteer®4 passed
520j00 1 18265 1 7|FPASS: aapi_fiil ltteer®5 passed
520j00 1 18265 1 8|FPASS: aapi_fiil ltteer®6 passed
520j00 1 18265 1 9|FPASS: aapi_fiil ltteer®7 passed
520j00 1 18265 1 10|FPASS: zapi_fiil ltteer®8 passed
520j00 1 18265 1 11|FPASS: zapi_fiilltteer®9 passed
520j00 1 18265 1 12|FPASS: zapi_fiil ltteer1l0 passed
520j00 1 18265 1 13|FPASS: zapi_fiilltteerlil passed
220j00 1 0 13:M04:58|FPASS

410(00 1 1 13:04:%8)lIC End

520j00 0 18265 1 1|EEND DCE auditt fiuwnctiioonal ttest::

dce-install-pathimstaall I friicos/biceteest /cice. 11k teest Atest/ ftest_trmyp dirr//24146alapi_fiil ttteer//aapi_fill ltteer;; \\
DATE: Weéel Miy 25 13:005:116 EDT 1994

80j00 0 13:005:119[TTC End

70]| " Complecteed AUDITT Test SSuit tee”

900]113:005:119[TTCC End

January 17, 1997 5



DCE Testing Guide

9.2.6 Test Plans

Refer to theOSF DCE Release Notéar the location of the DCE test plans on the DCE
distribution tape.

9.3 Audit Runtime Output and Debugging Output

The Audit component outputs server information of all kinds via the DCE ceaiility
component. The following sections describe how to control the various kinds of
information (including debugging output) available from Audit via seeability.

9.3.1 Normal Audit Server Message Routing

There are basically two ways to control normal Audit server message routing:

« At startup, through the contents of a routing file (which are applied to all components
that use serdgieability messaging).

« Dynamically, through thelcecp logobject.

The following sections describe each of these methods.

9.3.1.1 Routing File

9-6

If a file called
dce-local-patlvar/svc/routing

exists when Audit is brought up, the contents of the file (if in the proper format) will be
used as to determine the routing of Audit seeability messages.

The value ofdce-local-pathdepends on the values of twwake variables when DCE is
built:

DCEROOT its default value islopt

DCELOCAL its default value issSDCEROOT/dcelocal

Thus, the default location of the sece@abilityrouting file is normally:
lopt/dcelocallvar/svc/routing

However, a different location for the file can be specified by setting the value of the
environment variabl® CE_SVC_ROUTING_FILE to the complete desired pathname.

January 17, 1997



DCE Audit Service

The contents of the routing file consist of formatted strings specifying the routing desired
for the various kinds of messages (based on message severity). Each string consists of
three fields as follows:

severityoutput_formdestination[output_formdestination. . . ]
Where:

severity specifies the severity level of the message, and must be one of the
following:

- FATAL

- ERROR

WARNING

NOTICE
NOTICE_VERBOSE

(The meanings of these severity levels are explained in detail in Chapter
4 of the OSF DCE Application Development Guide — Core Components
volume, in the section entitled “Specifying Message Severity”.)

output_form specifies how the messages of a given severity level should be
processed, and must be one of the following:

- BINFILE
Write these messages as binary log entries
« TEXTFILE
Write these messages as human-readable text
- FILE
Equivalent toTEXTFILE
+ DISCARD
Do not record messages of this severity level
« STDOUT
Write these messages as human-readable text to standard output
« STDERR
Write these messages as human-readable text to standard error

Files written asBINFILE s can be read and manipulated with a set of
logfile functions. See Chapter 4 of th©SF DCE Application
Development Guide — Core Componevtdume, mentioned above, for
further information.

Theoutput_formspecifier may be followed by a two-number specifier of
the form:

.genscount
Where:

January 17, 1997 9



DCE Testing Guide

gens is an integer that specifies the number of files (i.e., generations)
that should be kept

count is an integer specifying how many entries (i.e., messages) should
be written to each file

The multiple files are named by appending a dot to the simple specified
name, followed by the current generation number. When the number of
entries in a file reaches the maximum specifieddmynt the file is
closed, the generation number is incremented, and the next file is
opened. When the maximum generation number files have been created
and filled, the generation number is reset to 1, and a new file with that
number is created and written to (thus overwriting the already-existing
file with the same name), and so on, as long as messages are being
written. Thus the files wrap around to their beginning, and the total
number of log files never exceedgns although messages continue to

be written as long as the program continues writing them.

destination  specifies where the message should be sent, and is a pathname. The field
can be left blank if theoutput_formspecified isDISCARD, STDOUT,
or STDERR. The field can also contain @ld string in the filename
which, when the file is written, will be replaced by the process ID of the
program that wrote the message(s). Filenames maaigontain colons or
periods.

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings asae-separated

output_formdestination
strings.
For example,
FATALTTEXTFILLE/ /[Hev/cconsolee
WRNINNGIDISSCARD:- —
NOTCEBINNALLE.550.1100/ /t trp loog%td  STDERR--
Specifies that:
- Fatal error messages should be sent to the console.
« Warnings should be discarded.

« Notices should be written both to standard error and as binary entries in files located
in the/tmp directory. No more than 50 files should be written, and there should be no
more than 100 messages written to each file. The files will have names of the form:

/tmp/logprocess_ichn

whereprocess_ids the process ID of the program originating the messagesnand
is the generation number of the file.

9-8 January 17, 1997



DCE Audit Service

9.3.1.2 Routing by the dcecp log Object

Routing of Audit server messages can be controlled in an already-started cell through the
dcecp logobject. See théng.8dcereference page in th@SF DCE Command Reference
for further information.

9.3.2 Debugging Output

Debugging output from Audit can be enabled (provided that Audit has been built with
DCE_DEBUG defined) by specifying the desired debug messaging level and route(s) in
the

dce-local-patlvar/svc/routing

routing file (described above), or by specifying the same information in the
SVC_AUD_DBG environment variable, before bringing up Audit. Debugging output
can also be enabled and controlled throughdtecp logobject.

Note that, unlike normal message routing, debugging output is always specified on the
basis of DCE component/sub-component (the meaning of “sub-component” will be
explained below) and desired level.

The debug routing and level instructions for a component are specified by the contents of
a specially-formatted string that is either included in the value of the environment
variable or is part of the contents of the routing file.

The general format for the debug routing specifier string is:

"componensub_compevel,. . ..output_formdestination6
[output_formdestination...]"

where the fields have the same meanings as in the normal routing specifiers described
above, with the addition of the following:

component  specifies the component name

sub_compevel specifies a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

A star (“*”) can be used to specify all sub-components. The sub-
component list is parsed in order, with later entries supplementing earlier
ones; so the global specifier can be used to set the basic level for all
sub-components, and specific sub-component exceptions with different
levels can follow (see the example below).

“Sub-components” denote the various functional modules into which a component has
been divided for sergeability messaging purposes. For Audit, the sub-components are
as follows:

January 17, 1997 -9



DCE Testing Guide

9-10

general
esl

evt

trl

msgs

For example, the string

General server administration

Event selection list (filters) management
Audit record management

Audit trail management

Debugging messages

"aud:*.1,trl. 3: TEXTFILE.50.200:/tmp/AUD_LOG

sets the debugging level for all Audit sub-componertscépttrl) at 1;trl’s level is set
at 3. All messages are routed tmmp/AUD_LOG. No more than 50 log files are to be
written, and no more than 200 messages are to be written to each file.

The texts of all the Audit sergeability messages, and the sub-component list, can be

found in the Audit sams file, at:

dce-root-dirdce/src/security/audit/libaudit/aud.sams

For further information about the sec@abilitymechanism and API, see Chapter 4 of the
OSF DCE Application Development Guide — Core Componealsme, “Using the
DCE ServiceabilityApplication Interface”.

January 17, 1997



Chapter 10. DCE Distributed File Service

The DCE Distributed File Service (DFS) provides data sharing services for use within
the DCE environment by extending the local file system model to remote systems. It
provides the ability to store and access data at remote locations and utilizes the
client/server model common to other distributed file systems.

10.1 Overview

DFS consists of the following components:
« DCE Local File System (LFS), which can store the file system data on the disk.

Note: This component, alone among the DFS components, is optional. You
can retain your existing file system instead of DCE LFS and use DFS to
export that file system. However, there are advantages to bringing up
LFS in conjunction with DFS.

« The File Exporter, which exports data using Remote Procedure Call (RPC).

« The Token Manager, installed on DFS servers, which synchronizes access to
exported file systems on DFS servers.

« The Cache Manager, installed on DFS clients, which retrieves and stores data from
the File Exporter.

« The Token Cache Manager, installed on DFS clients, maintains liaisons with the
Token Manager, and controls server access to exported local filesystems.

« Fileset services, which handle administrative file system functions. These include
the following servers:

1. the Fileset Location Server, which supplies network locations for filesets.

2. the Fileset Server, which provides access to entire filesets for administrative
functions, such as moving and backing them up.

3. the Replication Server, which provides fileset replication on different machines
(for greater availability).

January 17, 1997 =i}



DCE Testing Guide

« The Basic Overseerbfg service, which monitors other server processes and
facilitates system administration tasks.

« Scoutwhich gathers file server statistics.
« Backup which provides a mechanism for backing up data stored on the file server.
Command interfaces are provided for these server processes and tools.

DFS lets users access a remote file by its location-independent DCE pathname. It then
finds the file, just as if it existed locally. Users do not have to know the physical location
of files. TheCache Managerwhich runs on client machines, translates file system calls
into references to the client machine’s file system cache. If necessary, it then executes
RPCs to the file server machine containing the data.

The local file system (LFS) on the DFS server stores the master copy of filesystem data.
The File Exporter can export any Virtual File System (VFS) resident on the server
machine. DFS uses a token-based cache synchronization mechanism to maintain cache
consistency and provide single-site semantics.

DCE LFS is a log-based file system that supports filesets, access control lists, and
extended fileset features. These include copy-on-write clones, quotas, and multiple
filesets per partition.

The DCE LFS code is designed to run in the server’s kernel. It is based on a standard
UNIX disk partition, using the facilities of the kernel device driver. DCE LFS operations
are accessed through the system call layer, which calls the VFS switch.

10.2 Setup, Testing, and Verification

Since DFS interacts with various other DCE components, functional testing for it is not
necessarily simple, particularly with a port of DCE to a new platform. The detailed
operation of other DCE components may not be known, and there will not be a baseline
of component behavior under different conditions of usage and loading. Therefore,
testing interactions between DFS and the other components may indicate a need for
modifications in those other components as well as DFS, and necessitate a cyclical or
incremental approach to functional testing, as well as system test.

When you start testing DFS, a reference platform is particularly useful, since the code on
it has been tested to known standards of functionality and robustness. In addition, the
reference platform lets you address interoperability issues with a partner that works
correctly.

10.2.1 Installing DFS Functional Testsvith dcetest_config

10-2

You can install the functional tests described in the following sections by running the
menu-drivendcetest_configscript described in Chapter 11 of this guidieetest_config
will install the tests you select at the path you specify, and will create a softlink (called

January 17, 1997



DCE Distributed File Service

/dcetest/dcelocglto that location. The functional tests for a given component will thus
be installed under a:

/dcetest/dcelocal/testomponent_nanie

directory, where thdestcomponent_namelements of this path are equivalent to the
testicomponent_namelements in the pathnames given in the sections below, which
refer to the tests’ source or build locations.

Note thatdcetest_configwill prompt you for the locatiorfrom whichthe tests should be
installed (in other words, the final location of the built test tree). For the DFS functional
tests, this path should be the location, on your machine, of:

dce-root-dirdce/install

—which is the DCEnstall tree (for more information on the structure of the DCE tree,
see Chapter 3 of th@SF DCE Release Notes

Thus,dcetest_configwill install the DFS functional tests at:
/dcetest/dcelocal/test/file/

where /dcetest/dcelocalis the link to whatever path you supplied as the install
destination.

The advantage in usingcetest_configo install the functional tests is that it will install
all that is needed andnly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

Note that you can onlynstall (if you choose) functional tests witticetest_config for
test configuration and execution you must follow the instructions in the sections below.

Refer to Chapter 11 of this guide for further information on ugdogtest_config

10.2.2 Debugging Notes

DFS involves the interaction of many different programs, which operate on different
machines (servers, clients) in both kernel and user space. It uses the services of various
other DCE components, such as RPC, Threads, DTS and Security. It also uses the
services of non-DCE components, such as the native file services of at least one and
possibly more host platforms.

Therefore, porting DFS to a new platform presents a broad set of challenges. The
subcomponents must be built and integrated in a distributed and possibly heterogeneous
environment, interactively with other development efforts. Porting and development
work in different areas of DCE can proceed asynchronously, and the DFS port effort
must bridge changes in the software environment.

January 17, 1997 13



DCE Testing Guide

10.2.2.1 Running Tests on the HP/UX Platform

Note following before running the DFS functional tests on the HP/UX platform:

« You should not usébin/sh, but rather theébin/posix/shshell, when running the DFS
functional tests. Otherwise errors will occur as a result of the lbaysh handles
arguments when function calls are made.

« Thediff command supplied with HP/UX 9.0.1 will not perform
diff -r

correctly under certain circumstances, returning a non-zero exit code even when
there are no differences in the directory trees specified. Functional tests sloeh as
andfs which use thaliff command will incorrectly report failures.

10.2.2.2 Distributed Development Environments

10-4

Often, multiple versions of a particular source file are in use simultaneously, which
complicates the debugging process when responsibilities are divided among developers.
Distributed development environments, such as @gen Development Environment
(ODE), packaged with the DCE sources, can support this type of work. The source
control software included in such environments provides a handle for managing
distributed development with tracing tools to find the filenames, file revisions and line of
code affecting a particular variable or data object.

If you define theAFSL_USE_RCS_ID preprocessor directive on the command line
when compiling a filepsi_assertfailures return the source code file, its version number,
the assertion’s line number, and (if possible) the results of the assertion. Otherwise, the
compiler’s version of the filename is returned.

The DFS code implements the file and version information with Revision Control System
(RCS). RCS is available from the Free Software Foundation. It is packaged widSke
Development Environme(®DE), which is provided on the DCE source tape.

However, the package is general enough that you can apply it to your own source code
control system, if you use a different development environment than ODE. To modify the
code which lets the AFSL_USE_RCS_ID construct return information in a form
appropriate to your source code control conventions, check and update the following
files under the

dce-root-dirdce/src/file

directory:
config/stds.h osi/afsl_trace.c  osi/osi.h

Note: The code in the

January 17, 1997



DCE Distributed File Service

dce-root-dirdce/src/file/osi

directory contains various debugging aids for porting tiselayer. Some
of this code may be applicable to other portions of DFS.

10.2.2.3 Kernel Debugging Considerations

You need a kernel debugger as well as user space debugging facilities to bring up DFS
on your platform. At a minimum, such a debugger must be able to set breakpoints and
execute stack traces. Increasing the debugger's capabilities and its integration into your
computational environment can improve your debugging efficiency. Specific desiderata
for a debugging environment include the following:

« Remote debugging, where the machine running the code differs from the machine
doing the testing.

« Source code debugging.

« Structure format conversion facilities (dumpers): DFS kernel code includes multiple
layers of nested structures. Written out in raw hexadecimal format, they can be
tedious to interpret. Format conversion facilities which cast the information into a
readable format, and trace out succeeding nested substructures, can speed the
debugging process significantly.

If your kernel debugging tools have any shortcomings, you may find that an investment
in improving them, particularly to provide the facilities listed above, will be repaid in
shortened debugging time as you bring up DFS.

Note: When you plan the porting process, you should evaluate the costs and
benefits of investing in improved development tools before you begin
working with DFS.

10.2.2.4 Debugging Facilities in the DFS Source Code

The DFS source code provides several built-in debugging tools, particularly in the
dce-root-divdce/src/file/osi
directory.

For example osi_assert which checks for internal consistency, and debugging-related
compiler switches can be found in

dce-root-dirdce/src/file/osi/osi.h

If an osi_assertfails, the program uttering it restarts, typically dumping core. You may
wish to build a soft restart facility into your kernel code, so sosh assertfailures do

not cause a kernel panic. Doing so can speed up code development and testing. However,
in production systemsopsi_assertfailures are normally only associated with critical
problems and possible data corruption. You must decide how to handle such failures in

January 17, 1997 16



DCE Testing Guide

your final product.

Note that some debugging features must be ported separately for the different libraries in
which they run, once for kernel and once for user-space code.

10.2.2.5 Debug Levels

You can select the level of debugging feedback with a numerical value for
AFSL_DEBUG_LEVEL, defined in osi.h Currently, three values of
AFSL_DEBUG_LEVEL are implemented:

0 Only critical code reports errors.

3 Consistency checks are reported if they are not computationally expensive. For
example, Boolean expressions of simple variables are checked, function calls or
complex macros are not.

5 All consistency checks are performed, regardless of expense.

You can tune the debugging level, including definition of intermediate levels for
AFSL_DEBUG_LEVEL, to suit your needs, depending where you are in the porting
process.

Because DFS code involves interaction among many modules on different machines,
expect to maintain a fairly high level of debugging reporting through most of the
development process. TypicallAFSL_DEBUG_LEVEL will remain at 5, even for
modules already built and separately functionally tested.

Once you have finished the debugging, and do not intend to trace operations again, do
not defineAFS_DEBUG or AFSL_DEBUG_LEVEL in:

dce-root-dirdce/src/file/osi/osi.h

Then only critical osi_assers, where failures are associated with possible data
corruption, are turned on.

10.2.3 Test Types

There are several functional test suites available for DFS. Some are packaged with DCE,
and some which are not, but are probably already present on your system. There are three
sets of tests of overall DFS functionality, namely:

« Basic tests, such as the NFS connectathon suite, which are not packaged with DCE.
« The low-level functionality tests, in the
dce-root-divdce/src/test/file/low
directory.

- More extensive tests, in the

10-6 January 17, 1997



DCE Distributed File Service

dce-root-dirdce/src/test/file/fs
directory.

At least with the latter two sets of tests, you can modify the stress level by changing
various parameters, such as the sizes and numbers of objects created, listed, modified or
removed.

Besides testing basic DFS functionality, the
dce-root-dirdce/src/test/file

directory has subdirectories for tests of specific functions associated with DFS.

10.2.3.1 Basic Testing with External Test Packages

If your platform also supports NFS, you can use tests packaged with it, particularly the
connectathortest suite, to check basic DFS functions, such as creating, deleting, listing,
reading and writing files and directories. Alternatively, you may be able to modify other
low-level external filesystem test suites to test DFS during the porting process.

10.2.3.2 The Standard DFS Test Suites

Once your implementation passes such basic tests, you can begin stress tests, from the
dce-root-dirdce/src/test/file/low

and
dce-root-dirdce/src/test/file/fs

directories.

These tests let you specify sizes and number of objects to be manipulated, and the mix of
operations on those objects, so you can increment the stress on your code along various
parameters. In addition, the context in which the tests are run, for example heterogeneous
machines or split servers, let you generate a matrix of performance stresses.

Beside the basic tests listed above, the following types of function-specific DFS tests are
shipped with DCE:

- DFS kernel modification tests

DCE Local File System tests
» DFS server process tests

« DFS command interface tests
« DFS administrative tool tests

These tests are contained in subdirectories of the

January 17, 1997 g



DCE Testing Guide

dce-root-divdce/src/test/file
directory and are described in the DFS Test Plan.

Before executing the test cases, you must configure DFS for testing, using the
instructions in the following section of this chapter (“DFS Test Setup”). You can run
tests on the configurations described in that section.

Because some DFS code runs in kernel space, many of the interfaces cannot be called
directly in order to test them. Therefore, testcases have been written using usecedgerf

that in turn access and exercise the kernel space code. In addition, tests are included to
exercise those subroutines not tested through traditional UNIX adesf

User-level code is tested using shell scripts that exercise thedneexf

10.2.4 DFS Test Setup

Before running any DFS tests, you must first configure a DCE cell. Refer t©8f
DCE Administration Guide—Introductiofor information on configuring a DCE cell,
specifically Chapter 6 “Overview of The DCE Installation and Configuration Script,”
Chapter 7 “Phase One: Initial Cell Configuration,” and Chapter 8 “Phase Two:
Configuring a DCE Client and Other DCE Services.”

10.2.5 DCE Distributed File Service Tests

10-8

The following sections describe functional tests for the DCE Distributed File System.
These tests are packaged on the distribution tape, in the

dce-root-dirdce/src/test/file/

directory. In addition, many of the DFS source subdirectories include test programs for
individual functions and and subcomoponents.

Note: Before building and running the test programs packaged with the DFS
sources, check them for platform and operating system dependencies.
They may need to be modified to operate correctly in your target
environment, and to exercise ported code.

In addition to the DFS system call tests described in the section immediately following,
other following sections describe a number of development level tests which are built in
the individual subcomponent directories. These can be used to test various phases of
your port. Included are tests for the token manager, aggregate operations, free pool
management, system calls, and others.

For information on DFS system testing, refer to the “DFS System Tests” section of
Chapter 12 (*DCE System Testing”) of this guide.

January 17, 1997



DCE Distributed File Service

10.2.5.1 System Call Tests

The
dce-root-divdce/src/test/file/low

and
dce-root-difdce/src/test/file/fs

subdirectories contain testcases for testing the file system-related system calls affected
by DFS. Once your ported DFS code passes all tests in these two subdirectories, it can
provisionally be considered ready for integration with other DCE functions.

10.2.5.1.1 The low Tests

The tests in
dce-root-dirdce/src/test/file/low

are C programs with shell script drivers that use DFS to exercise low-level system calls.
Brief descriptions of théow tests are listed below.

Note: Tests 2 and 4 are not listed. They exist, but are computationally expensive
and are not considered necessary for testing DFS functionality.

These tests are specific to UNIX platforms. If you are porting to a different
operating system, you will have to rewrite them, using your target
environment’s system calls.

Test 1 Performstat() calls to check for existence of two test files, one of 16
bytes, one of half a megabyte. Does repeatpdn()s andclose(¥ on
each file, then repeated cycles open()}write()-read()-close() on
each. It then performs cycles tdeek()andopen()read()-close() on
as many as three files. Does not check data.

Test 3 Performs sequential and randaemite()s to a file, then aclose()
followed byfsync(). Then itopen() andread()s the file, and compares
the data with what it wrote.

Test 5 Writes out a file, marches through the file with successive read() and
Iseek() calls. Compares the first byte of each buffer for data integrity.

Test 6 File and directory manipulation: Perform&dir() andchdir() system
calls. Usesopendir() and readdir() to confirm that what it created
actually exists.

Test 7 Creates symbolic links, perforisgat()s on them.

Test 8 Creates different files with all permission modes, opens, renames, and
unlinks them. Checks whether the modes stay correcipem( )

Test9 Creates a file, manipulates its mode and time wlithod(), fchmod()
with the file open, anditimes(). It then checks the file’s status with
stat(), and unlinks the file.

January 17, 1997 19



DCE Testing Guide

Test 10 File descriptor status manipulation: creates adpen() it, performs
fcntl_setsandfcntl_getson it, does someead()s andwrite()s. It then
calls fcntl_sets again. Then if truncates the file withiruncate().
Finally, it checks the file’s status flags wigitat(), and unlinks the file.

Test 11 Deadlock testing: a parent process forks a child, then both processes
lock and unlock a file.

Test 12 Creates a file, reads and writes vectors of data to it ne@dv() and
writev().

RTest 1 Tests the&hroot command.

RTest 2 Tests thehowncommand.

Information on running these tests can be found in:

dce-root-dirdce/src/test/file/low/READ_ME

10.2.5.1.2 The fs Tests

10-10

The tests in
dce-root-dirdce/src/test/file/fs

are shell scripts that execute a number of common UNIX commands relating to files.
These tests exercise the Cache Manager and Protocol Exporter functionality, as well as
verify that UNIX filesystem semantics are maintained. These tests check that the DFS
implementation adjudicates filesystem contention among multiple processes, as happens
in a multi-user environment. They are summarized below. (Note that test 5 has been
removed from the suite.)

As with the low-level tests described above, these tests are specific to UNIX systems,
and will have to be rewritten for other target environments.

errl Tests file error conditions by issuing incorrect commands. For instance,
this test attempts tap to a directory,cd to a file, and perform invalid
chmod andchgrp commands.

Test 1 Run up to 9 simultaneous copies of a program, which modify different
parts of the same file at the same time.

Test 2 Creates a new subdirectory, then spawns multiple processes which
performs various standard file operations in that subdirectory.

Test 3 Performs hundreds of file creations and removals in the current directory,
then checks that all the correct files (and no others) are present at the end
of the process.

Test 4 Concatenates files: multiple processsssets sixteen 1K files into 16K
files, then repeat the process with the larger files, forming 256 kilobyte
files.

Test 6 Tests process contention: one process attempts to delete a file while

another has the file open.

January 17, 1997



DCE Distributed File Service

Test 7 Tests directory management integrity: creates a directory structure
containing a variable number of directories, each of which contains a
variable number of 16-kilobyte files. The tree is repeatedly created and
then removed.

RTest 1 Checks thehgrp, chmod andchowncommands.
Information on running these tests can be found in:
dce-root-divdce/src/test/file/fsSIREAD_ME

1.2.2,added DFS Delegation tests (start)

10.2.6 Delegation Tests

Delegation tests are located in the
dce-root-dirdce/src/test/file/delegation.system

directory. Information on setting up and running these tests can be found in:
dce-root-dirdce/src/test/file/delegation.system/README

These tests do not run under TET.
1.2.2,added DFS Delegation tests (end)

1.2.2,added Multihome Server tests (start)

10.2.7 Multihome Server Tests

The Multihome Server Tests are located in the
dce-root-difdce/src/test/file/cmmhs

directory. Information on setting up and running these tests can be found in:
dce-root-difdce/src/test/file/lcmmhs/README

These tests do not run under TET.
1.2.2,added Multihome Server tests (end)

1.2.2,added File Exporter Authorization tests (start)

10.2.8 File Exporter Authorization Tests

The File Exporter Authorization Tests are located in the

January 17, 1997 11



DCE Testing Guide

dce-root-dirdce/src/test/file/cmfxauth
directory. Information on setting up and running these tests can be found in:
dce-root-dirdce/src/test/file/cmfxauth/ README

These tests do not run under TET.
1.2.2,added File Exporter Authorization tests (end)

10.2.8.1 DFS Cache Consistency Tests

The DFS cache consistency tests are located in:
dce-root-difdce/src/test/file/cache_mgr

Descriptions of the tests and instructions on how to run them can be found in:
dce-root-dirdce/src/test/file/cache_mgr/README

10.2.8.2 UNIX Filesystem Tests

UNIX filesystem tests are located in:
dce-root-difdce/src/test/file/fs

Descriptions of the tests and instructions on how to run them can be found in:
dce-root-difdce/src/test/file/fs'README

10.2.8.3 DFS ACL Tests

The DFS ACL tests are located in:
dce-root-difdce/src/test/file/acl

Descriptions of the tests and instructions on how to run the tests can be found in:
dce-root-dirdce/src/test/file/acl/ README

10.2.8.4 DFS Token Manager Tests

These tests verify DFS token manager functionality and are contained in the

dce-root-dirdce/src/file/tkm

10-12 January 17, 1997



DCE Distributed File Service

directory. Note that there is IREADME .

10.2.8.5 DFS Zero Link Count Tests

These tests verify the correctness of handling zero link count files in DFS and are
contained in the

dce-root-dirdce/src/test/file/zlc

directory. The directory containsREADME .

10.2.8.6 DFS Token State Recovery Tests

The DFS token state recovery hand tests are located in:
dce-root-divdce/src/test/file/tsr

Descriptions of the tests and instructions on how to run them can be found in:
dce-root-dirdce/src/test/file/tsr/ TSR_README

10.2.8.7 DFS File Exporter Stress Tests

The DFS file exporter stress tests are located in:
dce-root-difdce/src/test/file/fx

A descriptions of the test script and instructions on how to run the tests can be found in:
dce-root-difdce/src/test/file/flx/README

10.2.8.8 ubik Failure Recovery Tests

Theubik failure recovery hand tests are located in:
dce-root-difdce/src/test/file/ubik

Descriptions of the tests and instructions on how to run them can be found in:
dce-root-dirdce/src/test/file/ubik/ READ_ME

January 17, 1997 13



DCE Testing Guide

10.2.9 DCE Local File System Tests

The following sections describe tests for the DCE Local File System.

10.2.9.1 System Call Tests for LFS

Thelow andfs tests described in the “System Call Tests” section earlier in this chapter
can also be run on the DCE Local File System to test file system-related calls affected by
DCE LFS.

10.2.9.2 LFSFileset Operations Tests

The fileset (“ftutil”’) test tools for testing DCE LFS fileset operations are located in:
dce-root-difdce/src/test/file/fset

Instructions on running the tests can be found in:
dce-root-difdce/src/test/file/fset/ README

10.2.9.3 LFS Authorization Salvage Test

The LFS authorization salvage hand test is located in:
dce-root-dirdce/src/test/file

A description of the test and instructions on how to run it can be found in the comment at
the top of the

dce-root-dirdce/src/test/file/salvage/AuthCheckTest
file. Test tools for the LFS salvager are located in
dce-root-dirdce/src/test/file/ravage
and:

dce-root-divdce/src/test/file/scavenge

10.2.9.4 LFS ACL and LFS Recovery Tests

10-14 January 17, 1997



DCE Distributed File Service

The LFS ACL and LFS recovery and associated POSIX compliance tests are located in:
dce-root-dirdce/src/test/file/recovery

A description of thecheckaggrtool, which is used by these tests, and which is located in
this directory, can be found in the comments at the top of

dce-root-dirdce/src/test/file/recovery/checkaggr
and in:
dce-root-divdce/src/test/file/recovery/README.checkaggr

10.2.9.5 Other DCE LFS Tests

The tests in the following directories test additional functions specific to the DCE LFS:
« dce-root-dirdce/src/file/episode/anode/test_anode.c
Described in:
dce-root-dirdce/src/file/episode/vnops/README
and:
dce-root-dirdce/src/file/episode/anode/README
« dce-root-dirdce/src/file/episode/async/astest.c
« dce-root-dirdce/src/file/episode/dir/test_dir.c
« dce-root-dirdce/src/file/episode/vnops/test_vnhodeops.c
Described in:
dce-root-dirdce/src/file/episode/vnops/README

Many of these tests are porting tests that run in user space. It is recommended that these
tests only be used before placing your ported code into kernel space to help verify that
the basic function is working correctly. In most cases, the tests accept scripts that tell
them which subroutines or operations to perform in sequence. Functions covered include
the following:

« Initializing aggregates

- Creating aggregates

« \erifying aggregates

« Creating filesets

+ Closing filesets

« Mounting and unmounting tests

« Checking mode bit settings and access times

« Testingvnodeoperations

January 17, 1997 15



DCE Testing Guide

« Testing locksf{le andrecord)

10.2.10 DFS Server Process Tests

DFS server processes are exercised both by the cache manager and protocol exporter
operations described previously, and through DFS command tests. These tests are
described in the “DFS Command Interface Tests” section of this chapter.

10.2.10.1 Ubik Database-Replication Tests

A test server and client proceastst _server and utst_client, are provided for testing
replicated database functionality. These tests are described in the DFS Test Plan and are
in the

dce-root-dirdce/src/test/file/ubik

directory. You must create entries in the CDS namespace in order to run these tests.

10.2.11 DFS Command Interface Tests

10-16

Tests for theboscommand are located in the
dce-root-divdce/src/test/file/bos

directory. Information on setting up and running these tests can be found in:
dce-root-dirdce/src/test/file/lbos/READ_ME

Tests for theem command are located in the
dce-root-difdce/src/test/file/cm

directory. Information on setting up and running these tests can be found in:
dce-root-difdce/src/test/file/cm/README

The DFS Server Preference tests are located in the
dce-root-difdce/src/file/cm/test

directory. These tests verify correct operation of server preferences in DFS. The
directory contains README that explains how to run the tests.

Tests for thdts commands are located in the
dce-root-divdce/src/test/file/fts

directory. Information on setting up and running these tests can be found in:

January 17, 1997



DCE Distributed File Service

dce-root-dirdce/src/test/file/fts README

The DFS Test Plan describes these tests and explains how to execute themntéhts
script for thecm andfts tests contains a number of variables which should be configured
for the environment being tested. For the tests, two DCE LFS aggregates should be
available to test against, and two more DCE LFS aggregates should be exported.

The fts tests for fileset replication are more effective if two fileserver machines are
available for use. However, basic replication can be tested with a single file server.

The DFS replication tests verify DFS fileset replication functionality. The tests are
contained in the

dce-root-dirdce/src/test/file/rep

directory. The directory contains README which describes the tests in detail and
explains how to run them.

10.2.12 DFS Administrative Tests

Tests for the DFS administrative tools are available in the
dce-root-dirdce/src/test/file

directory. Details about the separate tests appear in the following sections.

10.2.12.1 Update Tests

Theupserver andupclient distribution tools should be tested with the
dce-root-dirdce/src/test/file/update

tests. Comments at the beginning of
dce-root-dirdce/src/test/file/update/uptest

explain how to run these tests.

10.2.12.2 Scout Tests

The Scout interactive monitoring tool is tested manually. Descriptions of the manual
tests are located in:

dce-root-dirdce/src/test/file/scout/READ_ME

January 17, 1997 17



DCE Testing Guide

10.2.12.3 Backup System Tests

The DFS backup system is tested using the scripts in:
dce-root-dirdce/src/test/file/backup

A comment at the top of the
dce-root-dirdce/src/test/file/backup/runtests

script explains the necessary configuration and how to run the tests.

10.2.13 DFS Gateway Tests

Tests for the DFS Gateway are located in the
dce-root-difdce/test/file/gateway

directory. Details about the separate tests appear in the following sections.

10.2.13.1 Gateway Daemon Tests

Thedfsgwdshould be tested using the tests in:
dce-root-dirdce/src/test/file/gateway/dfsgwd

Information on setting up and running these tests can be found in:
dce-root-dirdce/src/test/file/gateway/dfsgwd/README

10.2.13.2 Gateway Administration Tests

Thedfsgw command line interface should be tested using the tests in:
dce-root-dirdce/src/test/file/gateway/dfsgw

Information on setting up and running these tests can be found in:
dce-root-dirdce/src/test/file/gateway/dfsgw/README

10.2.13.3 Gateway Client Tests

10-18 January 17, 1997



DCE Distributed File Service

dfs_loginanddfs_logoutshould be tested using the tests in:
dce-root-dirdce/src/test/file/gateway/dfs_login

Information on setting up and running these tests can be found in:
dce-root-dir/dce/src/test/file/gateway/dfs_login/README

10.2.14 Test Plans

Refer to Chapter 1 of th@SF DCE Release Notéar the location of the DCE DFS test
plans, describing the DFS test cases and how to execute them, on the DCE distribution
tape.

January 17, 1997 119



Chapter 11. TET and DCE Testing

Many of the DCE system tests have been modified to use the Test Environment Toolkit
(TET) version 1.10.

Source code for TET is provided in the source tree under
dce-root-difdce/src/test/tet

TET is built and placed in the release area as part of the default source tree build. The
X/Open release notes, specifications and user guides for TET can be found in the

dce-root-dirdce/src/test/tet/doc
directory.

TET provides support for building, running and for cleaning up the test suites. However,
to provide better integration with OSF’s software process, TET is used only to execute
the tests, and ODE is used to build and install the test suites.

11.1 Installing TET

Once DCE has been built and installed, the system test directory should lie by default at:
dce-root-dirdce/installplatform/dcetest/dce1.2.2/test/systest

(for most of the tests that do not run under TET), and:
dce-root-dirdce/installplatform/dcetest/dcel.2.2/test/tet/system

(for the tests that do run under TET).

Thesystestdirectory contains the following:
+ admin

Directory containing DCE Administrative automated tests and checklists.

« directory/gds

January 17, 1997 H



DCE Testing Guide

Directory containing DCE Global Directory Service system tests.
« profile.dcest

File containing definitions for environmental variables used by the system tests.
« dcetest_config

The DCE Test Installation and Configuration script.
- file Directory containing DFS system tests.

- tools Directory containing DCE system test tools used by system tests that are not
run under TET.

Thetet/systemdirectory contains the following:
« 118N
DCE Internationalization system tests.
« audit
DCE Audit Service system tests.
+ dced
DCE Host Daemondced) system tests.
« directory/cds
DCE Cell Directory Service system tests.
« profile.dcest.tet
File containing definitions for environmental variables used by the system tests.
. 1pc

DCE RPC system tests. Note that this directory containspihecds.3 system test,
whichis notrun under TET.

« security
DCE Security Service system tests.
« SvC
DCE Serviceabilitysystem tests.
» threads
DCE Threads system tests.
. time
DCE Distributed Time Service system test.
- tools
DCE system test tools.
For the remainder of this chapter, the name:

systest-root

11-2 January 17, 1997



TET and DCE Testing

will be used to signify the correct path on your system tosystestdirectory in the DCE
install tree.

11.1.1 Using dcetest_config

dcetest_configs a menu-driven utility which can be used to do the following things:
« Install any of the DCE system tests.
« Install DCE functional tests, found in:
dce-root-dirdce/installplatform/dcetest/dce1l.2.2/testbmponent_name
(for non-TET functional tests), and:
dce-root-dirdce/installplatform/dcetest/dce1.2.2/test/tet/functionalbmponent_name
(for functional tests run under TET).
« Install TET

dcetest_configoperates much likelce_config the script used to install and configure
DCE itself. As long as you are usindcetest_configonly to install tests, there is no
requirement to have rudce_config the only requirement is that DCE must have been
built. However, if you wish to execute tests for any component other than GDS, you must
of course have a DCE cell up and running—which means that you must have run
dce_config For GDS testing, the only requirement is that GDS be installed on the test
systems.

You startdcetest_configoy typing:
systest-rodtcetest config DEBUG]

(SpecifyingDEBUG will keep dcetest_configrom clearing the screen when it changes
menus.)

You may find it necessary to make the following environment variable setting:
MORE= -W notite -e

to preventdcetest_configrom prompting you to press a key to continue after each menu
is displayed.

The following sections describe the various usedastest_config

11.1.2 Installing TET with dcetest_config

To install TET, become root and start theetest_configscript. From thedcetest config
Main Menu, select “1” to install.

January 17, 1997 B



DCE Testing Guide

Figure 11-1. Installing TET: Step 1
DCE Test NiEmn Msnu

1. limsteall |
2. @onfiigguree

99. Hexitt
seleectiioon: 1
After you have selected the “Install” menu option, the “Location of DCE Test Install

Binaries” menu will be displayed. You can install TET either from a filesystem or from
media.

Figure 11-2. Installing TET: Step 2

Locatiioon of DCE Test |Imstaall| BBimariiees

1. il leesysteem
2. NWedisa

98. FRetwrm tm preevioous menu
99. Hexitt

seleectiioon: 1

Enteer ttthe fwilll ppatth too tthe DCE bimnany imnstzall | ttrrece.

Thiss wil ll| bbe trhe dirreectoony tthat ccontaaims thhe

.../ [<BULLD>fi imsttaall I/ /<mecthinmetyype>/ddceteest/ /ddcel. 2.2

dirreectooryy:  /myproject/dce/mybuild/nb_ux/install/hp800/dcetest/dcel.2.2

Enteer ttthe patth to tthe DCE teest ttrrece loocati ioon.

Thiss wil ll| bbe trhe dirreectoony thhat willl | cconteaimn all | ttthe teestss.

Plecase loocatee thiss diirreectoony somewheree otther ttthan thhe raot
parttiittiicon, iiff possitblee. AA softtlliinnk /ddceteest//ddeeloocal wii lll bbe mede
too thhiss lloocati ioon.

dirreectooryy:  /usr/dcetest

After you have specified the location information and typeRETURN>, the “DCE
Test Installation Menu” will be displayed. Select “3” to install TET.

Figure 11-3. Completion of Installation

DCE Test |Imstzall laatiioon Menu

11-4 January 17, 1997



TET and DCE Testing

=

Frunctiioonal TTestss
Systieem Testiss
3. TTET

N

98. FRetwrm tm preevioous menu
99. Hexitt

seleectiioon: 3
As TET is being installed, you should see the following messages:

imnstzall li inng teest/ ttest/ bim ...
imsteall i inng teest/ Atest/Nliib .....

After TET has been installed, you will be returned to tleetest_configMain Menu.

Figure 11-4. Return to Main Menu
DCE Test NiEmn Msnu

1. limsteall |
2. @onfiigguree

99. Hxitt
seleectiioon: 99

You have now installed TET.

January 17, 1997 b



DCE Testing Guide

11.1.3 Installing the DCE Functional Testavith dcetest_config

11-6

To install any or all of the DCE functional tests, you should select “1” in the
dcetest_configMain Menu:

Figure 11-5. Selecting Test Installation
DCE Test NiEmn Msnu

1. limsteall |
2. @onfiiggures

99. Hxitt
seleectiioon: 1

You will then be prompted for the location of the test binaries. You can install the tests
either from media (e.g., tape) or from a filesystem. In the following example, “1”
(filesystem) has been selected; this causes the user to be prompted for the location of the
filesystem and, following that, for the path at which the tests are to be installed:

Figure 11-6. Supplying Test Location

Locatiioon of DCE Test |Imstaall| BBimariiees

1. il leesysteem
2. NWedisa

98. FRetwrm tm preevioous menu
99. Hexitt

seleectiioon: 1

Enteer ttthe fwilll ppatth too tthe DCE bimnany imnstzall | ttrrece.

Thiss wil ll| bbe trhe dirreectoony tthat ccontaaims thhe

.../ [<BULLD>fi imsttaall I/ /<<mecthinmetyype>/ddceteest/ /ddcel. 2.2

dirreectooryy:  /myproject/dce/mybuild/nb_ux/install/hp800/dcetest/dcel.2.2

Enteer ttthe patth to tthe DCE Test ttrrece loocati ioon.

Thiss wil ll| bbe trhe dirreectoony thhat willl | cconteaimn all | tthhe teestss.
Plecase loocatee thhiss diirreectoony somewheree otther ttthan thhe raot
parttiittiicon, iiff goossitblee. AA softtlliinnk /ddceteest//ddceloocal wii lll bbe mede
too thhiss lloocati ioon.

dirreectoonyy:  /usr/dcetest

January 17, 1997



TET and DCE Testing

Following these steps, you will be returned to the Test Installation menu, where you can
now select “1” to actually install the tests:

Figure 11-7. Functional Test Installation Menu
DCE Test |Imsteell laatiicon Menu
1. Frunctiioonal TTestss
2. Systeem Testss
3. TTET

98. FRetwrm tm preevioous menu
99. Hexitt

seleectiioon: 1

Note that if you have previously installed tests at the destination path that you have
given,dcetest_configwill warn you of this and give you the chance to go no further:

Figure 11-8. Previously Installed Tests
Locatiioon of IDCE Test |Imsteall | BBimariiees
1. il leesysteem
2. NWedisa

98. FRetwrm tm preevioous menu
99. Hexitt

seleectiioon: 1

Enteer ttthe fwilll ppatth too tthe DCE bimnany imnstzall | ttrrece.

Thiss wil ll| bbe trhe dirreectoony tthat ccontaaims thhe

.../ [<BULLD>fi imsttaall I/ /<mecthimetyype>/ddceteest/ /ddcel. 2.2

dirreectooryy:  /myproject/dce/mybuild/nb_ux/install/hp800/dcetest/dcel.2.2

Testss have preevioouslyy been imstaall leed i Jfwisir//dceteest
Do you want ttoo contiimue stooriing thhe teestss i tthe same loocatiicon (W) Yy

The final menu for functional test installation allows you to select one or all of the
functional suites for installation:

January 17, 1997 k=14



DCE Testing Guide

Figure 11-9. Installing Functional Tests
DCE Test |Imstaall laatiioon (F-unctiiconal TTestss) N#enu

el | Mirreectoony Serwiicce
isstrriibbuteed Fil lee  Serwiicce
@&hbobal Mirreectmny Serwiicce
ARemutee Proocedures Call |

Securiit tyy

Trhrecads

isstrriicbuteed Tinme Serwiicce
Adudit t

DCE Contrreol APraograam

DCE Host onfiigguraatiioon Serwer

©CONOOMWNPE

=
e

97. Ml oof ttthe above
98. FRetwrm tm preevioous menu
99. Hexitt

seleectiioon: 7
imstzall li inng teest/ ttiinme ......
imnstzall li inng teest/ /ssysteest/ /praofiil lee.ddcest ......
imstzall li inng teest/ /ssystieest//ddeeteest  confiigy ...

As was shown in the screen example abalegtest configwill install the tests at the
path you give it, and will create a softlink callédcetest/dcelocato that location. For
example, it would install the DTS functional tests at:

/dcetest/dcelocal/test/time/
where/dcetest/dcelocalis a link to the path:
lusr/dcetest
which you supplied as the install destination.

The advantage in usingcetest_configo install the functional tests is that it will install
all that is needed andnly what is needed out of the DCE build, thus avoiding the
mistakes that can occur with manual installation.

For instructions on how to run the installed functional tests, refer to the section on
functional testing in the appropriate component chapter of this guide.

11.1.4 Installing the DCESystem Tests with dcetest_config

Installing the DCE system tests is similar to functional test installation. From the Main
Menu, select “1":

Figure 11-10. Installing System Tests: Step 1

11-8 January 17, 1997



TET and DCE Testing

DCE Test &M Msnu

1. limsteall |
2. @onfiiggures

99. Hexitt
seleectiioon: 1
You will then be prompted for the location of the to-be-installed tests, as well as the

location you wish them to be installed at:

Figure 11-11. Installing System Tests: Step 2

Locatiioon of DCE Test |Imstaall| BBimariiees

1. il leesysteem
2. NWedisa

98. FRetwrm tm preevioous menu
99. Hexitt

seleectiioon: 1

Enteer ttthe fwilll ppatth too tthe DCE bimnany imnstzall | ttrrece.

Thiss wil ll| bbe trhe dirreectoony tthat ccontaaims thhe

.../ [<BULLD>fi imsttaall I/ /<mecthimetyype>/ddceteest/ /ddcel. 2.2
dirreectooryy:  /myproject/mybuild/nb_ux/install/hp800/dcetest/dcel.2.2

Enteer ttthe patth to tthe DCE Test ttrrece loocati ioon.

Thiss wil ll| bbe trhe dirreectoony thhat willl | cconteaimn all | ttthe teestss.
Plecase loocatee thiss diirreectoony somewheree otther ttthan thhe raot
parttiittiicon, iiff goossitblee. AA softtlliinnk /ddceteest//ddceloocal wi lll bbe mede
too thhiss lloocati ioon.

dirreectooryy:  /usr/dcetest

January 17, 1997 ki)



DCE Testing Guide

In the Test Installation Menu you can now select “2" to install the tests:

Figure 11-12. Installing System Tests: Step 3
DCE Test |Imsteell laatiicon Menu

1. Frunctiiconal TTestss
2. Systeem Testss
3. TTET

98. FRetwrm tm preevioous menu
99. Hexitt

seleectiioon: 2

You will then be shown the System Test Installation Menu, from which you can select
one or all of the system tests for installation:

Figure 11-13. Installing System Tests: Step 4
DCE Test |Imstaall laatiioon (Systeem Testss) MWenu

. Admim Testss

el | irreectoony Serwiicce
estrriibbuteed Fil lee  Serwiicce
@&hbobal Mirreectwny Serwiicce
ARRemutee Praocedure Call |
Securiit tyy

Trhreeads

estrriibbuteed Tinme Serwiicce
Adudit t

[1118N

SSerwiicceabil li it tyy

DaD

©CONOOMWNPE

B R
NP o

97. Ml oof ttthe above
98. FRetwrm tm preevioous menu
99. Hexitt

seleectiioon: 97

11-10 January 17, 1997



TET and DCE Testing

As dcetest_confignstalls the tests, it will display a series of messages updating you on
its progress:

Figure 11-14. Installing System Tests: Installation Messages

imstzall li inng  teest/ /ssysteest//cadmim ...

imnstzall li inng teest/ /tteet/ /ssysteemittir reectoonyylacds ...
imstzall li inng teest/ /ssysteest/ ffiil lee .....

imnstzall li inng  teest/ /ssysteest/ /dir reectaonylcpds ...
imnstzall li inng  teest/ /tteet/ /ssysteemifripe ...

imnstzall li inng teest/ tteet/ /ssysteemibsecuriittyy ...
imstzall li inng  teest/ /tteet/ /ssysteemittthrecads ...
imstzall li inng  teest/ /tteet/ /ssysteemitti inme ...

imnstzall li inng  teest/ /tteet/ /ssysteemibauditt . ...

imstzall li inng  teest/ /tteet/ /ssystteemil 118N ...

imnstzall li inng teest/ /tteet/ /ssysteemibsve ...

imstzall li inng  teest/ /tteet/ /ssysteemitticed .. ...

imstzall li inng  teest/ /tteet/ /ssysteemifproofiil lee.ccest. tteet ...
imnstzall li inng teest//ssystieest/ /dceteest _confiigy ...
imstzall li inng  teest/ /tteet/ /ssysteemittaoolss ...

imnstzall li inng teest/ /ssysteest/ /praofiil lee.ddcest ......

To install some subset of tests, simply select the appropriate choice in the System Test
Installation Menu instead of “97”, until you have installed all the tests you want.

January 17, 1997 Hi



DCE Testing Guide

11.1.5 Configuring for System Test with dcetest_config

The configuration step for system testing is mainly a matter of specifying where logs and
temporary files are to be created by the tests. Select “2” from the Main Menu:

Figure 11-15. Configuring for System Test
DCE Test NiEmn Msnu

1. limsteall |
2. @onfiiggures

99. Hexitt

seleectiioon: 2

You need tm speciffyy tthe dirreectooryy wheree tthe loogs wouldd be stooreed.
Plecase loocatee thhiss diirreectoony somewheree otther ttthan thhe raot
parttiittiicon, iiff goossitblee. AA softtlliinnk wouldd be estaabliissihed tm

poimt ttoo thhiss diirreectooryy frraom /ttceteest/ /deeloocal/ /sstaatus

Enteer dlirreectoony to stooree trhe loogs: /dcetest/dcelocal/results

Dirreectoory fcdceteest/ /ddeeloocal/ /rreesulttss does mot eexiisst. .. ...
Do you want iitt iitt ttao be crecateed (W) Yy

You need tw speciffyy tthe dirreectoorny wheree tthe teemoraany fiil lees
wouldd be stooreed.
Enteer dlirreectoony too stooree trhe teemmoraany fiiillees:  /usr/tmp
Plecase ensuree trhat //wsi//ttrmp iss periicodiccall lyy cllecaned.. ...
You will be prompted for the paths at which you want logfiles and temporary files to be

created. Note thaicetest_configwill create a soft link (calleddcetest/dcelocal/status
to the directory you specify.

11-12 January 17, 1997



TET and DCE Testing

At the end of this step, you will be returned to the Main Menu:

Figure 11-16. End of Configuration
DCE Test NiEmn Msnu

1. limsteall |
2. @onfiigguree

99. Hxitt
seleectiioon: 99

You have now completed the configuration step, and can exit flmetest_config

11.2 Using TET

The DCE system tests that are run under TET fall into two categories:
«+ Tests that are run directly by invoking TET itself

There is only one DCE system test in this category, namptysec.2 The user
invokes TET fcc), which runs thelcerpsecscript.

« Tests that are run by invoking mun.component_namsecript. The following table
shows these tests:

TABLE 11-1. DCE System Test Suites and TET Scenarios

Component | Test Suite Name Scenario Name

cds systest/directory/cds| cdsserv
dcecdsacl6
hclcfg001
hclrel001

118N systest/I18N IBNSANOO1
IBNSANO002

audit systest/audit audstr001
audrel001

svc systest/svc svcefg001
svccfg002
svccefg003
svccfg004

January 17, 1997 #13



DCE Testing Guide

Component | Test Suite Name Scenario Nam

11

svccefg005
svccfg006

dced systest/dced dcdrel001
dcdrel002
dcdrel003

rpc systest/rpc dcerpbnk
dcerpcrun
dcerpbnk_auth

security systest/security dceseacl
dceseact
dcesepol
dcesestr
dcesergy
digcfg001
eraobjo01
erarel001

threads systest/threads dceth002
dcethmut
dcethrpc
dcethrpc_auth

dts systest/time dcetmsyn

The following section gives a basic overview of TET operation. For more detailed
information consult the following documents:

« Test Environment Toolkit: Architectural, Functional, and Interface Specification
located at:
dce-root-dirdce/src/test/tet/doc/tet_spec.ps
« Test Environment Toolkit: Programmer’s Guide
located at:
dce-root-dirdce/src/test/tet/doc/tet_prog_guide.ps

Unformatted nroff source (using themm macro package) for each of the above
documents is also available in the directories in the

dce-root-dirdce/src/test/tet/doc
directory.

The following sections describe the use of TET to invoke the DCE system tests.

In the examples given, it is assumed that the tests are being run in a DCE cell that
contains at least three machines configured as follows:

machinel: CDS Server, Security Server, Local Time Server — NTP provider

machine2: CDS Client, Security Client, Local Time Server

11-14 January 17, 1997



TET and DCE Testing

machine3: CDS Client, Security Client, Local Time Server

11.2.1 Overview of TET Use

Following is the structure of tests within the TET environment:

test suite contains a related group of test cases. Test cases are
grouped together in scenarios.

testcase A testcase is an independent executable (a shell script or
compiled C program) which contains one or more test
purposes Test purposes are combined together into
invocable components within a testcase.

test purpose A test purpose is the component of the tests that report
PASS/FAIL results. Each test purpose is a shell of a C
function.

scenario A scenario is a collection of test cases that are executed

together. Scenarios are defined in tae scenfile at the
top of each test suite. Every test suite has an “all”
scenario that runs all test cases within a test suite.

invocable component An invocable component (IC) consists of one or more
test purposes. There can be one or more IC per testcase.
An IC is the smallest group of test purposes that can be
executed independently. ICs are defined in data
structures that are located inside of each testcase.

Before any test cases can be run you must defin@B#ie_ ROOT environment variable
as follows:

TET_ROOT=/dcetest/dcelocal/test/tet

TET_ROOT defines the location of all the test suites and support utilities. When
combined,TET_ROOT and the test suite name will define the location of the top of the
test suite.

To run a test suite that uses TET you usettttecommand in the following form:

tcc -e [optional_switchelstest_suitd scenarid
For the DCE system tests, theflag is required. It tellgcc to execute the specified test
suite.tcc has other modes that are not used by the DCE system tests.

There are many other switches that you may find useful, including:

-p tells tcc to print the name of each testcase as it executes it. This
is a good way to track the progress of the running tests.

-j filename tells tcc to write the journaled test results to the designated
filename

January 17, 1997 Hi5



DCE Testing Guide

-v variable=value Sets a TET variable to be used by the testcase. Default values for
TET variables are specified in thetexec.cfdfile located in the
top of the test suite. Values specified on the command line
override the values in thietexec.cfdfile. The variables that are
used by the specific test suites are documented in the sections
specific to each test suite.

For information on othetcc command line options, consult the TET specification.

test_suiteis the name of the test suite you wish to run. It also specifies the relative path
from TET_ROOT to the location of the test suite to be run.

scenariotells tcc which pieces of the test suite to run. If you do not specify a scenario,
the “all” scenario will be run. The scenarios for each test suite are defined in the
tet_scenfile at the top of the test suite tree.

When you rurtcc the first thing that it will report is the location of theurnal file. The
journal file contains the results of the test scenario run. Each line in a journal file starts
with a number code indicating the type of information appearing on that line. For
example, lines that contain result codes start with “220”. To get a quick view of the
results of a test run you can do the following:

grep 220" journal_file

—which will cause all the PASS/FAIL results from the journal file to be displayed. For
more details on possible errors and causes of failures you will have to read the details of
the results file.

Other important journal line codes are:
50 Identifies lines that contain test case execution error messagescfrom
200 Identifies lines marking the beginning of each test purpose.

220 Identifies lines marking the end of each test purpose and containing the result
from the test purpose.

520 Identifies lines that contain text printed by the test purpose.

11.2.2 Running DCE System Tests under TET

TET assumes when running DCE system tests that the following environment variables
have the following values:

TET_ROOT /dcetest/dcelocal/test/tet
This is the base directory for all tests which run under TET.
DCELOGDIR /dcetest/dcelocal/status
This is the base directory for DCE Functional and System test
output.
STTMPDIR tmp

11-16 January 17, 1997



TET and DCE Testing

This is the base directory for temporary files.

11.2.2.1 DCE System Tests that can be Invoked with “Run’” Scripts

The installed names of the scripts and tests that can be run fraim acript are as

follows:
« $TET_ROOT/system/directory/cds/bin/run.cds
dcecdsacl6 CDS ACL Manager Test (formerlgds.acl.§
cdsserv CDS Directory Service Stress Test (formeehys.server.4
« $TET_ROOT/system/directory/cds/bin/run.hcell
hclcfg001 Establishes intercell authentication with a list of cells using
rgy_edit.
hclrel001 Performs intercell testing to specified list of cells.
« $TET_ROOT/system/dced/ts/lib/run.dced
dcdrel001 dcedendpoint reliability test.
dcdrel002 dced server configuration and server execution service
reliability test.
dcdrel003 dcedhostdata, keytab, and ACL service reliability test.
« $TET_ROOT/system/rpc/bin/run.rpc
dcerpsec RPC-Security System Test
dcerpper RPC system test version of RR@rf functional tests
dcerpbnk RPC Object Registry, Threads, CDS, and Security Test
dcerpbnk_auth Authenticated RPC version dterpbnk
dcerpcrun RPC Stress Test (formerhpc.runtime.1)

« $TET_ROOT/system/security/bin/run.sec

dceseacl Registry Access Control List (ACL) and Stress Test

dceseact Tests Additions and Deletes in the Security Registry

dcesepol Security policy option test

dcesergy Security Registry Login and Administration Stress Test
(formerly sec.rgy.?

dcesestr Multiple-client Security Registry Stress Test

dlgcfg001 Delegation Configuration Test

dlgcfg002 Delegation Configuration Test

digstr001 Delegation Stress Test

January 17, 1997 Hv



DCE Testing Guide

eraobjo01 Extended Registry Attributes ACL Test
erarel001 Extended Registry Attributes Stress Test

« $TET_ROOT/system/audit/bin/run.aud
audstr001 Audit Service Stress Test
audrel001 Audit Service Reliability Test

« $TET_ROOT/system/threads/bin/run.thr
dceth002 Threads Creation Test
dcethmut Threads Creation and Mutex Exclusion Test
dcethrpc RPC Server and Client Threads Test
dcethrpc_auth RPC_ Server and Client Threads Test — authenticated

version

« $TET_ROOT/system/time/bin/run.time
dcetmsyn Test DTS Local Synchronization with DTS Servers
« $TET_ROOT/system/svc/bin/run.svc

svccfg001 Serviceability Confjuration Test 1
svccfg002 Serviceability Confjuration Test 2
svccfg003 Serviceability Confjuration Test 3
svccefg004 Serviceability Confjuration Test 4
svccfg005 Serviceability Confjuration Test 5
svccfg006 Serviceability Confjuration Test 6

11.2.3 Usingthe “Run” Scripts: An Example

Note: You mustbe using the Korn shellkéh) in order to run the DCE system
tests under TET, as described in this and the following sections.

To run DCE system tests which use TET and tha.component_namscripts, do the
following after installing the DCE systems tests and TET:

$ cd /dcetest/dcelocal/test/tet/system
$ . profile.dcest.tet # Set up System Test Environment
$ run.thr -1 2 dceth002 # Run dceth002 just as an example

The example shown above will run two iteration$ Z) of dceth002 creating some
output in and under the standard directory, e.qg.:
$DCELOGDIR/system/dceth002hostnamed31022124807

—wherehostnamas the name of the machine the test was invoked on, and the series of
concluding digits is a starting timestamp in the formygfnmddhhmms3herun script

11-18 January 17, 1997



TET and DCE Testing

you invoke will tell you the name of the directory to which it writes its output. The
contents of this directory will look something like the following:

$ Iss -lissFR $DOH OADRRKsysteemiticeth002. hostname®031022124807

tooteal 66
2 drvaarwaanwx 2 raot ssysteem H2 Oct 22 12:49 faail l//
2 drwaarwaanwx 2 raot ssysteem H2 Ot 22 12:/48 pass/
2 -mwHwWHW- - 11 raoot ssysteem R6 Ot 22 12:49 pass _faail |l loog

Iddcetesst/ /ddeeloocal/ /sstaatws/ssysteemitticetth002. hostnameé®31022124807ffzil | :
tootaal Q0

Iddcetesst/ /ddeeloocall /sstaatws/ssysteemitticetth002. hostnameé®31022124807/pass:
tooteal 44
4 -rrvHrwHW- - 11 raoot ssysteem 1276 Ot 22 12:448 joourmal. .000001

When therun.thr script was invoked, a directory was created for TET journal files for
the iterations of the test that passed, and another was created for any failed iterations.
Thepass_fail_logcontains a header, one status line for each iteration, and a trailer. The
contents of thgpass_fail_lodfile from the example above would look something like the
following:

COMMIND: rrun.ttrhr -1 22 deetrh002

PLATFORMt hostnamémsf11i3386)

TEST NAME dicetth002

STARTED AT: 110/22/93-112:448:007

NEWEST /@PT/ICH OCAL/BBING @t 21 23:%5
10/22/93-112:418:442 PASS pathname of journal file
10/22/93-112:419:45 PASS <joourmal. 000002 delectecd>
COMPLETED: 110/22/93-112:449:445

To view the results of the test, you would enter the following:
$ run_summary.ksh $DCELOGDIR/system/dceth00zhostname931022124807

—which will produce output something like the following (assuming that no errors
occurred during the test; if there were errors, they will be listed in the results as well):

hostnam@osf11i3386)dicetth002: pass = 2, ffaill = 0
"mun.ttrhr -1l 2 dcetth002" compecteed at 110/22/93-112:449:445
/oopt/ /dceloocal/ tbim complectes: @t 21 23:%5
Fail lwrees wnder //deeteest/ /deeloocal/ /ssteatuus/ssysteemiticeth002. hostnameé3102212480
None

For more information omun_summary.ksh see “Checking Test Results” later in this
chapter.

Finally, to clean up when you had finished evaluating the results, you would enter:

$ rm -r $DCELOGDIR/system/dceth002hostnameé031022124807

January 17, 1997 #19



DCE Testing Guide

11.2.4 Prerequisites folRunning System Tests Using the “Run” Scripts

11-20

Eachrun.component_namscript contains some test-specific option processing code of
its own and a call to the

$TET_ROOT/system/tools/run_loops.ksh

script, which is used in common by all threin scripts. run_loops.ksh controls test
iteration, checks test output for pass/fail, reports totals, and writes the test output to a
standard location.

Before running any of the DCE system tests, note the following.

The DCE System Tests should be run in a standalone (i.e., a non-production) cell. The
tests place a heavy load both on DCE and on the host machines, and they do so for many
hours or days. Such behavior is generally considered incompatible with a production
environment. Furthermore, the only automatic way to finish cleaning up after running the
DCE System Tests is to shut down the cell. All DCE credentials are deleted, and the
unusable memory which accumulates in the DCE servers when these tests run is
reclaimed.

The cell in which the tests are to be run must be created with the default cell
administrator namecgll_admin) and password-@ce-). This is necessary because these
names are hardcoded in the tests themselves. Such a configuration is obviously
inappropriate for a cell intended for general use.

For the DCE system tests runnable undar scripts, the following things must be true
before the tests can be successfully run:

« The /.rhosts or equivalent file on each machine in the test cell must include all
machines in the cell, since the DCE System Testsrabeor its equivalent to start
processes on other machines in the cell.

« All DCE System Test and TET software must have been installedckyest config
on all machines in the DCE System Test cell. For instructions on how to do this, see
“Installing TET and the DCE Functional and System Tests”, earlier in this chapter.

« The DCE System Testeequire the following environment variables to have the
following values:

TET_ROOT /dcetest/dcelocalltest/tet
STTMPDIR  /tmp

Note that this must be true @verysystem in the test cell. It is acceptable to achieve
arrange this via symbolic links. In any case, failure to do this will result in
unpredictable test behavior.

« A number of quotas and limits must be set and/or monitored in order to safely and
successfully run the DCE System Tests. All saatount-specific changes should be
done to the “root” account, which is the account from which DCE and all DCE
System Tests must be run.

« Substantial disk space is required to run the tests. The tests will fail and possibly
bring down both DCE and the system if the disks fill up. Disk usage varies greatly,
depending on test choice and run duration. Twenty megabytes of free space is

January 17, 1997



TET and DCE Testing

recommended as absolute minimunfor the disk holding the top-level directory for
DCE System Test output,

$DCELOGDIR/system

« Too little swap space is another potential problem. Some of the DCE servers grow
slowly as the DCE System Tests run. Again, the rate and degree of such behavior
depends on the platform used, which tests are run, and test run duration. Yous should
consult your platform's system manuals and tune your machines for heavy memory
usage, including allocating large swap files.

« Note that CPU time limits are a problem for DCE servers. Set “root” time limits to
unlimited.

« Make sure you are using the Korn shédll) and that you have sourced the
/dcetest/dcelocal/test/tet/system/profile.dcest.tet

file in your current shell before running any of the DCE System Tests. This will setup
the shell variables the tests need. The main variables defined are:

TET_ROOT /dcetest/dcelocal/test/tet
This is the base directory for all tests which run under TET.
DCELOGDIR /dcetest/dcelocal/status

This is the base directory for DCE Functional and System
test output.

STTMPDIR tmp
This is the directory for creation of temporary files.

Note: Note that sourcingprofile.dcest.tet clears the ENV environment
variable, thus affecting the behavior of all lower level Korn shell
invocations. This will be a problem for any site that attemptadoess
MANDATORY Korn shell definitions via th&NV variable.

There is no requirement that the machines in the system test cell have the “root”
accountdefault shell be the Korn shell (/bin/ksh). If the default shell is something
other tharksh, you need only invoke the Korn shell before sourgimgfile.dcest.tet

11.2.5 Standard DCE System Test Output Location

Each time you run a system test withiun script, a new directory will be created in the
“standard location”. The standard output location for the DCE System Tests is:

$DCELOGDIR/systemtestnaménostnameyymmddhhmmss
If DCELOGDIR is non-existent or empty, the default directory
/dcetest/dcelocal/status

will be used. No matter what directory name is specified BDEELOGDIR, the
run_loops.kshscript will appendsystemto it.

January 17, 1997 i1



DCE Testing Guide

11-22

Note that there is noun script option by whichDCELOGDIR can be specified or
overridden. You must either set the variable yourself to the desired pathname, or the

/dcetest/dcelocal/status
default directory must already exist when tlue script is invoked.
The final directory name

testnaméhostnameyymmddhhmmss

is designed to allow you to pick out a particular run by what you ran, where you ran it,
and when you started it. The fine granularity of this name enables you to direct the output
of multiple runs to a single collection point without worrying about name collisions.

Because all the normal output from one run of these tests is created under a single
directory, deleting the output of that run when you are finished with it is easily done with
a

rm -r dir_name

command.

The normal output of a test run is found in a structure of files underneath the standard
location. The directories and files found there are as follows:

+ pass
Directory containing results of passed iterations.
« passjournal. NNNNN
Pass journal files.
. fall
Directory containing results of failed iterations.
« fail/journal. NNNNN
Failure journal files.
« pass_fail_log
Log file of all test iterations, both passed and failed.

The journal files are TET format journalsSINNNN s a digit group that represents the
iteration number of the test whose results are recorded. You should refer to the TET
documentation for the details of the format of these files. In general, the format is that
each line has a TET-defined header before and between a vertical bar pair, followed by
the test- or TET-generated text. Test-generated messages start on the line labelled with a
“520” code. The following example shows part of the contents of a typical journal file;
the last two lines were generated by the test itself.

10| fitsslocds.sserwer. Mlccdsserw. ks 14:119:03|TTC Staartt,, sscenariioo reef 35-11
15|00 1.9 1[TTCM SKeartt

520[0 0 25874 1 1|SStearttiimng teest CDSSERV

400]0 1 1 14:119:06] ICC Szartt

200|0 1 14:119:006|TTP Startt

520|0 1 25874 1 2[TThe teest wi ll| eexecutee foor:: P00 sec.

January 17, 1997



TET and DCE Testing

520|0 1 25874 1 3|Executiimg im celll:: //.....//dce3_celll. qpadce.wsf. .corgy

The TET journal files are always created and written infdiledirectory and only moved

into the passdirectory if and when the test iteration has passed. At least one passed test
iteration will have its journal file saved, assuming that any iterations passed at all. All
journals from failed iterations are left in thail directory.

The pass_fail_log file is created by therun.component_namescript and has the
following format:

COMMMND: command invoking the run
PLATFORMt name of machine the test was run ¢platform typg
TEST NAME test name
STARTED AT: time stamp recording when the run was started
NBEWEST /@PT/ICH. OCAL/BBINN:  time stamp of when DCE was built
Pass/fail lines, one per iteration. Each line contains:

iteration completion timestamp

<tab>

PASS or FAIL keyword

<tab>

full journal file specification or delete message
COMPLETED: timestamp indicating when all iterations of run completed

The “COMPLETED?” line at the end of the file shows that the requested testing was run
to normal completion, whether successful or not; i.e. that the run did not hang.

Each of the tests sends test-specific output to standard output. However, since all these
tests ultimately run underun_loops.ksh the text sent to standard output is always
surrounded by a series of standard lines of information, as in the following example:

Staarttiilng DCETHO02 ittecraatiioon 1 at 0 seconds executeed, 111/112/93-114:37:22

joourmal ffiillee name iss:

Idceteest/ /deeloocal /ssteatuwis/ssysteemitticetrh002. hostnameén31112143719/ffeail I/ /j joourmal. .000001
Output from DCETHO002
Output from DCETHO002
Output from DCETHO002

PASSED, Tlest "'MCETHO02_C*: TTest rraan suiccesswll lyy.

Comqlecteed ittecraptiioon 1 swiccessfull ly at 118 seconds.

Jourmal ffiillee maved tm

Iddcetesst/ /ddeeloocal/ /sstaatws/ssysteemitticetth002. hostnameé031112143719/pass/] joourmal. .000001

Command “"rrwn.ttthr -1 11 dcetth002" complecteed at 111/112/93-114:B7:41

Alll iitteeratiiocons on DCOETHO02 complecteed wit tthout eerrraor!!

See symopsiss of iitteeratiioon staatws im

Idceteest/ /deeloocal/ /ssteatuwis/ssysteemitticetrh002. hostnameén31112143719/pass_faail |__loog
or wse $TET_ROONssysteemitoolss/rmun_summaryy.kksh foor mmaree innfaormati ioon.

There is a header and a trailer for each iteration of the test. Totals are output when all

iterations have completed. Other information includes the pass/fail status of each
iteration and of the test run as a whole.

January 17, 1997 P3



DCE Testing Guide

11.2.6 Command Line Options Common to Some or All of the “Run”

11-24

Scripts

The basicrun.component_namscript command line to invoke a DCE system test has
the following general form:

run.component_namel{loops |-t hours} [other_opts] test_ name [parameters]
Either the-I or -t flag is required, as is the test name. In DCE 1.1 the names alithe
scripts are as follows:

+ run.cds

. run.rpc

+ run.sec

« run.thr

+ run.time

« run.hcell

+ run.dced

+ run.aud

+ run.svc

The following command line options are common to some or all of the tests:

-h List test-specific options.

Causes the test-specific options for a test to be listedriothr , you must specify the

test name as an argument to this option. Note that there is no test-specific help for
run.time. However, all therun scripts give basic help messages if invoked with no
arguments.

-l number Number of external loops (iterations) to run.

-t hours Time allowed for external loops (iterations) to run.
-L number Number of internal loops to run.

-T hours Time allowed for internal loops to run.

The above four flags specify in various ways the number of times or hours that the test is
to be run. An iteration count is most useful for quickly checking the test, e.g. invoking a
test with something like “1 1” or “ -I 2” will allow you to quickly verify whether the

test is present, whether it runs, and so on.

For longer test runs it is more useful to specify a time rather than an iteration count; for
example ‘“t 60" for a Friday night-to Monday morning, 60 hour run. Theours
parameter may contain a decimal point; e.gt,1.5" is a valid specifier for a 90 minute

run. Note that theun scripts makenotime estimates. If at the conclusion of an iteration
only one second is left in a specified time interval, th script will start another

January 17, 1997



TET and DCE Testing

iteration of the test. Note also that then scripts make extensive use of the Korn shell
SECONDSvariable. You should not alter the tests in any way that affects this variable’s
value.

The -l and-t flags both controbxternaltest iterations, that is, loops in which the entire
test is repeated, including:

« TET invocation

« creation of a new journal file
« testinitialization

- invocation of the test itself

« cleanup

The-L and-T flags accept the same parametersl asd-t. For tests for which they are
available, they contrahternal test looping, in other words: the number of times the test
itself is executed within a single invocation of TET (including journal file creation and
cleanup). The-L and -T options are available for the followingun script/test
combinations:

run.cds cdsserv
run.rpc dcerpcrun
run.sec dcesergy

The -l and-t options are mutually exclusive, but either one or the other is required for
most tests. Thel and-T are likewise mutually exclusive, but for the tests listed above it
is acceptable to specify one internal loop contrdl or -T) along with the required
external iteration controkior -t).

-C Keep all journal files from successful iterations.

Normally, when a successful external iteration of the test is completed, the journal file is
deleted, and the only record of the iteration is a single linpass_fail_lognoting that
the iteration passed, when it completed, and jinatnal. NNNNNwas deleted.

There are three possible reasons why a journal file will not automatically be deleted:

« The test iteration failed, in which case the journal file is saved in fkié
subdirectory.

« The journal file was for the first successful iteration (usuglyrnal.00001).

« The-c option was specified, in which case all journal files are kept.

-e number Maximum number of consecutive errors allowed before quitting
(default is 50)
-E number Total number of errors allowed before quitting (default is 500)

There is seldom any useful information to be gained from the contents of a large number
of failure journal files. Moreover, some failure modes can result in a large number of test
executions occurring in a very short time, possibly filling up the disk. In order to prevent
this, upper limits on test failures are imposed by the scripts by default. You can use

January 17, 1997 1?5



DCE Testing Guide

the -e and -E flags to modify these limits. For example, a common expedient is to
specify “-e 1" which will cause the run to terminate as soon as one error is detected.

-m name(s) List of machine(s) for the test to use.
-M List of machine(s) to use should be read from <testhame>.data.

Several tests require one or more additional machines for execution, and thion is
used to specify that information. Using th@ option to specify the machine the test is
invoked on is legal but reduces the usefulness of the test. Both multiyperfamé
groups or a single ‘m namel . . . nameNare accepted.

The tests can also obtain the list of additional machines fromtésnamelata file
associated with each test. Thd flag is used to tell theun script that the absence of the

-m option for a test that requires it is not an error. The use of ¥eoption is
discouraged, because it requires changing files whenever different machines are needed
to run a test. Them and-M flags are mutually exclusive.

The tests that require a list of additional machines are the following:

run.sec dceseactdcesepo] dcesestr
run.rpc dcerpbnk, dcerpcrun, dcerpper
run.thr dcethrpc, dcethrpc_auth

11.2.7 External and Internal Looping

11-26

In general, test “looping” can be classified into external loops (iterations) and internal
loops. A somewhat confusing collection of common and test-specific options exists for
controlling looping of the system tests.

There is no “best way” to run the system tests with respect to the division between
internal and external loops. Tests that support internal loops and/or execution threads
have default count parameters, and the user is thus not required to specify them.
However, explicit biasing may be done. See “Command Line Options Common to Some
or All of the “Run” Scripts” for more information.

Biasing towards more internal loops makes the tests more efficient testers of DCE
because they spend less time in initializing and cleaning up. Furthermore, since many
tests set up accounts and such, running for an equal length of time with higher internal
bias creates fewer accounts and causes the servers to grow less.

Biasing towards a greater proportional number of external iterations affords TET more
opportunities to indicate test success or failure, which is usually desirable in long runs.
However, if the bias on internal looping is too large, there is a risk of the test's
credentials expiring. And, too, failures sometimes occur that affect several system tests at
once. Having too large a time granularity as a result of high internal bias makes it
difficult to correlate such failures. Thus keeping the internal loop time down is desirable
even though this adds to test overhead.

January 17, 1997



TET and DCE Testing

It is still desirable to avoid the extreme case where the test is biased completely
internally, for example as the following run would be:

run.cds -l 1 -T 48 cdsserv

The above command specifies that one external iteratiocds$éervbe run with a 48
hour internal duration. No matter what goes wrong during this run, there will only be a
single failure from TET as a record of it., and there will be a rather large journal file to
evaluate. A more balanced approach would be to run the test as follows:

run.cds -t 48 -T .25 cdsserv

—that is, with 48 hours’ worth of 15 minute runs.

There is also the question of how to increase the load on DCE during a system test run.
Increasing the internal loop bias increases the actual DCE work done per test executed,
but that approach suffers from diminishing returns. Running more tests simultaneously
on different machines in the test cell is the right way to make the servers busier.

Note: The DCE 1.1 system tests were known to have mutual interference
problems within a cell, causing test (not DCE) failures. These failures were
due to name collisions both in the filespace and in the DCE naswesp

The possibility of interference should be considered when planning
simultaneous DCE system test runs. Interference of some tests with
themselves has been noted where two or more copies of the test were run
simultaneously on the same machine or even in the same cell. However,
interference has not been noted with multiple, different tests run
simultaneously on different machines, one test per machine.

Using DCE DFS or NFS to create common areas for the DCE system tests
to use, especially directories for temporary files, makes the interference
problem significantly worse. However, the standard output location
provided by theun scripts is &known safexception.

11.2.7.1 Checking Test Results

A reporting script has been provided that produces a summary of all the DCE system test
run output collected in a single directory tree. To run it, enter:

run_summary.kshdirectory

run_summary.kshdoes a
find directory -name pass_fail_log

to find all the DCE system test run records undéectory, and then summarizes and
displays the results, including any journal file error messages from iteration(s) that failed,
if any.

January 17, 1997 r7



DCE Testing Guide

Following is an example of the output, showing in this case the error messages from one
iteration (out of 2569 total) oficethrpc. The test was run on an HP/UX platform named
“dce3”, and the machines “dce5” and “west” were also used:

dce2(thpux) dicetrhnpc: pass = 2568, ffaill = 1
"mun.ttrhr --tt448 -m west --m dbeb dcetthnpc” complecteed at 111/110/93-114:118:444
/oopt/ /dceloocal/ tbim compectes: NNov 4 21:115
Fail lwrees wnder //deetesst/ /deeloocal/ /ssteatwis/ssysteemiticetthnpe.ddce2.931108141817
Theree weree 6 ERRORS and/cor FFAILLurees tootaal iimn
tthe 1 faail leed ittecraatiioons. HHeree’ss thhe brecakdlown:
- CE ERROR
- ERROR Copyinng thhd_serwer ttao west: :/ttmp faail leed
- ERROR ddcetthnpe thhrecads teest ffaail leed
- ERRORMail leed tmo staartt ttthd serwer on dceb
Exittiinng thhe teest ddue tm faail lwree im check serwers
Exittiinng thhe teest ddue tomo faail luree im kil lll__serwers

PR R RRR

The error messages (identified by the case-insensitive keywords “error” or “fail”’) from
journal files of failed tests are collected and sorted, duplicate messages are counted and
eliminated, and each unique error message is reported. This simple summary can tell
you a lot about whether the same or different errors were occurring during a run, and you
can learn something of the nature of the errors as well.

You can do a
run_summary.kshdirectory

while the test is running; in this case you will seedidd NOT comglectee! ” message in
the command output.

To collect the output from different test runs under a single directory, define
DCELOGDIR for each test process before running the test.

See also “Performing a Quick Check of DCE on a Machine” later in this chapter for
information on monitoring DCE status during DCE system test runs.

11.3 System Test Tools

This section describes the tool set developed to support the DCE System Test. These
tools are generalized enough for system vendors to use them when developing their own
test suites.

11.3.1 Performing a Quick Check of DCE on a Machine

dce.psis a script that provideps (process status) data only for the configured DCE
processes that are supposed to be running on the machine it is executed on. It will

11-28 January 17, 1997



TET and DCE Testing

identify any missing configured processes and any unconfigured processes. If everything
seems in orderdce.pswill go on to attempt to derive the cell name from a CDS
clearinghouse name viadscp If that works,dce.pswill report the cell name, and you

can be reasonably sure that the cell is running.

dce.psreturns a 0 (success) status code only if it successfully completes all its checks;
otherwise it returns a non-zero code. It provideps'-style output for the DCE
processes and helpful messages for the user as well. An attempt has been made to
standardize thece.pss process status output across platforms. Following is an example

of its output:

$ $TET_ROOT/system/tools/dce.ps

The foll loowing DCE congonentss aree rwunnimg on “"dice2"..
PID STINVE  TINVIE COMMEND
17075 10:118:05 0:115 rpcd
17194 10:118:554 0:28 secd -tbootsstrraap
18689 10:31:113 0:(03 dtss_ntp pravidder --th papertboy -p 600 -ii 330
17654 10:21:550 0:3B2 cdsd -:
18529 10:330:119 0:119 dtssd
18556 10:330:29 0:000 dtsstiinmed
17625 10:21:40 0:03 cdsadv
18481 10:3B0:06 0:006 sec cliieentdd
DCE on "dice2" seems too be running as confiiggureed.
Confiiggureed: ditss ntp_proovidder ditsstiinmed dtssd cdisd cdsadv sec cliieentdd secd rpcd
CDSCP says "dice2" iiss reespondimg imn trhe celll ™//...../Imy cell I'"..

$ echo $?
0

Note that if you have sourceagrofile.dcest.tetin your current or ancestor shell then the

proper path exists iPATH, and you need only typdce.ps Note also thatice.pswill
give incorrect results whildcedsystem tests are being run.

11.3.2 TET Tools

The following sections describe several utilities that have proven useful in integrating
tests with TET.

11.3.2.1 tet_setup

tet_setup is a utility used by various DCE tests run under TET. When invoked, it
executes (as root, amdte logird as the machine machine principal (\m for example,

hosts/foobar/self a program specified to it. The program is typically a TET-run test;
executing it viatet_setup allows it to assume the principal identities necessary to test

January 17, 1997 P9



DCE Testing Guide

desired ACLs.

Itis invoked as follows:

tet_setupprogram[args. . . |

where:
program is the name of the program to be executed
args are the arguments, if any, to be passed to the program to be executed

For an example afet_setup use, see the contents of
dce-root-dirdce/src/test/admin/dcecp/ts/secval/secval_ctam.tcl
or:
dce-root-difdce/src/test/admin/dcecp/ts/secval/secval_setup.tcl
tet_setupis installed in:
dce-root-dirdce/installplatform/dcetest/dce1.2.2/test/tet/tools
Its source is located in:

dce-root-dirdce/src/test/tools

11.3.2.2 TET Utility Routines

Source for various miscellaneous TET utility routines is located in:
dce-root-difdce/src/test/lib/libdcetst

The utilities are built into a librar{ibdcetst.awhich is placed in:
dce-root-dirdce/exportplatform/usr/lib

when DCE is built. Following are brief descriptions of the routines.
« extern inttst_tet_printf(const char *format, ...)

Sends the contents of@intf() to the TET journal file. Allows a tester to use the
different format directives accepted kyrintf() when sending a message to the
journal file tet_infoline() by itself does not allow this). If successful, a 0 is returned;
otherwise, a non-zero value is returned.

« extern void tst_dce_login(char user, char *passworderror_status_t *statug

Attempts adce_login as the specified principal. If successffror_status ok is
returned; otherwise, a hon-zero value is returned.

« extern int tst_chk _command(char *commangpid_t * pid)

Checks whether the specified command is in the process table: if it is, a 0 is returned;
otherwise, a non-zero value is returned.

« extern inttst_chk_process(pid_t Pid)

11-30 January 17, 1997



TET and DCE Testing

Checks whether the specifigald is in the process table: if it is, a 0 is returned;
otherwise, a non-zero value is returned.

11.3.3 Multi-Vendor Test Case Development Tools

The test cases have been designed to be easily ported to other flavors of the UNIX
operating system. This is aided by a suite of tools which are considered multi-vendor
because they are aware of the flavor of UNIX which they are running under and adjust
their nature of operatioaccordingly.

A good example of the types of porting problems you may encounter is the use g the
command. If a test case needed to determine the process identification (PID) of some
daemon process, it would search the output of psecommand for the name of the
daemon in question and extract its PID. Tpgecommand has a different syntax for the
BSD and System V flavors of UNIX. For example, BSD UNIX syntaxps -ax while
System V syntax igps -ef The test case needs to be aware of the type of system it is
executing under in order to be able to choose the proper syntax. The problem grows very
quickly. A test case needs a special case for each difference of each flavor of UNIX. Not
only can this cause the test cases to be hard to port and maintain, but the readability and
modularity of the code can suffer as well. For example, the test case would need a large
casestatement to handle the various syntaxes of the same command offered on the
different flavors of UNIX. Maintaining every instance of the command’s usage in every
test case is time-consuming and costly.

The object of the multi-vendor tools is to abstract the differences of the flavors of UNIX
into a set of commands. The commands determine the type of operating system
automatically, if they have been ported to a particular flavor. Once the type of operation
system is known, it is easy to use the correct syntax of the command.

The tools currently support the following operating systems:
+ AIX3.24
« OSF/1 1.2 (on DECpc 450ST)
« HP/UX9.0.1
« SINIX 5.41 (SVR4 on MX300i)

To port the tools to another operating system, you need to begin witexiimachinfo
command. In the system test environment, this command is executed by:

systest-rodprofile.dcest
or
/dcetest/dcelocal/test/tet/system/profile.dcest.tet

It creates the environment variables necessary for the other commands to determine
under what operating system they are executing.

The following commands are referred to as the core set, and since they use the
information created by thexpmachinfocommand, they may also need to be ported:

January 17, 1997 B1



DCE Testing Guide

chkproc Returns 0 if a process exists and 1 if it does not.

getproc Returns the process id (PID) of a given process.

The rest of the commands increase the usability of the core set. They are as follows:
killproc Kills processes that match the given strings.

rshsp Enhances the usability akh by sourcing a file of environment
variables before running the command on the remote machine and
by returning the return code of the remote command.

All the commands are located in the
/dcetest/dcelocal/test/tet/system/tools

directory.

11.3.4 Test Case Logging Fadators for System Tests Not under TET

The tools in this section were developed to support faster analysis of scenario
executions. They provide standard mechanisms for logging results, and several tools for
examining the status.

11.3.4.1 Logging Results

The tools that are used to log results print the message you provide, with a header
attached to the front to indicate what has occurred (success, failure, etc.). The message is
printed to stdout and to the file whose name is stored in the environment variable
JOURNAL (see the “Test Logging During Iterations” and “Test Logging After
Iterations” sections earlier in this chapter). This allows testers to watch the progress of
tests scroll by on the screen while also recording the results in a permanent file.

These tests are divided into two groups: tests used by testcases and tests used by testcase
drivers. The following commands should be used within testcases:

xx_log Records something that worked successfully (or adds comments
to the journal file).

XX_warning Records something that may not have been an actual error but
should be examined.

XX_error Records something that did not work successfully (but the
testcase will continue to execute).

XX_severe Records something that failed and was so important that the
testcase should not continue to execute.

These commands are available from the command level (through shell scripts), and at the
API level through a library calletlbxx_.a. The scripts are installed and the library built
via:

11-32 January 17, 1997



TET and DCE Testing

dce-root-dirdce/src/test/systest/tools/Makefile

The following commands should be used only by testcase drivers:

xX_begin Marks the beginning of an iteration of a testcase.

XX_pass Indicates that a testcase iteration has completedessfully.
xx_fail Indicates that a testcase iteration has completed with errors.
XX_example Checks journal files for errors.

These commands are available only at the command level, not at the APl level.

11.3.5 Execution Tools

You can use the following tools to set up and execute System Test scenarios:

test/tet/system/profile.dcest.teDefines all the necessary environment variables used by
the DCE system tests run under TET.

test/systest/profile.dcesbefines all the necessary environment variables used by all
DCE system tests not run under TET.

11.3.6 Miscellaneous Tools

The following tools are also available:

gdskill Deactivates a directory system installation of GDS, then deletes
the configuration data.

gdsSetup Sets up GDS on a system, based on the contents of a
configuration file. See the contents of ipgs_xds_str_001.data
file for more information.

worldSetup Sets up GDS on a system, based on the contents of a
configuration file. See “Running the dcegdshd Driver” in
Chapter 13 for more information.

su.dce Provides DCE authentication and accepts passwords on the
command line. This program should be ownedrbgt and have
the setuid bit set.

rcheck Checks a return code value against an expected value.

January 17, 1997 B3



Chapter 12. DCE System Tests under TET

The following subsections list the test-specific options and descriptions of the DCE
system tests that have been converted to run under TET amdrttentrol scripts.

All of these tests are run using the command format and common options described
above, and produce TET journal file asidiout output also as described above.

It should be noted that some tests are intended to generate errors. Some of the resulting
error messages appear in the standard output and may appear to be test errors, although
they are not. The test journal files are always the final authority as to whether a test
passed or failed.

The following subsections also contain information about the tests’ associated “data”
scripts. These data scripts contain variables and default values for: internal loop counts;
thread counts; protocols; organization, group, and principal names; passwords; directory
and file names; test data; file sizes; wait times; and other, more esoteric runtime
parameters.

Some data script variables have test-specific command line options associated with them;
it is recommended that you use the command line options to change the value of such
variables at run time. If you wish to change variables that are not accessible from the

command line, you should consult the test and data scripts for information.

Note: All DCE system test verification was done with the default values for all
data file variables which are not alterable by command line option. It is left
entirely to the user to resolve problems arising from alteration of variables
not accessible from the command line.

12.1 Threads

The following sections describe the DCE Threads system tests run under TET.

January 17, 1997 2



DCE Testing Guide

12.1.1 dcethcac

Tests how many threads will co-habitate in an operating system by caching a user-
specified number of threads and yields (calls). The test may be used for stress testing by
specifying a large number of threads (via tNRMBER_OF THREADS environment
variable).

The test is invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
set TET_ROOT="'pwd’

set PATH=$TET_ROOT/../teket/bin:$PATH

tce -e -jjournal_path-vRUN_TIME=.1 threads dcethcac

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to ttheeads directory) for

the test results journal file.

-VRUN_TIME=0.25 Sets theRUN_TIME environment variable, which specifies the
number of hours the test should run.

threads Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

dcethcac Specifies the name of the test (TET scenario) to be run.

12.1.2 dceth002

dceth002is designed to exercise the threads-creation capability. It claéth002_¢
creating a number of threads in each of a number of processes. The threads then loop
and perform some simple computations.

Test Script: $TET_ROOT/threads/ts/dceth002/dceth002
To rundceth002 do the following:
1. Set (if desired) the following environment variables:

NUMBER_OF_THREADS
Specifies the number of threads to create in each process. Default
is 40.

PROCESSES Specifies the number of processes to run. Default is 4.

2. Invoke the test as follows:

12-2 January 17, 1997



DCE System Tests under TET

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tcc -e -jjournal_path-i intermediate_results_pathreads dceth002

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thtareads

directory) for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to thtareads
directory) for the intermediate test results file.

threads Specifies the *“test suite” name, equivalent to the
component subdirectory of the test to be run.

dceth002 Specifies the name of the test (TET scenario) to be run.

This test can be used for stress testing by specifying a large number of threads and a
large number of processes.

12.1.3 dcethmut

dcethmut is designed to exercise the threads-creation capability and the use of mutual
exclusion primitives. It runs a number of copiesdifethmut_cin separate processes,
each creating a number of threads which lock and unlock the same mutex repeatedly.

Test Script: $TET_ROOT/threads/ts/dcethmut/dcethmut
To rundcethmut, do the following:
1. Set (if desired) the following environment variables:

NUMBER_OF_THREADS
Specifies the number of threads to create in each process. Default
is 40.

PROCESSES Specifies the number of processes to run. Default is 4.
2. Invoke the test as follows:
cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -jjournal_path-i intermediate_results_pathreads dcethmut

January 17, 1997 3



DCE Testing Guide

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thtareads

directory) for the test results journal file.

-i intermediate_results_path

threads

dcethmut

12.1.4 dcethrpc

12-4

Specifies a file pathname (relative to thtareads
directory) for the intermediate test results file.

Specifies the *“test suite” name, equivalent to the
component subdirectory of the test to be run.

Specifies the name of the test (TET scenario) to be run.

dcethrpc tests RPC servers’ and clients’ ability to spawn multiple threads. It primarily
tests the DCE Threads and RPC components but can also use the Security component.

Test Script:  $TET_ROOT/threads/ts/dcethrpc/dcethrpc

Sets the following values:

THREAD_EXEC

Specifies a pathname for executing the threads. Its value should be
“$TET_ROOT/threads/ts/dcethrpc’.

PROTOCOL

Specifies the protocol sequence to usencddg ip_udp
(connectionless, the default) orntacn_ip_tcp’ (connection-
oriented). This option is useful for testing all the protocols DCE
supports.

NUMBER_OF_THREADS
Specifies number of threads to create (default: 100).
CHUNK_SIZE

Specifies the size of the portion of array that is read by the server.
The default is 100.

MAX_CALLS

Specifies the maximum number of calls the server can handle
concurrently. The default is 5.

RPC_MACHINES

January 17, 1997



DCE System Tests under TET

Specifies machines to use for servers. For exampbsfl‘ osf2 osf3
0sf4 osf3.

The test is invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tcc -e -jjournal_path-i intermediate_results_pathreads dcethrpc

where:

platform

-e

-j journal_path

Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AlX).

Specifies to run the test.

Specifies a file pathname (relative to ttheeads directory) for
the test results journal file.

-i intermediate_results_path

threads

dcethrpc

Specifies a file pathname (relative to ttheeads directory) for
the intermediate test results file.

Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

Specifies the name of the test (TET scenario) to be run.

This test can be used for stress testing by specifying a large number of threads to create
(note that the number of threads that can be created is dependent on the memory capacity
of the machine), setting a large chunk size, or by specifying many machines wiinthe

option.

dcethrpc_authis simply a variant of the normal, unauthenticated runninglagthrpc,
so it supports all thedcethrpc and run options, as well as the following additional

options:

-A number

-V number

-Z number

-N

-p principal_name

January 17, 1997

Specifies the authentication level (Default: 0. 0 maps to default
level.)

Specifies the authentication service (Default: 1. 1 maps to
private key authentication.)

Specifies the authorization service (Default: 2. 2 maps to DCE
PAC authorization.)

Specifies unauthenticated RPC; overrides -A, -V and -Z
flags.

Specifies the account to authenticate with. This account must
already exist in the security registry, and its password must be
identical to its name. Moreover, the name must be registered
locally on each machine you want to target with the option.

Use the followingrgy_edit command on each target machine to
register the name locally and to verify that the name was
registered locally with th&tlist command:

3



DCE Testing Guide

ktadd -p principal_name-pw principal_name

You must set the above options for the client and server by setting the
CLIENT_PARMS andSERVER_PARMS environment variables to the desired option
values. Once this has been dodeethrpc will run asdcethrpc_authwhen executed.

Note: The account added fatcethrpc_auth must have a password identical to
its hame. However, it is a severe security breach to leaveati®unt
extant after running the test. Make sure that you delete the account when
you have completed running this test.

12.2 RPC

The following sections describe the DCE RPC system tests that are run under TET.

12.2.1 dcerpary

12-6

dcerpary is designed to test the ability of the RPC runtime to transmit arrays of arrays
and arrays of pointers structures.

Refer to the comments in
dcel.2.2-root-difdce/src/test/systest/rpc/ary_client.c
and
dcel.2.2-root-difdce/src/test/systest/rpc/ary_server.c
for full details on how this testing isccomplished.

Note that onlyoneary_server process can run on a single machine, because the process
listens on a well known port.

The test is invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tcc -e -vRUNNING_TIME=.01 rpc dcerpary

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to ttpe directory) for the

test results journal file.

January 17, 1997



DCE System Tests under TET

-VRUNNING_TIME=0.01
Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

rpc Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

dcerpary Specifies the name of the test (TET scenario) to be run.

12.2.2 dcerpidl

This test runs a selected number of DCE IDL tests. The idea is to run the tests between
machines that have different endian representations.

However, note that the test programs are compiled only through ODE (that is, when DCE
is built), not on the fly.

Also note that th&lcerpidl tests run only on similar HP-UX machines.

The tests are invoked as follows:
cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd
setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tce -e -jjournal_path-vRUNNING_TIME=0.25 rpc d cerpidll
tce -e -jjournal_path-vRUNNING_TIME=0.30 rpc d cerpidl2
tce -e -jjournal_path-vRUNNING_TIME=0.30 rpc d cerpidl3

tce -e -jjournal_path-vRUNNING_TIME=0.30 rpc d cerpidl4

tce -e -jjournal_path-vRUNNING_TIME=0.30 rpc d cerpidl5

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to ttpe directory) for the

test results journal file.

-VRUNNING_TIME=0. nn
Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

rpc Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

January 17, 1997 7



DCE Testing Guide

dcerpidin Specifies the name of the test (TET scenario) to be run.

12.2.3 dcerprec

This test is designed to test the ability of the RPC library to handle heavy stress loads.
The test is in two sections: a server side and a client side.

The client reads a file locally and remotely, and then compares the buffers to verify that
the identical information was read both locally and remotely.

The server offsets into the file the required amount of bytes, reads the specified amount
of bytes from that point, and passes this buffer back to the client.

Note: The stress levels of this test are low.

The test is invoked as follows:
cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -jjournal_file-vRUNNING_TIME=.50 rpc dcerprec

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to ttpe directory) for the

test results journal file.

-VRUNNING_TIME=0.50
Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

rpc Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

dcerprec Specifies the name of the test (TET scenario) to be run.

12.2.4 dcerpbnk

12-8

The dcerpbnk DCE System Test is a small scale simulation of a banking operation. It
tests most aspects of DCE and resembles an actual application.

dcerpbnk tests the RPC component (in particular the Object Registry table and Interface
Registry table), as well as the Threads, CDS and Security components.

January 17, 1997



DCE System Tests under TET

Test Script: $TET_ROOT/rpc/ts/dcerpbnk/dcerpbnk

dcerpbnk is invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tce -e -jjournal_path-vRUNNING_TIME=0.25 rpc d cerpbnk

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to ttpe directory) for the

test results journal file.

-VRUNNING_TIME=0.25
Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

rpc Specifies the “test suite” name.

dcerpbnk Specifies the name of the test (TET scenario) to be run.

12.2.4.1 Running @erpbnk_auth

dcerpbnk_authis simply an authenticated variant of the unauthenticdteatpbnk.
The following additional setup is required before running the test:
1. dce_loginas the Cell Administratorcgll_admin).

2. Invokergy_edit and add the test principal as follows:

$ rgy_edit

=> domain principal

=> add bankd

=> domain account

=> add bankd -g none -0 none -pwpasswordmp -dce
=> ktadd -p bankd -pw password

=> quit

The test itself is invoked as follows:
cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tce -e -jjournal_path-vRUNNING_TIME=0.25 rpc d cerpbnk_auth

January 17, 1997 2



DCE Testing Guide

where:

platform

-e

-j journal_path

Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AlX).

Specifies to run the test.

Specifies a file pathname (relative to ttpe directory) for the
test results journal file.

-VRUNNING_TIME=0.25

rpc

dcerpbnk_auth

Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

Specifies the name of the test (TET scenario) to be run.

12.2.5 RPC Runtime Stress Test

12-10

This test first determines the platform’'s maximum number of concurrent multiple client
calls allowed to a server, and then repeatedly transmits an array of structures of ten
members back and forth between its clients and server.

Test Script:
Data Script:

$TET_ROOT/rpc/ts/rpc.runtime.1l/dcerpcrun
$TET_ROOT/rpc/ts/rpc.runtime.1l/dcerpcrun.data

dcerpcrun is invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tce -e -jjournal_path-vNMIN=15 rpc d cerpcrun

where:

platform

-e

-j journal_path

-VNMIN=15

rpc

Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AlX).

Specifies to run the test.

Specifies a file pathname (relative to ttpe directory) for the
test results journal file.

Sets the NMIN environment variable, which specifies the
number of minutes the test should run.

Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

January 17, 1997



DCE System Tests under TET

dcerpcrun Specifies the name of the test (TET scenario) to be run.

12.2.5.1 Description of dcerpcrun

Thedcerpcrun system test is a low level test of the DCE RPC runtime. It is designed to
perform load-testing on RPC at the same time as other DCE system tests are exercising
DCE upper layer functions (for example, in Security or COfg8erpcrun is derived from

RPC functional tests, and thus does not itself exercise this upper layer functionality. The
test contains the following enhancements over the functional test version:

- The test executes multi-threaded client calls to one server acierf

« A structure of 10 numbers is built into an array of 1000 elements and piped to and
sent back from the server. Error checking is performed on both sides of the bi-
directional pipe.

12.2.6 RPC-Security System Test

The rpc.sec.2system test is designed to stress the RPC and Security components of
DCE.

The Security component is stressed via frequent identity updates and validations, and the
RPC component is stressed via continuous RPC requests by multiple clients using full
authentication and a complex data type (a conformant structure). The client side test
code defaults to making calls as fast as possible so as to put as much load as possible on
the server.

This test can also be used for performance testing of authenticated RPC, though this is
not its default behavior. Note that an attempt has been made in the coding of this test to
observe good programming practice from the DCE point of view.

In outline, the test operates as follows:

1. The test first determines the implementation’'s maximum number of concurrent
calls for multiple clients to a server, using the highest level of authentication
offered by the runtime library rfc_c_protect level pkt privacy), and
transmitting structures with conformant array members. The concurrent call
maximum will be sensed by the receipt of the RPC stapgs s_server_too_busy
(if the client is using a connection-oriented protocol)rpc_s_comm_failure (if
the client is using a connectionless protocol).

2. Following the determination of the call maximum, the test is run in a loop after a
reset of the registry server ticket lifespan to five minutes for the test client and
server principals in order to validate ticket renewal operations near the maximum
call rate.

January 17, 1997 11



DCE Testing Guide

12.2.6.1 Logic Flow of the RPC-Security System Test

12-12

dcerpseg the script invoked by TET, callgpc.sec.2_setup.shndrpc.sec.2_runtest.sh

In outline, the operation apc.sec.2_setup.sks as follows:

1.
2.

Checks to make sure that the user has a valid identitglasadmin.

Checks to make sure that all of the variables used by the setup script are assigned
values in the configuration file.

Creates the client and server principals.

Creates the client and server accounts and keytab files. If the path to the keytab file
does not exist, the script attempts to create it. Note that you will be prompted for
the cell_admin password twice during this part of the setup.

Creates the CDS directory into which the server interface entry will be exported.

Attempts to create a client keytab file on any systems named in the configuration
file as client machines in the test.

Attempts to create a server keytab file on any systems named in the configuration
file as server machines in the test.

January 17, 1997



DCE System Tests under TET

TABLE 12-1. Objects Created by the rpc.sec.2 System Test

DCE Object Variable in Default value
Needed config file as shipped

Server principal and RPCSEC2_SRV_PRINC_NAME rpc.sec.2_srv
account

Client principal and | RPCSEC2_CLI_PRINC_NAME rpc.sec.2_cli
account

Group for the RPCSEC2_SRV_GROUP_NAME subsys/systest/cds_test
server test

Server key file RPCSEC2_SRV_KEYTAB_FN rpc.sec.2_srv.keytab
Server key file RPCSEC2_CLI_KEYTAB_DIRPATH Itmp

directory

Client key file RPCSEC2_CLI_KEYTAB_FN rpc.sec.2_cli.keytab
Client key file RPCSEC2_CLI_KEYTAB_DIRPATH | /tmp

directory

CDS directory for RPCSEC2_SRV_CDS_NAME [.:Itest/systest/srv_ifs
server interface

object

Configuration file RPCSEC2_CONF rpc.sec.2.conf

with test defaults

and parameters

Logic Flow of “rpc.sec.2_runtest.sh”

1. Reads the default configuration filgpc.sec.2.conf or specified by the
RPCSEC2_CONF environment variable (if it was not specified with the
option).

Parses the command line options.
Determines the number of UDP and TCP clients to be run.

Reports to the user on the parameters that will be used for the run, describing the
number of UDP and TCP clients, total clients, machines involved, the status of
various flags, the duration of the run, where log files will be kept, and so on. In
this way the parameters are recorded for later reference.

5. Builds a list of the clients to run.

6. Verifies the presence on each client machine of: a client binary, the configuration
file, and a keytab file; and then starts the client(s) specified for that machine.

Waits a specified duration of time for the clients to start.

8. Verifies that all clients are started and ready to make remote calls. If all clients
are not ready, and thd[gnore] option has not been specified, then a message
detailing the failures is output, all clients are killed, and the script exits.

January 17, 1997 13



DCE Testing Guide

9.

10.

11.

Creates the synchronization file (i.e., the file for whose creation each client has
been waiting as its cue to begin operations) on all the client machines to signal
the clients to begin making RPCs to the server.

Boundary mode on)yWaits a specified amount of time for the clients to make
their single RPCs.

Boundary mode on)yParses the logs from the clients’ runs and outputs a report
that describes in detail: the number of clients run; how many of each type (UDP
or TCP) failed or passed, etc; and a declaration of whether the test as a whole
passed or failed.

12.2.6.2 Logic Flow of the RPC-Security System Test

As is possible with any program, this test evolved over its development. A description of
the post-implementation state of the test follows:

Server side

The server side of thepc.sec.2 system testrpc.sec.2_sry performs the following

operations:

1. Reads the configuration file and parses the command line options.

2. Assumes its own identity.

3. Looks for an entry in the CDS namespace for the interface it is to export.

4. Obtains binding handles from the endpoint mapper.

5. Exports its bindings and a UUID to the CDS namespace entry for the interface
(unless a UUID is already present in the entry, in which case the existing UUID is
used).

6. Starts a timer thread to automatically refresh the server's identity at the ticket
lifetime’s halfway point.

7. Starts a thread to catch and handle signals.

8. (If compiled with-DRPCSEC2_SRV_REPORTING Starts a report thread to
periodically generate reports of calls accepted, calls parsed, and calls failed.

9. Services requests for thepcsec2_cnf _str RPC. In doing so it performs
authorization based on client name, authorization service, authentication service,
and protection level specified by binding handles in incoming RPCs. The incoming
calls must specify the correct client and server name, DES authentication, DCE
default authorization, and protection level.

Client side

12-14

January 17, 1997



DCE System Tests under TET

The client side of therpc.sec.2 system test rpc.sec.2_clj performs the following
operations:

1. Reads the configuration file and parses the command line options.
Assumes its own identity.
Spawns a thread to maintain its identity.

Spawns a thread to catch and handle signals.

o M DN

If the run was specified to be for a duration of time, spawns a thread to generate
reports at specified intervals.

o

Builds the structure to be passed to the server.

7. Looks in the namespace for a binding to tipe.sec.2server. If a protocol is
specified, only a binding with the specified protocol will be imported.

8. Tests the imported binding to make sure the server is active.
9. Displays a message indicating that it is ready to make calls.

10. (@Boundary mode onjylf a synchronization file is specified, loops until the
sycnchronization file has been created (by the test driver script).

11. (Boundary mode on)yMakes one call to the server, reports the result, and exits.

12. Loops, makingrpcsec2_cnf_str() calls to the server, checking results, and
tracking successes and failures.

12.2.6.3 Test Options

All parameters for this test are specified in the test configuration file. Refer to the
“Configuration File” section below for information about the variables and their format.

12.2.6.4 Compile-Time Switches for Optional Functionality

There are several areas of optional functionality available inrplesec.2system test

that can be used to expand the scope of the test or to provide additional runtime
information. These areas of optional functionality are compiled into the program via the
definition of tags which can be specified in either of two ways:

« On thebuild command line; for example:
build -DRPCSEC2_ALL_OPTS
+ In the environment variablEENV; for example (in a C shell):

% setenv CENV RPCSEC2_ALL_DEBUGS
% build

January 17, 1997 35



DCE Testing Guide

The defaultbuild flag value iSRPCSEC2_ALL_OPTS

The table below lists the supported compiler flags, the functionality that they control, and
the operation of the test depending on whether the flag is or is not specified.

TABLE 12-2. Compile-Time Switches for rpc.sec.2

Flag

Functionality

Test Operation

RPCSEC2_KEEP_SYMBOLS

Keeps debugging symbol
in compiled objects

5

If defined, code is compiled with debuggi
symbols; else debugging symbols usually
stripped from objects.

RPCSEC2_SRV_REPORTING

Turns on server
status reporting

If defined, server reports on call requests

received, calls passed and failed, id refres
and time of last id refresh at an interval spe
fied by RPCSEC2_CLI_DEF_REP_INTVL i
configuration file. If not defined, server
reports only upon receipt of SIGQUIT.

RPCSEC2_ADD_DUMPERS

Compiles extra routines
into the server to aid
debugging

If defined, several routines are compiled
into the server for dumping the contents
of various DCE data structures in people-
readable form. These routines are not
called from the code, but can be called

from the debugger.

RPCSEC2_ALL_DEBUGS

turns on all debugging
options

Has the same effect as specifying both
RPCSEC2_KEEP_SIGNALS and
RPCSEC2_ADD_DUMPERS.

RPCSEC2_ALL_OPTS

turns on all optional
code

Has the same effect as specifying
RPCSEC2_SRV_REPORTING.

RPCSEC2_DRVR_HNDLS_SIGCHLD

turns on code to stag-
ger client exits

If defined, client will wait to exit
after processing is complete, in an attempt
to give the driver time to process client
logs.

RPCSEC2_ALL_EXTS

turns on all extension
code

Has the same effect as specifying
RPCSEC2_DRVR_HNDLS_SIGCHLD

Specifying server reporting can provide useful information about the server side of the

test.

12.2.6.5 Configuration File

Setting up to run thepc.sec.2system test consists of one step, namely customizing the

configuration file:

/dcetest/dcelocal/test/tet/rpc/tsirpc.sec.2/rpc.sec.2.conf

The present section describes this step.

12-16

January 17, 1997



DCE System Tests under TET

The scripts and programs that make up tpe.sec.2 system test get most of the
information they need from a single configuration file whose default name is
rpc.sec.2.conf The information normally contained in this file can be split up roughly
into two categories: default runtime parameters, and environment information.

Examples of default runtime information in the file are: the time duration a test should
run; the names of machines on which clients will be run; etc.

Examples of environment information stored in this file are: the name of the CDS
namespace entry to which the server exports its bindings; the name of the client and
server principals; etc.

Before running the test, it is important to inspect the configuration file to see if any
changes should be made for the site at which the test is to be performed. This is
particularly important in regard to the environment configuration information. For
example, you may wish to use a different client or server principal, a different CDS entry
name, etc. All of these things, if they are to be changed, must be changed in the
configuration file before running the test.

Note that all machines that the test is to be run on must have idemgicalec.2.conf
files.

12.2.6.6 Format of the Configuration File

The contents of the test configuration file consist of text lines conforming to normal
Bourne shell syntax.

Note, however, the following restriction. The configuration file, as implied above, is read
by shell scripts, and by thgpc.sec.2_cliandrpc.sec.2_srvbinary programs. In order to
simplify the routine used by these programs to read the file, lines that set values for the
rpc.sec.2_cliandrpc.sec.2_sryrogramanustbe in one of the two following formats:

<strriimg>=<strriimmgl> # NOIE: iim thiss case, sstrriimmgl cannot
# contaainn any Sjpaces.

or:

<strriimg>="<sfriinngl>" # NOIE: iin thhiss case strriinngl may
# contaaim spaces.

Any lines that are not in this format will either be ignored by the routine
(rpesec2_rd_conf() in the filerpc.sec.2_rdconf.¢ that the client and server use to read
the configuration file, or will generate an error. Comments are begun by a “#"” character
anywhere on a line, as shown above, and continue to the end of the line.

January 17, 1997 a7



DCE Testing Guide

12.2.6.7 Contents of the Configuration File

The assignments in the configuration file as it is shipped represent the minimum set
required to run the tests scripts and programs. You may add to the configuration file, but
you should not remove any of the original assignments.

The information in the configuration file determines the way that your Security and CDS
namespaces are set up. This being the case, you may want to modify the configuration
information to tailor the namespace to your preferences. If you do not want to use the
default values in the configuration file for the client or server principal name, CDS
directory, CDS name, or for any of the other configuration file variables, you will have to
modify the configuration file in accordance with your preferences before running the

setup script.

TABLE 12-3. Configuration File Contents

Variable Default Value
in Config File Description as Shipped
RPCSEC2_PROT_LEVEL Default protection level priv
RPCSEC2_CLI_PRINC_NAME Client principal name rpc.sec.2_cli
RPCSEC2_CLI_INIT_PW Client initial password “rpc&secC"
RPCSEC2_CLI_KEYTAB_DIRPATH Directory for client keytab tmp

file

RPCSEC2_CLI_KEYTAB_FN

Client keytab file name

rpc.sec.2_cli.keytab

RPCSEC2_CLI_MACHINES Remote client machines "rptest”
RPCSEC2_CLI_DEF_RUN_INTVL Client interval to run 0 (hours)
RPCSEC2_CLI_DEF_REP_INTVL Client report interval 1 (minutes)
RPCSEC2_CLI_SYNC_DELAY Client delay for synchronization 60 (seconds)
RPCSEC2_CLI_START_DELAY Clients startup delay 180 (seconds)
RPCSEC2_CLI_ARRAY_ELEMS Number of array elements 15

RPCSEC2_SRV_PRINC_NAME

Server principal name

rpc.sec.2_srv

RPCSEC2_SRV_GROUP_NAME

Server group

subsys/dce/cds-test-group

RPCSEC2_SRV_INIT_PW

Server initial password

rpc&secS”

RPCSEC2_SRV_KEYTAB_DIRPATH

Directory for server keytab
file

/opt/dcelocal/var/security/keyt

abs

RPCSEC2_SRV_KEYTAB_FN

Server keytab file name

rpc.sec.2_srv.keytab

RPCSEC2_SRV_CDS_NAME

Server interface name

/.:Itest/systest/srv_ifs/rpcsec?] |

RPCSEC2_SRV_CDS DIR_ACL Directory ACL for server rwditca
interface

RPCSEC2_SRV_CDS 10 _ACL Object ACL for server interface rwdtc--

RPCSEC2_SRV_MAX_ CALLS Max concurrent call for server 5

12-18

January 17, 1997



DCE System Tests under TET

Variable Default Value

in Config File Description as Shipped
RPCSEC2_SRV_MAX_EXEC Max concurrent execs for server 1
RPCSEC2_SRV_MACHINES Server machine "rptest”
RPCSEC2_BIN_DIRPATH Directory with rpc.sec.2 binaries T&T_ROOT/rpc/ts/rpc.sec.2
RPCSEC2_TEMP_DIRPATH Directory for temporary files /dcetest/dcelocal/tmp
RPCSEC2_LOG_DIRPATH Directory for log files /dcetest/dcelocal/status
RPCSEC2_UDP_PCT Percentage of udp clients 50
RPCSEC2_CLI_TO_RUN Number of clients 9

PRIN_PASSWD Principal password "-dce-"

12.2.6.8 Running rpc.sec.2

To runrpc.sec.2in the example cell described earlier in this chapter, you would do the
following:

1. Edit the configuration file:
/dcetest/dcelocal/tet/rpc/ts/rpc.runtime.l/dcerpcrun.data
and make the appropriate changes to the configuration variables.

2. Define and export theET_ROOT environment variable:
export TET_ROOT=/dcetest/dcelocal/test/tet

3. Source the TET version of the system test profile:
. $TET_ROOT/../test/systest/profile.dcest.tet

4. dce_loginascell_admin:
dce_login cell_admincell_admin_password

5. Invoke the test via TET:

cd /dcetest/dcelocal/tet
$TET_ROOT/bin/tcc -e -j journal_filenamepc dcerpsec

12.2.6.9 Generating Test Reports

If you are not running the test in boundary mode, then after all the clients have exited,
you can generate a report of the results of the test by executing the following commands

January 17, 1997 9



DCE Testing Guide

in a Bourne or Korn shell:
$ cd <logdir>
$ foriin‘ls cli_log pid.*
> do
> grep -v READY $i | awk -f bindir/rpc.sec.2_gen_summ.awk >> rupid.summ

> done

$ awk -f <bindir>/rpc.sec.2_gen_rep.awk ruapid>.summ > run<pid>.results

12.2.6.10 Implementation Notes

12-20

The size of the array passed to the server by the client determines how long the
rpcsec2_cnf_str()call will take. The server divides the array size by three, then waits in
the rpcsec2_cnf_str()call for the resulting number of seconds before processing the
array and returning. The number of array elements should be six or more if a goal of the
test is to force the server runtime to buffer and unbuffer call requests.

The observed maximum number of concurrent calls forpansec.2server running with

a single execution thread (specified in the configuration file by setting
RPCSEC2_SRV_MAX_EXECto 1) is nine. If testing is desired with more than nine
threads, the number of execution threads in the server must be increased.

Note that if the test is run with the observed maximum of test clients and a server with
one execution thread (the default), then the connection-oriented protocol clients will
report large numbers aferver_too_busyerrors. This is caused by the clients’ finding the
server call request buffer full because a slot that would normally have been available to
accept a client request has been taken by a housekeeping call regularly made by the RPC
daemon to determine whether the server is still active. The client then goes into a tight
loop, continuing to call and continuing to receive the error until a slot does open up. To
avoid this scenario, either run the server with more execution threads, or add a delay to
the client call loop wherrpc_s_server_too_busyis detected (if yoursleep()is not
wrapped and hence not threadsafe, ugghread_cond_timed_wait() or
pthread_delay_np()instead). Datagram clients will receive a feamm_failure errors

for this same reason, but these will be far fewer than d¢kever_too_busyerrors
received by connection-oriented clients, due to the different retry semantics of the
datagram runtime in case of call failure.

It has been observed that if the test client, for some reason, loses its credentials, it will
begin to consume swap space at the rate of about 1 megabyte per hour. However, the
case of a client losing its credentials is quite rare (in the instance in which this
phenomenon was observed, the clients had lost their credentials because the ticket
lifetime was changedfter the test had been started).

Note that if the clients are running in debug mode at the very end of the test, the report
generation scripts will not work correctly on the raw output.

If you wish to run therpc.sec.2test with a large number of clients, you will will to start
the clients in groups. If you attempt to start too many clients concurrently, all making

January 17, 1997



DCE System Tests under TET

calls to the same server, some number of the clients will receive the error status
rpc_s_connect_rejectedand therpc.sec.2_runtest.stscript will abort the test run. This

is caused by too many client call requests arriving at the server machine’s socket at the
same time, filling up the listen backlog buffer associated with the socket faster than the
RPC runtime can dequeue the requests and buffer them in the call request buffer; calls
arriving when the listen backlog buffer is full are rejected. The number of clients that can
be started at one time will vary from platform to platform; the larger the listen backlog
size and the faster the machine, the greater the number of clients that can be started at
once. For DCE 1.0.2, the maximum number of clients that could be successfully started
at the same time on the AIX platform was between 10 and 20.

12.2.6.11 Ticket Expiration

It is possible in some circumstances for a test client’s network credentials (i.e., ticket) to
expire, in spite of the fact that a thread is spawned to maintain the ticket. If a client’s
ticket does expire, the test as shipped will almost certainly fail soon afterwards.

The client ticket’s expiration is generally caused by starvation of the ticket-maintainance
thread, and is more likely to occur in clients that accessrliesec.2server using the
connection-oriented protocol —especially if the ticket lifetime is short (i.e., in the
neighborhood of five minutes or less).

The chain of events that leads to the starvation generally begins when any unrecoverable
error occurs in the test server runtime. From then on, all remote calls will return errors to
the callers. (The test clients do not perform error handling for remote calls; instead, they
are designed to simply log errors and continue test activity.) Further, with the
connection-oriented protocol, any error in the server runtime causes an immediate return
from the remote call to the client. Thus when all this happens, the client thread making
the remote call goes into a tight loop, re-attempting immediately over and over again to
successfully complete the remote call. If the client’s ticket expiration time is short, the
time taken up by the call thread’s looping can deprive the ticket maintainance thread of
sufficient CPU cycles to refresh the client’s ticket before it expires. Then, once the ticket
has expired, the remote call thread begins generating messages that describe the last time
the ticket was refreshed, along with other (normally pertinent) information. This has the
result of making the call thread take up even more time, and as a result the ticket
maintainance thread is never allowed to refresh the ticket.

This failure scenario generally does not occur for test clients using the connectionless
protocol; its semantics prevent the sequence of events that leads to the tight looping
described above.

12.2.6.12 Runtime Errors that Should be Handled

As noted above, thegpc.sec.2clients do not currently perform any error handling of the
communication status value returned from a remote call. The lack of such error handling
is responsible for the spurious test failure scenario described above, and this scenario can

January 17, 1997 21



DCE Testing Guide

probably be avoided if you add code to handle the three following errors:

rpc_s_server_too_busy

(Returned only by TCP clients.) The server does not have a thread available to
service the client request, nor does it have space in any call request buffer to queue
the request. When a test client receives this error, it will go into a tight loop as
described in the previous section, making RPCs and continuing to receive this same
status, until sufficient resources are freed at the server to permit the call to be
serviced or queued. While testing did not prove this looping to have a significant
impact on the overall success rate of the TCP clients, it is wasteful of CPU cycles.
One way to avoid the tight looping would be to have the TCP clients wait for a few
seconds if they receive this status before doing anything. Another approach would be
to allocate more server threads to begin with, and thus avoid the situation altogether.

rpc_s_connection_closed

A protocol error has occurred in the connection to the server. This means (with a
connection-oriented protocol) that the binding to the server has become permanently
useless, and the thread in the server runtime that listens for connection-oriented
protocol requests is probably unavailable, so that no connection-oriented protocol
calls will succeed. The only remedy for this condition is for the server to re-export its
binding handles.

rpc_s_auth_tkt expired

The client's network credentials (i.e., ticket) have expired. The client thread
receiving this error can recover from the situation by notifying the ticket
maintainance thread that it should now refresh the ticket.

12.2.7 dcerpper

12-22

Thedcerpper DCE System Test is based on the Rp&f functional tests. It utilizes the
perf functional test server and client programs to perform the following tests:

Null call

Null call, idempotent

Variable length input arg

Variable length input arg, idempotent
Variable length output arg

Variable length output arg, idempotent
Broadcast

Maybe

Broadcast/maybe

Floating point

January 17, 1997



DCE System Tests under TET

Unregistered interface

Forwarding

Exception

Slow call

+ Slow call, idempotent

The perf_server is run on the machine on whictcerpper is being executed, and
perf_client is started on the specified client machines. The client machines are started
simultaneously in order to put stress on the server machine.

Test Scripts: $TET_ROOT/tet/rpc/ts/dcerpper/dcerpper
Test Programs: $TET_ROOT/tet/rpc/ts/dcerpper/perf_server
$TET_ROOQOT/tet/rpc/ts/dcerpper/perf_client
dcerpper is invoked as follows:
cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tce -e -jjournal_path-vRUNNING_TIME=0.25 rpc d cerpper

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to ttpe directory) for the

test results journal file.

-VRUNNING_TIME=0.25
Sets the RUNNING_TIME environment variable, which
specifies the number of hours the test should run.

rpc Specifies the “test suite” name, equivalent to the component
subdirectory of the test to be run.

dcerpper Specifies the name of the test (TET scenario) to be run.

12.3 DCE Host Daemon (dced)

The dced system tests exercise the functionality provided by the DCE Host Daemon
(dced):
« Endpoint resolution

« Remote Key Table Management

January 17, 1997 123



DCE Testing Guide

+ Remote Host Data Management
« Remote Server Configuration and Execution
« ACL operations on all the above functions

The test suite consists of three reliability tests which usaracontrol script as a test
driver in the same way as the other DCE system tests executed under TET. The tests
must be installed on each machine on which they will be run, udicgtest_config

Setup requirements are the same as for the athrescript-based DCE system tests.

All sub-components and other executables for the tests are installed at:
$TET_ROOT]../test/tet/system/dced/ts/rel/

Test Scripts: $TET_ROOT/system/dced/ts/rel/dcdrel001/dcdrel001
$TET_ROOT/system/dced/ts/rel/dcdrel002/dcdrel002
$TET_ROOT/system/dced/ts/rel/dcdrel003/dcdrel003

The tests are invoked as follows:
cd dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2/test/tet
setenv TET_ROOT ‘pwd
setenv PATH $TET_ROOT/bin:$PATH
tcc -e -jjournal_pathsystem/dced dcdrel001

tcc -e -jjournal_path-vNMIN=15 system/dced dcdrel002

tcc -e -jjournal_path-vNMIN=15 system/dced dcdrel003

where:

platform Is the name of the platform on which you are testing DCE (for
example, platform is rios for the IBM RISC System/6000
running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to thestem/dceddirectory)
for the test results journal file.

-vNMIN=15 Sets the NMIN environment variable, which specifies the
number of minutes the test should run.

system/dced Specifies the “test suite” name, equivalent to the component
subdirectory (located undsysten) of the test to be run.

dcedrelOn Specifies the name of the test (TET scenardzdrel001,

dcdrel002, or dcdrel003) to be run.

The tests can also be invoked through tthe.dced script as follows (see Chapter 11 for
details on using the fun” scripts):

run.dced {-I loops |-t hours } [other_options] testhname

where:

12-24 January 17, 1997



-l loops

-t hours

testname

DCE System Tests under TET

Specifies the number of loops or passes to run.

Specifies the time in hours to run. A decimal pointiscepted,;
e.g. “.5"is interpreted as 30 minutes.

Specifies the name of the test; see below.

The following tests can be run by specifying their nametesgtnamein the command

line:
dcdrel001

dcdrel002

dcdrel003

all

January 17, 1997

Exercises some of the endpoint operations providedidgd Two test
servers and a test client are started on each machine included in the test.
The test servers register themselves via CDS and are then contacted by
the test clients on all machines involved in the test. For each series of
client-server interactions, the client requests the server to register its
interface and endpoints with a newly-generated list of object UUIDs,
and then contacts the server using each of the newly-registered object
UUIDs and requests that the endpoint be unregistered.

As many machines as desired can be included in the test run, via the
command line optionam or -M, and the number of endpoints registered
can be modified by recompiling the tests with a different value for the
constantJUID_VEC_COUNT, which is defined in

dce-root-dir'src/test/systest/dced/ts/rel/dcdrel001/dcdrel001_client.c

The test starts two servers, both of which register endpoints using the
rpc_ep_register() routine. This test could be readily enhanced by
modifying one of the two servers’ manager routines to usedtiesl API
functions for registering and unregistering endpoints instead.

Exercises some of the server configuration and execution operations
provided bydced Four variations of a test server are configured, using
the dcecp server createcommand. Then several sequences of starting,
stopping, and restarting the servers are executed.

At present the test creates the test servers on each of the machines
identified on therun.dced command line, and then executdsecp
operations on those servers from the machine that the servers are
executing on. The test could enhanced by having it executel¢bep
commands on each machine involved in the test to control servers on the
other machines.

Exercises some of the keytab, hostdata, and A@ted service
operations. Adcecpscript is executed on each of the macines specified
on the command line, to test some of the hostdata operations. Following
this, separatalcecp script is executed on each of the machines to test
some of the keytab operations. Finally, anoteecpscript is executed

on each of the machines to test some of the ACL operations.

Note: Whendcdrel003_acl.tclis running, no othedcedrelated
testing should be taking place. This test subcomponent
changes ACLs to disallowiced operations, and will thus
cause any other actividcedtests to fail.

Causes all of the tests to be run in turn, with the specified
command line options.

25



DCE Testing Guide

This test also uses the following standang options:
« -enumber
+ -E number
« -m name(s)
. -M

For explanations of these options, see “Command Line Options Common to Some
or All of the “Run” Scripts”, in Chapter 11.

12.4 Security

All of the security systest directory scripts are run as “root” UID, with the systest
environment fileprofile.dcest.tetsourced. All tests are run from the test “driver”
level and use thegy_edit -update control program interface for all registry
operations. The drivers all use the

/dcetest/dcelocal/tet/security/ts/sec.functions
file for determining the security-related operatiomgy( edit functions) to be
tested, as listed below under each test driver name.

Note that all of these details are automatically taken care of when you run the
tests througltdcetest _config as is recommended; if you run the tests manually,
you must sourcerofile.dcest.tetyourself.

12.4.1 secrep

12-26

This test consists of 9 test cases to testdhange -masterandbecome -master
functionality. The test cases are as follows:

Test case hame Description

tc_bm Testsbecome master

tc_bm_restart Become master and restart new master.
tc_cm_basic Basic change master test.
tc_cm_qg_update Change master with updates in progress.

tc_cm_login_query  Change master while logins and queries are in progress.
tc_cm_c_update Change master while master is being updated.

tc_cm_restart Change master and restart new master.

January 17, 1997



DCE System Tests under TET

tc_cm_slvinit Change master witiitrep in progress.
tc_cm_slvdel Change master wittlelrep in progress.

The global cleanup functiortc_secrep_cleanupwill delete all replicas in the
cell. The function is written as if it were a test case, and is the last TET scenario to
be executed.

Note that at the end of the test (after secrep_cleanughas been run), there is
only master; however, this may not be the original master. This is because the test
performs a change/become master.

To see both the result of each test as well as the start and end time of each test do
the following:

grep TEST <journal file name> | awk -F"|" '{print SNF}

The test is invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tce -e -jjournal_file security all_secrep

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to theecurity
directory) for the test results journal file.

security Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

all_secrep Specifies the name of the test (TET scenario) to be run.

12.4.2 dceseacl

dceseacltests security registry ACLs and authorization operation, and can serve
as a registry load or stress test. It does this by creating a humhbsrcolunts,
principals, groups, and organizations; modifying permissions; and verifying
appropriate ACL management operation.

Test Script: $TET_ROOT/security/ts/dceseacl/dceseacl
Data Script: $TET_ROOT/security/ts/dceseacl/dceseacl.data

dceseacis invoked as follows:

January 17, 1997 27



DCE Testing Guide

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tcc -e -jjournal_path-vNMIN=15 security dceseacl

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to theecurity
directory) for the test results journal file.

-vNMIN=15 Sets thaNMIN environment variable, which specifies the
number of minutes the test should run.

security Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

dceseacl Specifies the name of the test (TET scenario) to be run.

12.4.3 eraobj001

12-28

eraobj001 is a variant of thedcesseacltest. It is implemented as a wrapper
around the latter test. When invoked, it sets the value of LI®E ERA
environment variable to “yes” and then invokekeseacl dceseaclis then run

with the extended attribute functionality (i.e., ACLs on the registry schema object,
and extended registry attribute instances attached to principals, groups, and
organizations).

Test Script: $TET_ROOT/security/ts/leraobjo01/eraobjo01
Data Script: $TET_ROOT/security/ts/era.data
eraobj001is invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet

setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tce -e -jjournal_path-vRUN_TIME=0.25 security eraobj001

where:
platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).
-e Specifies to run the test.
January 17, 1997



DCE System Tests under TET

-j journal_path Specifies a file pathname (relative to theecurity
directory) for the test results journal file.

-VRUN_TIME=0.25 Sets the RUN_TIME environment variable, which
specifies the number of hours the test should run.

security Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

eraobjo01 Specifies the name of the test (TET scenario) to be run.

12.4.4 dceseact

dceseact adds, deletes, and changes information about principals, groups,
organizations, and accounts to test the security registry.

Note: This test must be run by a user who has write access to the registry

database.
Test Script: $TET_ROOT/security/ts/dceseact/dceseact
Data Script: $TET_ROOT/security/ts/dceseact/dceseact.data

dceseacis invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tcc -e -jjournal_path-vRUN_TIME=.25 security dceseact

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to theecurity

directory) for the test results journal file.

-VRUN_TIME=0.25 Sets the RUN_TIME environment variable, which
specifies the number of hours the test should run.

security Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

dceseact Specifies the name of the test (TET scenario) to be run.

January 17, 1997 129



DCE Testing Guide

12.4.5 dcesepol

dcesepoltests security policy options through the use of the registry editor
(rgy_edit) and repeated login attempts.

Note: In order to test account expiration, this test must be running at
midnight (i.e., during the interval 11:59 P.M. and 12:01 A.M.). The
test must be run by a user who has write access to the registry
database.

dcesepolcreates three organizations to test password expiration date, password
life span, and account life span, respectively. Principals and accounts are created
for the organizations in order to perform policy verification via authenticated
login. The local registry password override login function is tested by disabling
the first account’s first machine login.

Test Script: $TET_ROOT/security/ts/dcesepol/dcesepol
Data Script: $TET_ROOT/security/ts/dcesepol/dcesepol.data
The test is invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet

setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -jjournal_path-i intermediate_results_pasecurity dcesepol

where:
-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to theecurity
directory) for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to theecurity
directory) for the intermediate test results file.

security Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

dcesepol Specifies the name of the test (TET scenario) to be run.

12.4.6 dcesestr

12-30

dcesestr exerts stress on the registry servaedd by attempting toaccess
information from the server through multiple clients. It adds principals, groups,
and organizations to the registry and then invokes multiple clieatesétr) which

in turn perform valid and invalid logins.

Note: This test must be run by a user who has write access to the registry

January 17, 1997



DCE System Tests under TET

database.
Test Script: $TET_ROOT/security/ts/dcesestr/dcesestr
Data Script: $TET_ROOT/security/ts/dcesestr/dcesestr.data

The test is invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tcc -e -jjournal_path-i intermediate_results_patecurity dcesestr

where:
-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to theecurity
directory) for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to theecurity
directory) for the intermediate test results file.

security Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

dcesestr Specifies the name of the test (TET scenario) to be run.

The SEC_MACHINES environment variable, whose value is set in the data
script mentioned above, can be used for stress testing by giving it a long list of
machines to act as clients. Each of these clients will attempt logins at the same
time.

For additional stress testing, you can specify a large number of users for
SEC_NUM_USERSIin the test data script. This will cause a large number of
accounts to be added to the registry, each of which will be used by the clients.
This can be used to force overflows of any caches that may be ussstdor
sec_clientd

12.4.7 erarel001

erarel001is a variant of thalcesestrtest. It is implemented as a wrapper around
the latter test. When invoked, it sets the value of W8&E_ERA environment
variable to “yes” and then then invokedcesestr dcesestris then run with
extended registry attributes functionality, manipulating extended attributes on
principals, groups, and organizations during logins.

Test Script: $TET_ROOT/security/ts/erarel001/erarel001
Data Script: $TET_ROOT/security/ts/era.data

erarel001is invoked as follows:

January 17, 1997 331



DCE Testing Guide

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tce -e -jjournal_path-vRUN_TIME=0.25 security erarel001

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to theecurity

directory) for the test results journal file.

-VRUN_TIME=0.25 Sets the RUN_TIME environment variable, which
specifies the number of hours the test should run.

security Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

erarel001 Specifies the name of the test (TET scenario) to be run.

12.4.8 dlgcfg001

12-32

digcfg001lis a basic delegation configuration test.
Test Script: $TET_ROOT/security/ts/dlgcfg001/digcfg001

The test is invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tce -e -jjournal_path-vRUNNING_TIME=0.25 security dlgcfg001

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to theecurity

directory) for the test results journal file.

-VRUNNING_TIME=0.25
Sets theRUNNING_TIME environment variable, which
specifies the number of hours the test should run.

January 17, 1997



DCE System Tests under TET

security Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

digcfg001 Specifies the name of the test (TET scenario) to be run.

12.4.9 Security Registry System Test dcesergy

The purpose of this test is to stress the security registry servers by performing a
number of DCE logins and logouts while administrators are at the same time
performing registry updates and queries. Five Security registry administrators on
each host in the local cell create new organizations, groups and accounts, setting
registry policy on the new accounts and creating password override local registry
login policy, while verifying these policies and performing logins on each
machine. Ten principals on each host machine concurrently perform logins while
the registry administration is in progress. The test also provides override file
support for local registry account information.

The test was derived from the RPC API functional tests, and it conforms to the
basic RPC client-server model. Execution of the test operations is provided by the
server; the client learns the result of an operation via RPC status or exception.
Success is also indicated by a text message which is displayed for most otherwise
silent operations.

Test Script: $TET_ROOT/security/ts/sec.rgy.7/dcesergy
Data Script: $TET_ROOT/security/ts/sec.rgy.7/dcesergy.data
The test is invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet

setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -jjournal_path-i intermediate_results_patecurity dcesergy

where:
-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to theecurity
directory) for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to theecurity
directory) for the intermediate test results file.

security Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

dcesergy Specifies the name of the test (TET scenario) to be run.

You can increase the stress on the security server by running multiple copies of
dcesergyon different machines in the cell, but you must do so manually at each
machine, because the DCE 1.2.2 versiodadsergydoesnotuse them machine

January 17, 1997 133



DCE Testing Guide

option.

12.4.9.1 Logic Flow of the Security Registry System Test

The server and client execution sequence can be displayed by building the test
with the ST_DEBUG symbol defined. The sequence is:

Server: Initialize Pthread synchronization data

Export the server binding to the RPC runtime, endpoint mapper
and the CDS data base

Start the credential refresh thread
Start the RPC listen thread
Client: Login as client principal
Import the server binding handle from CDS

Call the test operation (which was specified on the command line;
for example,-u principal will add the principal to the registry
database)

Wait for RPC status/exceptions or server return message

The server creates and uses a local key/€itg/tmp/v5srvtab to be used by the
RPC runtime in decrypting incoming tickets from authenticated clients (for
authenticated RPC, tha option).

12.4.9.2 Test Setup Script

12-34

dcesergy adds test servers to the registry before the test server processes are
started on the respective test machines. This is done via a test setup script.

After setup is completed, the script will execute internal loops for the specified
number of loops or hours. It will execute thegin-logout test for a specified
number of call threads, followed by the add principal account operation for the
specified number principals beginning with “basename0”, finally ending the loop
with the deletion of the previously created principals.

Note that this script does not perform other operations (password override
functionality or get password entry); it is intended to be used only as an extended
duration test driver for continuous operation testing.

The script also invokes the client program, which logs in, binds to the CDS-named
server, and executes the login/logout operation on the server 10 times
concurrently (i.e., with 10 client call threads).

January 17, 1997



DCE System Tests under TET

12.4.9.3 Running the Security Registry System Test Components by Hand

Thedcesergysystem test can be manually invoked as follows:

1. Add the test servers to the registry by running the setup script:
secrgy_setup -rserver_namep password
2. Runthe server:

secrgy_server -rserver_namep server_pwd
[-ccell_name] Fa] [-d] [ -i prot_seq]

3. Runthe client program:

secrgy_client -nclient_name-p client_pwd-sserver_namé
[-W] [-0 -r integer] [-X] [ -c cell_name] \
[-u principal] [-k principal] [-a] [ -f filename] \
[-t integer] [-| integer] [-d] [ -i prot_seq] \
[-P][ -] aggregate_nr]

Where:

-n client_nameThe client_name(client principal name) specifies the principal
identity under which the client process is to execute.

-p client_pwd Specifies the client principal password.

-sserver_namgClient program only Specifies the server principal name (in the
NSI namespace) which the client will import and bind to.

-wW Specifies the get password entry operation for the client principal.

-0 Specifies that theec_login_validate_and_certify(xall be used
by the client during login operations. This is a privileged
operation, so the server must be running under the root UID in
order to be able to execute this option.

-r integer Specifies the number of concurrent client calls for login
operations.
-X Client flag to specify server clean-up and exit operations.

-ccell_name Specifies the cell within which client/server NSI import/export
and registry operations should occur.

-u principal  Specifies that the principal nhame and account be added to the
registry. The password for all added principals is the same as the
server's.

-k principal  Specifies that the principal name and account be deleted from the
registry.

-a Specifies authenticated RPC.

January 17, 1997 335



DCE Testing Guide

-f filename Specifies the file to transfer from the client host machine to the
server host machine as tpassword_overridefile. Note that this
requires that the server be running under root UID in order to
have write permission to thdcelocaletc directory.

-t integer Specifies how long (in minutes) each single client call should
continue execution, repeatedly looping through the login and
logout operations.

-l integer Specifies how long (in seconds) to wait in each client call
between login and logout operations. Use default or specify zero
for maximum test loading.

-d Specifies debug mode.

-i prot_seq  Specifies the RPC protocol sequence to be used; either
“ncacn_ip_tcp’ or ** ncadg_ip_udp.

-P Specifies that the client should perform a ping of the server (by
calling rpc_mgmt_is_server_listening().

-j aggregate_n6pecifies the number of aggregate accounts to add or delete from
the registry.

Both the client and the server program will detect conflicting parameters and
output an appropriate error message to the invoker.

12.4.9.4 Usage Examples

12-36

Following is a sequence of example commands showing how to rusethegy.7
test by hand.

First, the setup script is run:

secrgy_setup -n foo -p bar
—This adds the server name and password to the registry.
Next, the server is started:

secrgy_server -n foo -p bar

—This invokes the server program, which adds the server name to the namespace
and starts a thread to refresh the server's credentials at the midpoint of their
default registry lifetime.

secrgy_client -n foo -p bar -s foo -r 10

Invokes the client program, which logs in as the princifeal using the password
bar, binds to the CDS-named servien, and executes the login-logout operation
on the server 10 times concurrently (i.e., with 10 client call threads).

January 17, 1997



DCE System Tests under TET

12.5 CDS

The following sections describe the DCE CDS system tests run under TET.

12.5.1 dcecdsrep

The CDS replication system test consists of the following main components:

Test Script: $TET_ROOT/cds/ts/dcecdsrep/dcecdsrep
Data Script: $TET_ROOT/cds/ts/dcecdsrep/dcecdsrep.data
Function Script: $TET_ROOT/cds/ts/dcecdsrep/dcecdsrep.functions

When invoked, the test does the following:
1. Creates areplica clearinghouse and skulks the root.
2. Creates a directory in the master clearinghouse and skulks the root.
3. Replicates the directory in the replica clearinghouse and skulks the root.
4

Disables the master clearinghouse to ensure that addition of an object to the
replica clearinghouse is not possible.

5. Enables the master clearinghouse and adds the object to the directory, adds
its attribute, and skulks the directory.

6. Tries to get the attribute of the object; this shouldczed.

7. Adds a new attribute (Note: currently does NOT use the same attribute) to
the object, and does NOT skulk the directory.

8. Disables the replica clearinghouse and tries to skulk; this should fail to
propagate the attribute.

9. Enables the replica clearinghouse.
10. Tries to get the attribute; this should fail.
11. Skulks the directory.
12. Tries to get the attributes again; this shouldcaed.
13. Cleans up.

All test functions (except focleanUp and related functions) will tra@IGINT,
SIGKILL , SIGTERM and SIGQUIT. cleanUp ignores all of these except for
SIGQUIT, and the functions called lgleanUpignores all of them.

The test is invoked as follows:
cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet

setenv TET_ROOT ‘pwd
setenv PATH $TET_ROOT/../test/tet/bin:$PATH

January 17, 1997 137



DCE Testing Guide

tce -e -jjournal_path-vRUNNING_TIME=0.25 cds dcecdsrep

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to tbds directory)

for the test results journal file.

-VRUNNING_TIME=0.25
Sets theRUNNING_TIME environment variable, which
specifies the number of hours the test should run.

cds Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

dcecdsrep Specifies the name of the test (TET scenario) to be run.

12.5.2 CDS Server System Test

cdsservperforms access of local and remote cell (DNS haming) objects, using ten
clients per cell host. The test setslscp confidence to “high” and gathers
statistics on time and number of server readesses.

Test Script: $TET_ROOT/cds/ts/cds.server.4/cdsserv.ksh
Data Script: $TET_ROOT/cds/ts/cds.server.4/cdsserv.cfg
The following environment variables are setisserv.cfg

+ CELLS

The name of the cells in the fornv.!./celll /.../cellZ, and so on. Default is
“.:" (i.e., the current cell).

« PRINCS

The names of the principals used to login to each cell specifig@BhLS.
The default iscell_admin.

Specifying additional principals starts additional, simultaneous processes to
access CDS, so this is a good way to increase the load on CDS.

« PWS

A list of passwords for the list of principal names. The list of passwords must
match the order of the corresponding principal name list.

- CONFIDENCE
The CDS clerk confidence level (low, medium, or high).

cdsservis invoked as follows:

12-38 January 17, 1997



DCE System Tests under TET

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH

tcc -e -jjournal_path-i intermediate_results_patids cdsserv.ksh

where:
-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to tbds directory)
for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to tbds directory)
for the intermediate test results file.

cds Specifies the “test suite” name, equivalent to the
component subdirectory (located undgysten) of the
test to be run.

cdsserv.ksh Specifies the name of the TET test scenario to be run.

12.5.2.1 Logic Flow of the cdsserv System Test

The test consists of three nested control loops:
« The outermost loop is controlled by the number of cells in the cell list.
« The next inner loop is controlled by the number of principal logins.

« The innermost loop is controlled by the number of passes (loops) or the
number of hours of execution specified on the command line. This loop is
entirely contained in a separate process.

The test executes for all cells in the cell list and for each principal login. This
establishes the authenticated login context for all subseqastp operations.

The CDS clerk, however, is invoked by the CDS advertiser on a UNIX ID basis,
not by DCE authenticated login context. Therefore, in order to increase the
number of CDS clerks which would apply localized stress todthed server, the

test should be executed using differing multiple UIDs.

The innermost loop performs twodscp set confidenceand show directory
operations, followed by a singkhow clearinghouseoperation. The output of the
cdscp show clearinghouseommand is parsed to gather individual CDS server
statistics on “read” access count and response timing.

The cdscpoperations are monitored and success failure results compiled and sent
to the test process standard output and TET journal file.

January 17, 1997 339



DCE Testing Guide

12.5.3 CDS ACL Manager System Test

This test exercises the CDS ACL manager via client access requests to local and
foreign cells. If clearinghouse replicas are available, they are tested. Five
administrators on each host in the specified cell(s) sequentially verify valid and
invalid ACL entry type permissions and management on replicas, soft links,
objects, and directories.

Test Script: $TET_ROOT/cds/ts/dcecdsacl6/dcecdsaclé
Data Script: $TET_ROOT/cds/ts/dcecdsacl6/dcecdsacl6.data
dcecdsacl@s invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet

setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -vRUN_TIME=0.25 cds ¢ecdsacl6

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to tbds directory)

for the test results journal file.

-VRUN_TIME=0.25 Sets the RUN_TIME environment variable, which
specifies the number of hours the test should run.

cds Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

dcecdsacl6 Specifies the name of the test (TET scenario) to be run.

12.5.4 dcecdsacl6 Initialization

12-40

During initialization the necessary user and administrative groups are first added
to the registry, then the administrative and user principals are added to those
groups, and finally the associated principal accounts are added. CDS ACLs for the
cell and clearinghouses are modified to include #teadmin group initial
permissions as follows:

cell: rwcidta permissions

master clearinghouse: rwdtc permissions

The ACL of each clearinghouse server is modified to includesthadmin group
initial permissionsrivcidta).

January 17, 1997



DCE System Tests under TET

12.5.5 Logic Flow of dcecdsacl6 Test

When invokeddcecdsaclGexecutes a series of three nested control loops:
« The outermost loop is controlled by the number of cells.
« The next inner loop is controlled by the number of administrative principals.
« The innermost loop is controlled by the number of clearinghouses.

The principal loop sequence is executed for each administrative principal passed
into the test driver on the command line and for every user principal included in
the clearinghouse operations files.

In each complete pass of the test, the following is done:
« some miscellaneous initialization;
« cdscp show directoryandset confidenceoperations;
- the specified ACL management-related operations.

The ACL management operations are determined by reading the clearinghouse
specific operation files created in advance and parsing output based on principal
name. The operation sequence and expected result (pass or fail) is parsed in the
order it appears in the file.

The state of the tested cell at the end of the clearinghouse operation sequence for
each complete test pass using default test setup parameters will be the same as the
cell's state at the beginning of the pass, so that the test can continue execution
indefinitely.

12.5.6 Hierarchical Cell Tests

These are tests of the DCE 1.2.1 hierarchical cell functiondlitycfg001 tests
intercell authentication with a list of cells usirgy_edit. hclrel001 performs
intercell testing to a specified list of cells.

Note: Before attempting to run these tests, you must insert entries for them
in the appropriate TET scenario file. You can use either of two
scenario files to run the tests, i.e.

$TET_ROOT/system/directory/cds/tet_scen

(the CDS system test scenario file), or
$TET_ROOT/system/tet_scen

(the master system test scenario file). The entries you must insert are
as follows:

dcecdsacles
"Staarttiimmg dcecdisaclés Test Suit tee™

January 17, 1997 121



DCE Testing Guide

fttss/ddcecdsacles/deecdisaclco
"Complecteed dcecdisaclts Test Suit tee™

hclccfigg001
"Staarttiimg  hclecfgg001 Test SSuit tee™
ftssitheliecfigy001/Hcliccfgg001
"Complecteed hcliccfigg001 Test Suit tes™

hcllr reelC001
"Staarttiimg  hclrresl0001 Test SSuit tee™
fttssithellr resl0001/Hhcllr reslC001
"Compecteed hclirreel0001 Test Suit te™
————— ...end of inserted materiat--

cdsserw.Ksin
"Staarttiimg  cdsserw.kksih Test SSuit tee™
fttsslacdls.sserwer. lccdsserw.Kshn
"Complecteed cdsserw.kksih Test SSuit tee”

Test Scripts: $TET_ROOT/system/directory/cds/ts/hclreD01/hclrel001
$TET_ROOT/system/directory/cds/ts/hclc§i001/hclcfg001
Data Scripts: $TET_ROOT/system/directory/cds/ts/hclreD01/hclrel001.data

$TET_ROOT/system/directory/cds/ts/hclc§001/hclcfg001.data
The tests are invoked as follows:
cd dce-root-divdce/installplatform/opt/dcetest/dcel.2.1/test/tet
setenv TET_ROOT ‘pwd
setenv PATH $TET_ROOT/bin:$PATH
tce -e -jjournal_path-vNMIN=15 test_suitehclcfg001

tcc -e -jjournal_path-vRUN_TIME=.50 test_suitehclrel001

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to theystem/
directory) for the test results journal file.

-vNMIN=15 Sets thaNMIN environment variable, which specifies the

number of minutes thbclcfg001test should run.

-VRUN_TIME=0.50 Sets the RUN_TIME environment variable, which
specifies the number of hours thelrel001 test should

12-42 January 17, 1997



DCE System Tests under TET

run.

test_suite Specifies the “test suite” name, equivalent to the
component subdirectory (located undgysten) of the
test to be run.

The value of this parameter will depend on which TET
scenario file you added the test entries to (see the Note at
the beginning of this section). If you added the entries to
the

$TET_ROOQOT/system/tet_scen
file, the “test suite” name will be simplgystem If you
added the entries to the
$TET_ROOQOT/system/directory/cds/tet_scen

file, the “test suite” name will besystem/directory/cds

hclcfg001 Specifies the name of the test (TET scenario) to be run.
hclcfg001 establishes intercell authentication with a list
of cells (specified in the environment variabRELLS,
set inhclcfg001.datg usingrgy _edit.

hclrel001 Specifies the name of the test (TET scenario) to be run.
hclrel001 performs intercell testing to a list of cells
(specified in theCELLS environment variable).

12.6 DCE Audit Service System Tests

The Audit system tests are located at
$TET_ROOQOT/../test/tet/system/audit

where$TET_ROOT is
dcel.2.2-root-difdce/installplatform/opt/dcetest/dce1l.2.2/tet

The tests are invoked as follows (see Chapter 11 for details on usingrtime’ *
scripts):

run.aud {-l loops |-t hours } test_name

where:
-l loops loopsspecifies number of loops or passes to run.
-t hours Specifies the time in hours. A decimal pointascepted;

e.g. “.5"is interpreted as 30 minutes.

January 17, 1997 123



DCE Testing Guide

-C Specifies that the log files from successful iterations be
kept.

test_name The name of the test to be run, which must be one of the
following:

audstr001 Audit stress test.
audrel001 Audit reliability test.
This test also uses the following standand options:
« -enumber
+ -E number
e
« -h

For explanations of these options, see “Command Line Options Common to Some
or All of the “Run” Scripts”, in Chapter 11.

See also the
dce-root-dirdce/src/test/systest/audittREADME

file.

12.7 DTS

The following sections describe the DCE DTS system tests run under TET.

12.7.1 dcetmsyn

12-44

dcetmsyn tests that synchronization occurs when théscp synchronize
command is executed.

The state is tested to see if a synchronization is occurring, and if so, the test will
enter a loop to wait for the state to be “on”, which will occur when the
synchronization is completed. Tliscp show last synchronizationcommand is

then executed and the output saved. The current time is savsgnéaronize
command is then executed, and a loop is entered in order to wait for the
synchronization to complete. Thscp show last synchronizationcommand is
again executed and compared to the previous saved output to verify that a
synchronization did occur after thftscp synchronizecommand was entered.

Before running the test you should do a

dtscp set synch hold down 24:00:00

January 17, 1997



DCE System Tests under TET

—this will set the default time to synchronize on the machine to every 24 hours. If
you do not do this, failures may occur when the test attempts to do a
synchronization at the same time that the machine is trying to do one of its own.
This test can be run on DTS local and global servers and clerks.

Test Script: $TET_ROOT/time/ts/dcetmsyn/dcetmsyn
Note that there is no data script for this test.
dcetmsynis invoked as follows:

cd dce-root-dirdce/installplatform/opt/dcetest/dce1.2.2/tet

setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/../test/tet/bin:$PATH
tcc -e -jjournal_path-i intermediate_results_path time dcetmsyn

where:

platform Is the name of the platform on which you are testing DCE
(for example, platform is rios for the IBM RISC
System/6000 running AlX).

-e Specifies to run the test.

-j journal_path Specifies a file pathname (relative to ttime directory)

for the test results journal file.

-i intermediate_results_path
Specifies a file pathname (relative to ttime directory)
for the intermediate test results file.

time Specifies the “test suite” name, equivalent to the
component subdirectory of the test to be run.

dcetmsyn Specifies the name of the test (TET scenario) to be run.

12.8 Internationalization System Tests

The filesISNSAN001andISNSANOO02, found in the
$TET_ROOQOT/../test/tet/system/I18N/ts

directory (where

dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2/tet
is the value oSTET_ROOT), are the Internationalization system tests; they test
Internationalization support in the CDS and Security components. The tests are

written asdcecpscripts, and are run under TET, but they are not run undena
script.

Following is a list of the files and directories that make up the test; they are
located in the

January 17, 1997 125



DCE Testing Guide

dce-root-dirdce/src/test/systest/I18N

directory and installed in the

dce-root-didce/install/fplatform/dcetest/dcel.2.2/test/tet/system/I18N

directory:

lib Directory containing files that define common procedures called
by the test main procedure.

tet_code File containing error definitions known by TET.

tet_scen TET scenario file.

tetexec.cfg  File containing test configuration variables and assignments.

ts

Directory where the main test scripts reside.

12.8.1 PrerequisiteSetup

12-46

Before attempting to run the internationalization tests, you must do the following:

1. Select a locale for testing and ready the message catalogs corresponding to

that locale.

Make sure that the host machine’s operating system has 118N support for
the desired locale.

Install and configure the DCE cell.

Install and configure the system tests ugdiegtest_config For information
ondcetest_configsee Chapter 11.

Edit the value of the variables defined in the

tetexec.cfg

file. For example:

LOCALE NAME=c-ffrreencih
MESSAGE CAT=/wi/pigglaati in/O%oM
LOCALE DATAHLL E=frreencin.ssihortt

The above settings mean that the test will use the French locale, and will
look for message catalogs in the

/ul/piglatin

directory.

Create the datafile defined by the environment variable
LOCALE_DATAFILE . This is the input file for the tests. It should contain
a list of at least 20 words, arranged one word per line.

January 17, 1997



DCE System Tests under TET

12.8.2 Running the Tests

To run the tests, do the following:

cd dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2/test/tet
setenv TET_ROOT ‘pwd

setenv PATH $TET_ROOT/bin:$PATH

tcc -e -jjournal_file system/I18Ntest_suite_name

wheretest_suite_namis one of the following:
+ IBNSANOO1
« IBNSANO002
andjournal_fileis the name of the file to which you want the test results written.

After the test has executed, the results will be found in the journal file (which you
specify). If a journal file is not specified, TET will create the file under the

results

directory.

12.9 DCE Serviceability System Tests

The DCE 1.2.2 Sereeabilitysystem tests are found in the
$TET_ROOQT/. ./test/tet/system/svc/ts

directory (where

dce-root-dirdce/installplatform/opt/dcetest/dcel.2.2/tet
is the value ofSTET_ROOT). These are tests of different ways of configuring
serviceability at DCEstartup. The tests are installed tgetest_config They are
invoked as follows (see Chapter 11 for details on how to use tha'scripts:

run.svc{-l loops |-t hours } [other_options] testhame

where:

-l loops Specifies the number of loops or passes to run.

-t hours Specifies the time in hours to run. A decimal point is
accepted; e.g. “.5" is interpreted as 30 minutes.

testname Specifies the name of the test, and is one of the following:

January 17, 1997 a7



DCE Testing Guide

« svccfg001
« svccfg002
« svcefg003
« svccfg004
« svccfg005

« svccfg006
The contents of

$TET_ROOQT/. ./test/tet/system/svc/README

contains additional information about running the tests.

12-48 January 17, 1997



Chapter 13. DCE System Tests not under TET

The following sections describe the set of DCE system tests that are not run under TET.
13.1 Security Administrative Tests

The following sections describe checklists for system testing DCE Security Service
administrative functions.

A checklist is a series of instructions and manually-entered commands, together with a
description of the expected results of executing the commands. Checklists are used to
document test functions for which no automated test exists.

The DCE Administration tests are installed witltetest config See “Installing the
DCE System Tests”, in Chapter 11, for instructions on runrdogtest_config

13.1.1 Backup and Restore Registry Checklist

The purpose dbackup_restore_my_checklistis to verify that the backup and restore of
the master registry function properly.

13.1.1.1 Prerequisites for Performing “ba&up_restore_rgy_checklist”

The checklist must be performed as root, and the machine the checklist is being executed
on must have root access vidoststo all machines in the cell.

Note: You should not execute this checklist in any DCE cell which you cannot
afford to corrupt as a result of performing the steps.

January 17, 1997 K=t}



DCE Testing Guide

13.1.1.2 “backup_restore_rgy_checklist” Logic Flow

When performed, the steps rackup_restore_ gy checklistaccomplish the following
series of operations:

1. Logins are attempted.

Registry is set to maintenance mode.

Master registry is backed up locally.

A test entry is attempted in the registry, which should fail.
Registry is set to service mode.

Logins are attempted.

Test entries are made to the registry.

Logins of test entries are attempted.

© o N o o~ wDN

Registry is set to maintenance mode.

=
©

Test master registry is backed up locally.

=
=

Master registry is restored from local backup.

=
N

Registry is set to service mode.

=
w

Logins of test entries are attempted; these should fail.

13.1.1.3 “backup_restore_rgy_checklist” Default Values

All values are supplied by the test user, based on his or her DCE configuration.

13.1.1.4 Performing “backup_restore_rgy_checklist”

Perform thebackup_restore_my checkliststeps as follows:
cd systest-rodadmin/sec/tests

Execute the steps in
backup_restore_my_checklist

as specified.

13-2 January 17, 1997



DCE System Tests not under TET

13.1.2 Registry Replica Checklist

The purpose ofeplica_checklistis to verify that the replication of a registry functions
properly.

13.1.2.1 Prerequisites for Performing “replica_checklist”

The checklist must be performed as root, and the machine the checklist is being executed
on must have root access viaoststo all machines in the cell.

Note: You should not execute this checklist in any DCE cell which you cannot

afford to corrupt as a result of performing the test steps.

13.1.2.2 “replica_checklist” Logic Flow

When performed, the steps ireplica_checklist accomplish the following series of

operations:
1. The initial security and CDS servers and at least two DCE clients are installed and
configured.
2. The state of the master registry is changed to maintenance mode, and the master
registry is backed up.
3. Disabling of write access to the master registry is verified.
4. The state of the master registry is changed to service mode.
5. Enabling of read access to the master registry is verified.
6. A slave registry is configured.
7. Listings of master and slave registries are obtained and compared to verify that
propagation occurred.
8. Read access to the registry from a non-registry machine is verified.
9. Five users are added, and their presence in the slave registry is verified.
10. The master registry is disabled using see_admin stopcommand.
11. Login is attempted from a non-registry machine.
12. Anattempt is made to add a principal on a non-registry machine.
13. The master registry is enabled by startiegd
14. Two accounts are deleted.
15. The two deleted accounts are verified to no longer be present in the slave registry.

January 17, 1997 3



DCE Testing Guide

16. The master registry is disabled using see_admin stopcommand.
17. Read access to the registry from a non-registry machine is verified.

18. The original master registry which was backed up before beginning the test is
restored.

19. The master registry is enabled by startiegdwith the-restore_masteroption.

13.1.2.3 Default Values for “replica_checklist”

All values are supplied by the test user, based on his or her DCE configuration.

13.1.2.4 Performing “replica_checklist”

Perform thereplica_checkliststeps as follows:
cd systest-rodadmin/sec/tests

Execute the steps in
replica_checklist

as specified.

13.2 CDS Administrative Tests and Checklists

The following sections describe automated tests and checklists for system testing DCE
CDS administrative functions.

A checklist is a series of instructions and manually-entered commands, together with a
description of the expected results of executing the commands. Checklists are used to
document test functions for which no automated test exists.

The DCE Administration tests are installed witltetest config See “Installing the
DCE System Tests”, in Chapter 11, for instructions on runrdogtest_config

13.2.1 Backup and Restore Clearinghouse Automated Test

The purpose of théackup_restore_ch.kshtest is to show that clearinghouses can be
backed up and restored locally, i.e. that a clearinghouse can be successfullyerepl
with a backup version of the clearinghouse.

13-4 January 17, 1997



DCE System Tests not under TET

13.2.1.1 Prerequisites foRunning “backup_restore_ch.ksh”

The following things must be true in order to successfully run the
backup_restore_ch.kshsystem test:

« The test must be run as root, and the machine the test is being executed on must have
root access viahoststo all machines in the DCE cell.

- The test must be executed on a CDS server machine.

« There can be no CDS clients running DCE during the test except for a Security server
in a split server configuration.

Note: You should not execute this test on any CDS server which you cannot
afford to corrupt as a result of running the test. In some instances the CDS
clearinghouse can be corrupted if the test fails.

13.2.1.2 “backup_restore_ch.ksh” Logic Flow

When invokedpackup_restore_ch.kshperforms the following series of operations:
1. The master clearinghouse is backed up locally.

2. The master clearinghouse is checked to make sure the test directory and object
entries do not already exist.

3. A test directory and object are created in the master clearinghouse; the master
clearinghouse has now become a test clearinghouse.

4. The test clearinghouse is checked to make sure the test directory and object entries
exist.

5. The test clearinghouse is backed up locally.
6. The master clearinghouse is restored.

7. The master clearinghouse is checked to make sure the test directory and object
entries do not exist.

8. The test clearinghouse is restored.

9. The test clearinghouse is checked to make sure the test directory and object entries
do exist.

10. The master clearinghouse is restored.

13.2.1.3 Default Values for “backup_restore_ch.ksh”

backup_restore_ch.kshruns with the following default values:

January 17, 1997 5



DCE Testing Guide

« DCE Administration login
cell_admin

« DCE Administration password
-dce-

- Test Name
bkrsch

« CDS Test Directory
bkrsch_hostname

« Clearinghouse Name
cellnaméthostname

Note that all the defaults can be changed by editing the test scripts and changing the
variable values.

13.2.1.4 Objects Created by “backup_restore_ch.ksh”

Directories Created (in the current directory):
. Jtmp
« ./backup
. .llog
Temporary Files Created (in the current directory):
« ./tmp/bkrsch_hostnamepid STDOUT
« ./tmp/bkrsch_hostnamepid STDERR
Log Files Created (in the current directory):
« .llog/bkrsch_hostnamepid ERRORS
« .llog/bkrsch_hosthamepid SHORT
« .Jlog/bkrsch_hosthamepid FULL

13.2.1.5 Running “backup_restore_ch.ksh”

backup_restore_ch.kshs invoked as follows:
cd /dcetest/dcelocal/test/systest/admin/cds

tests/backup_restore_ch.ksh

13-6 January 17, 1997



DCE System Tests not under TET

13.2.2 Backup Clearinghouse Automated Test

The purpose of thbackup_ch.kshtest is to show that clearinghouses can be backed up
locally.

13.2.2.1 Prerequisites foRunning “backup_ch.ksh”

The following things must be true in order to successfully runkthekup_ch.kshsystem
test:

« The test must be run as root, and the machine the test is being executed on must have
root access viahoststo all machines in the DCE cell.

- The test must be executed on a CDS server machine.

« There can be no CDS clients running DCE during the test except for a Security server
in a split server configuration.

« You must source the system test profile file:
/dcetest/dcelocal/test/systest/profile.dcest

Note: You should not execute this test on any CDS server which you cannot
afford to corrupt as a result of running the test. In some instances the CDS
clearinghouse can be corrupted if the test fails.

13.2.2.2 “backup_ch.ksh” Logic Flow

When invokedpackup_ch.kshperforms the following series of operations:
1. DCEs stopped.
2. The master clearinghouse is backed up locally.
3. DCE s restarted.

13.2.2.3 Default Values for “backup_ch.ksh”

backup_ch.kshruns with the following default values:
« DCE Administration login
cell_admin

« DCE Administration password

January 17, 1997 13



DCE Testing Guide

-dce-

- Test Name
bkch

+ Clearinghouse Name
cellnaméthostname

Note that all the defaults can be changed by editing the test scripts and changing the
variable values.

13.2.2.4 Objects Created by “backup_ch.ksh”

Directories Created (in the current directory):
. Jtmp
« ./backup
. .llog
Temporary Files Created (in the current directory):
« ./tmp/bkch_hostnamepid STDOUT
« ./tmp/bkch_hostnamepid STDERR
Log Files Created (in the current directory):
« ./log/bkch_hostnamepid ERRORS
« .Jlog/bkch_hostnamepid SHORT
« ./log/bkch_hosthamepid FULL

13.2.2.5 Running “backup_ch.ksh”

backup__ch.kshis invoked as follows:
cd /dcetest/dcelocal/test/systest/admin/cds
tests/backup_ch.ksh

or:

tests/backup_ch.ksldirectory to_save CDS_clearinghouse_in

13-8 January 17, 1997



DCE System Tests not under TET

13.2.3 Restore Clearinghouse Automated Test

The purpose of theestore ch.kshtest is to show that clearinghouses can be restored
from a local backup.

13.2.3.1 Prerequisites foRunning “restore_ch.ksh”

The following things must be true in order to successfully runréstore ch.kshsystem
test:

« The test must be run as root, and the machine the test is being executed on must have
root access viahoststo all machines in the DCE cell.

- The test must be executed on a CDS server machine.

« There can be no CDS clients running DCE during the test except for a Security server
in a split server configuration.

Note: You should not execute this test on any CDS server which you cannot
afford to corrupt as a result of running the test. In some instances the CDS
clearinghouse can be corrupted if the test fails.

13.2.3.2 “restore_ch.ksh” Logic Flow

When invokedrestore_ch.kshperforms the following series of operations:
1. DCEIis stopped.
2. The master clearinghouse is backed up locally.
3. The backed up clearinghouse is restored.
4. DCEis started.

13.2.3.3 Default Values for “restore_ch.ksh”

restore_ch.kshruns with the following default values:
« DCE Administration login
cell_admin
« DCE Administration password

-dce-

January 17, 1997 3



DCE Testing Guide

- Test Name
rsch

« Clearinghouse Name
cellnaméthostname

Note that all the defaults can be changed by editing the test scripts and changing the
variable values.

13.2.3.4 Objects Created by “restore_ch.ksh”

Directories Created (in the current directory):
. Jtmp
« ./backup
. .llog
Temporary Files Created (in the current directory):
« .[tmp/rsch_hostnamepid STDOUT
« ./tmp/rsch_hostnamepid STDERR
Log Files Created (in the current directory):
« ./log/rsch_hosthnamepid ERRORS
« ./log/rsch_hosthamepid SHORT
« ./log/rsch_hosthamepid FULL

13.2.3.5 Running “restore_ch.ksh”

restore_ch.kshis invoked as follows:
cd /dcetest/dcelocal/test/systest/admin/cds
tests/restore_ch.kshdirectory _to_restore_CDS_clearinghouse_from

Note: The directory_to_restore_CDS_clearinghouse_fraghould contain the
files of a previously successfully backed up clearinghouse.

This script does not verify the presence of the files it is to restore, and it does not recover
the file to its original clearinghouse if there is a failure during the test.

13-10 January 17, 1997



DCE System Tests not under TET

13.2.4 Clearinghouse and Replica Checklist 1

The purpose of theep_ch_1 checklisttest is to do manipulations of CDS replicas and
clearinghouses.

13.2.4.1 Prerequisites for Performing “rep_ch 1 _checklist”

The following things must be true in order to successfully perform the
rep_ch_1 checklissystem test checklist steps:

The checklist must be performed as root, and the machine the checklist is being
executed on must have root access.si@ststo all machines in the DCE cell.

The checklist must be executed on the initial CDS server machine.

An additional CDS server is required on which to perform the checklist steps. There
can be no CDS clients running DCE while the steps are being performed, except for a
Security server in a split server configuration.

The test must have access to thgpectcommand.

Note: You should not execute this checklist on any CDS server which you cannot

afford to corrupt as a result of running the test steps. In some instances the
CDS clearinghouse can be corrupted if the test fails.

13.2.4.2 “rep_ch_1 checklist” Logic Flow

When performed, the steps iep_ch_1 checklistresult in the following series of
operations:

1.

© ©® N o o kM wDN

=
©

The master clearinghouse is verified

DCE is stopped on the remote and master machines

Clearinghouses on the remote and master machines are backed up

DCE is started on the master and remote machines

A test directory is created in the master clearinghouse

The test directory is validated

A test clearinghouse is created on the remote machine

A replica of the test directory is created and verified in the test clearinghouse
The test clearinghouse is verified on the remote machine

The test clearinghouse is verified on the master machine

January 17, 1997 11



DCE Testing Guide

11.

12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24,

The master clearinghouse is disabled, and the switch to the test clearinghouse is
verified on the master machine

The master clearinghouse is restarted and verified
The test clearinghouse is disabled on the remote machine
An attempt to skulk the test clearinghouse is made on the master machine

The switch from the test to the master clearinghouse is verified on the remote
machine

The test clearinghouse is restarted and verified on the remote machine

A new directory and object are added and verified on the master machine
The new directory and object are verified on the remote machine
Convergence is tested on the master and remote machines

The master replica is changed to the one located on the remote machine
The test directory replica is deleted on the local machine

DCE is stopped on the remote and master machines

The test clearinghouses are deleted

DCE is restarted on the master and remote machines

13.2.4.3 Default Values for “rep_ch_1_checklist”

13-12

rep_ch_1 checklistuns with the following default values:

DCE Administration login

cell_admin

DCE Administration password

-dce-

Root (superuser) password on additional server
systestl

Test Name

reps

Clearinghouse Name

cellnamethostname

January 17, 1997



DCE System Tests not under TET

13.2.4.4 Objects Created by “rep_ch_1 checklist”

Directories Created (in the current directory):
. Jtmp
« ./backup
. .Jlog
Temporary Files Created (in the current directory):
« ./tmp/reps_hostnamepid STDOUT
« ./tmp/reps_hostnamepid STDERR
Log Files Created (in the current directory):
« ./llog/reps_hostnamepid ERRORS
« .Jlog/reps hosthamepid SHORT
« .Jlog/reps_hostnamepid FULL

13.2.4.5 Performing “rep_ch_1 checklist”

Perform therep_ch_1 checklissteps as follows:
cd systest-rodadmin/cds/tests

Execute the steps in
rep_ch_1 checklist

as specified.

13.2.5 Clearinghouse and Replica Checklist 2

The purpose of theep_ch_2 checklistis to perform manipulations of CDS replicas and
clearinghouses.

13.2.5.1 Prerequisites for Performing “rep_ch 2_checklist”

The following things must be true in order to successfully perform the
rep_ch_2 checklissystem test checklist steps:

« The checklist must be performed as root, and the machine the checklist is being
executed on must have root access.si@ststo all machines in the DCE cell.

January 17, 1997 13



DCE Testing Guide

- The checklist must be executed on the initial CDS server machine.

« An additional CDS server is required on which to perform the checklist steps. There

can be no CDS clients running DCE while the steps are being performed, except for a
Security server in a split server configuration.

Note: You should not execute this checklist on any CDS server which you cannot

afford to corrupt as a result of performing the test steps. In some instances
the CDS clearinghouse can be corrupted if the test fails.

13.2.5.2 “rep_ch_2_checklist” Logic Flow

When performed, the steps iep_ch_2 checklistresult in the following series of

operations:

1. Atestdirectory and object are created and verified in the master clearinghouse

2. A readonly replica of the test directory is created in a clearinghouse located on a
second machine
The test directory is excluded from the master clearinghouse

4. The test directory is verified as accessible in the clearinghouse on the second
machine

5. The test directory on the master machine is made readonly

6. The clearinghouse on the second machine is disabled

7. The clearinghouse on the second machine is relocated to a third machine, enabled,

and verified

13.2.5.3 Performing “rep_ch_2_ checklist”

Perform therep_ch_2_ checklissteps as follows:

cd systest-rodadmin/cds/tests

Execute the steps in

rep_ch_2 checklist

as specified.

13.2.6 Intercell GDA Checklist

The purpose of théntercell_gda_checklistis to validate the response of servers and
clients when the GDA exits unexpectedly.

13-14

January 17, 1997



DCE System Tests not under TET

13.2.6.1 Prerequisites for Performing “intercell_gda_checklist”

The following things must be true in order to successfully perform the
intercell_gda_checklistsystem test checklist steps:

The checklist steps must be performed as root, and the machine the checklist is being
executed on must have root access.#i@ststo all machines in the DCE cell.

The checklist must be executed on the initial CDS server machine.
Thegdad must be configured in both cells.

The names given to the cells during configuration should be expressed in their full
DNS form (e.g.mycell.osf.org notmycell).

An additional CDS server is required on which to perform the checklist steps. There
can be no CDS clients running DCE while the steps are being performed, except for a
Security server in a split server configuration.

Note: You should not execute this checklist on any CDS server which you cannot

afford to corrupt as a result of performing the test steps. In some instances
the CDS clearinghouse can be corrupted if the test fails.

13.2.6.2 “intercell _gda_checklist”’Logic Flow

When performed, the steps intercell_gda_checklistresult in the following series of
operations:

1.

© N o o~ wDN

Information to enable configuration for intercell testing is generated
The DNS database is updated with intercell information

The intercell configuration is setup and verified ugigg edit

CDS intercell access is performed

The Global Directory Agent (GDAp@ad) is stopped

CDS intercell access is again performed

The Global Directory Agent (GDA)dad) is restarted

CDS intercell access is performed once again

13.2.6.3 Performing “intercell_gda_checklist”

Perform thentercell_gda_checkliststeps as follows:

cd systest-rodadmin/cds/tests

January 17, 1997 15



DCE Testing Guide

Execute the steps in
intercell_gda_checklist

as specified.

13.2.7 dcecp System Tests

Thedcecpsystem tests are implemented as a set of flm@cpscripts:

DCPSANOOL1 Implements the procedure to backup and restore the CDS nao&sp
using a local directory.

DCPSANO002 Implements the procedure to backup the CDS name space to a local
directory.

DCPSANO003 Implements the procedure to restore the CDS files that were backed up
by DCPSANOQO02 It expects to find all the namespace files that were
backed up bypCPSANO002

DCPSANO004 Implements the procedure to unconfigure a DCE client.

The first three scripts are installed at:
dce-root-dirinstall/platform/dcetest/dcel.2.2/test/systest/admin/cds/tests

For information on how to run these tests, see the
dce-root-dirinstall/platfornydcetest/dcel.2.2/test/systest/admin/cds/testssREADME

file.

The fourth script b CPSANO004 is installed in:
dce-root-dirinstall/platform/dcetest/dcel1.2.2/test/systest/admin/config

For information on how to run this test, see the
dce-root-dirinstall/platfornydcetest/dcel.2.2/test/systest/admin/config/README

file.

13.2.8 DFS Administrative Checklist

The purpose of thadmin_checklistis to exercise many of the administrative functions
associated with DFS. Note that this checklist does include testing of the backup
system.

13-16 January 17, 1997



DCE System Tests not under TET

13.2.8.1 Prerequisites for Performing “admin_checklist”

In order to successfully perform tredmin_checklist system test checklist steps, you
must have a multilserver DFS cell configured with both native and LFS aggregates
ready for configuring.

13.2.8.2 “admin_checklist” Logic Flow

When performed, the steps iadmin_checklist result in the following series of
operations:

1. Configure native filesystem into DFS
2. Create LFS aggregates/filesets
3. Create ACLs
4. Disable/Enable:
. aggregates
. filesets
. servers
- setuid capability
5. Update/Modify:
. aggregates
. filesets
« server keys
- cache
« ACLs
Start/Stop servers
Cleanup cache

Monitoring

© ©o N o

Dump/Restore

13.2.8.3 Performing “admin_checklist”

Perform theadmin_checkliststeps as follows:

cd systest-rodadmin/file/tests

January 17, 1997 17



DCE Testing Guide

Execute the steps in
admin_checkilist

as specified.

13.3 Global Directory System Tests

Testcasedcegdshd tests the shadowing functions of the GDS component of DCE.
Testcaseggds_xds_str_00ltests the operation of the threadsafe XDS, threadsafe XOM,
and threaded DUA subsystems of the DCE Global Directory Service (GDS).

13.3.1 dcegdshd

13-18

dcegdshdtests the shadowing functions of GDS. Specifically, it tests the ability of GDS

to maintain replicas (called “shadows” in GDS) of an object with a single, simple
attribute, in some number of DSAs in a GDS administrative domain, with updates being
done with what GDS considers to be “high” frequency (every 5, 10, 15, or 30 minutes).
dcegdshddoes not test the ability of GDS to shadow either subtrees or objects with more
complex attributes, nor does it test at any other update frequencies than those mentioned
above.

The syntax fodcegdshdis:
dcegdshd -dmaster_dsasshadow_dsa fu update_time]
or

dcegdshd[-h | -H]

where:

-C Specifies that the workstation logfiles be cleaned up (the default
is that this option is specified).

-e Specifies that the testcases listed on the command line be
excluded.

-h Specifies that a detailed usage message be displayed.

-H Specifies that input parameters be validated only.

-l loops Specifies that test be executed limopsnumber of iterations.

-t hours Specifies that test be executed faursnumber of hours.

-d master_dsa Specifies the DSA that will house the master copy of the object.

This DSA must already exist.

January 17, 1997



DCE System Tests not under TET

-sshadow_dsa Specifies DSA to shadow the object in. This DSA must already
exist (user can specify multipls options).

-u update_time Specifies (in minutes) the amount of time to allow to elapse
before propagating updates to first shadows. Default is 10
minutes.

Note: The granularity in update time is one of: 5, 10, 15, or 30 (minutes).

This test can be used for stress testing by specifying raopgtions.

13.3.1.1 Running the dcegdshd Driver

To run thedcegdshdsystem test, follow these steps:
1. Make sure that the following are available on each system involved in the test:
« systest-rodtools
This is the directory containing the test tools.
« systest-rodprofile.dcest

On the machine that will contain the master DSA, the following must be available
in addition to what is mentioned above:

« systest-rodtirectory/gds/dcegdshd
Directory the contains the test scripts and files.

Note that if you install the system tests usidgetest config all of the items
mentioned above should be automatically installed in their correct locations.

2. Modify the file:
systest-roddirectory/gds/dcegdshd/sTest.gds

to reflect the environment for the test. Change the strimgshine [1-n]in the
assignments of values to the variabiteach_1throughmach_n to be the names of

the machines at your site that are to participate in the system test. Note that the
machine assigned to variablmach_1 is considered the master for the GDS
administrative domain that is created by running WwldSetup.gdsscript. (This

master DSA is the DSA most stressed during the test run.) After these assignments
have been changed, you may wish also to change the names used in setting up the
test directory service, though this is not necessary. These names are stored in the
GDS_DSADNPREFIXvariable (insTest.gd$ in the following format:

GDS_DSADNPREFIX="country_name org_name org_unit_nadsa"

Change this assignment, if you wish, to reflect the country name, organization
name, and organizational unit name you prefer.

Make sure that an entry appears in the list assigned t&h8 HOSTCONFIG
variable for eachmach_1throughmach_n variable to which you have assigned a
system name. See the example versiosTalst.gds given below, to see how this is
done.

January 17, 1997 19



DCE Testing Guide

13-20

3. Copy the

systest-roddirectory/gds/dcegdshd/sTest.gds
file to all machines that will be involved in the test.
Source the
systest-rodprofile.dcest
environment file.
On the machine assigned to the varialviach_1in the sTest.gdsfile, enter the
following command:

ksh systest-rodtools/worldSetup.gdssystest-roddirectory/gds/dcegdshd/sTest.gds

—When executed, this script will first remove any existing GDS configuration
information on each system test machine for directory ID 2, and then configure
GDS on each machine, setting up a GDS administrative domain, with the master or
initial DSA on the machine specified by the variabh@ch_1in the sTest.gdfile.

The script will report on its progress, telling you what files are logging the progress
of setting up each machine involved in the test (this is in case you want to monitor
the progress directly). When all machines indicate setup is complete, the script
will display a “SETUP OK” message and exit. All the test machines are now
ready for testing. Note that all information on remote DSAs and objects is created
in the DIT and cache of directory ID 2.

Make sure that the following files exist on the machine specified by the variable
mach_1in thesTest.gddile:

« systest-rodtirectory/gds/dcegdshd/dcegdshl

. systest-rodtirectory/gds/dcegdshd/Alter_object.sv

« systest-rodtirectory/gds/dcegdshd/Create_object.sv
« systest-rodtirectory/gds/dcegdshd/Create_shadow.sv
« systest-rodtirectory/gds/dcegdshd/Delete_object.sv
« systest-rodtirectory/gds/dcegdshd/Remove_object.sv

Make sure that the following program exists on the machine specified by the
variablemach_1in thesTest.gddile:

systest-roddirectory/gds/dcegdshd/view_obj

On the machine containing the initial DSA, enter the following command:
systest-rodtirectory/gds/dcegdshd/dcegdshdptions

— whereoptionsare as specified fadcegdshdat the beginning of this section.
The script will report the environment in which it is running, where it is logging,
and so on. It will then start running trecegdshlscript, reporting on success or
failure at the end of each run, storing the log files in plassandfail directories,
and updating thpass-fail-logfile.

January 17, 1997



DCE System Tests not under TET

Note that wherdcegdshdis run, the object:
/C=us/O=0sf/OU=dce/CN=Mark

must not be present in the Directory Information Tree.

Note also that the format for specifying a DSA to the program is:
/country_nam#éorg_naméorg_unit_namélsabdsa _name

For the following 4-machine configuration:

mach_1 dcegaX(initial DSA)
mach_2 dcega2
mach_3 dcega3
mach_4 dceqa4d

dcegdshdwould be invoked as follows:

dcegdshd -t 48 -d /us/osf/dce/dsa/dceqal -s /us/osf/dce/dsa/dceqa2 \
-s Jus/osf/dce/dsa/dceqa3 -s /us/osf/dce/dsa/dceqad

13.3.1.2 Example Configuration File

Following are the contents of a configuration file imegdshd

nmacih_1=dcegal
nacih_2=dcega2
mach_3=dcega3
mach_4=dceqad

HOURS=12.0D
TINVE SERVERS=

TINVEE CLERKS=
NTP_SERVER=
NTP_CLIEENTS=

D6 SERVERS='mrach_1"
AUTH SERVERmach_1"
CELLNAMENO CH L
GATEWNYS=

QD5 REQYARS='@D5 DSADNPREFIXX (DS DUAPCRIBASE (DS DSAPCRIBASE G5 NCLIEENTS GDS HOSTOONAGS"
QD5 DSADNPREFX="ws osf dice dsa”

QD5 INWTTIAALDSA="2,mrach_1°

QD5 DR ID=2

GD5 DUAPORIBASE="2200"

QD5 DSAPORIBASEZ"2100"

D5 NQLIEENTS=16

January 17, 1997 121



DCE Testing Guide

@GD5 HOBTOONAG="mmaci_1:mame=samecir =1,C -SSrw,mach_1:ddir =2, i--Siw,macih_1"

GDS HOSTOONAG="$%GD5 HOSTOONAGS mach_2:mame=sameddir =1,C3 i-Siw,mracih_2:ddir=2, --Sw,mach_1"
GDS HOSTOONAG="$GD5 HOSTOONAGS mach_3:mame=samedir =1,C3 i-Siw,macih_3:ddir=2, -Sw,mach_1"
GDS HOSTOONAG="$%GD5 HOSTOONAGS machh_4:mame=samedir =1,C3 i-Siw,macih_4:ddir=2, -Sw,mach_1"

exportt mach_1 mech_2 mech_3 mach_4

exportt AALL MACHNES

exportt HHOURS TIME SERVERS TIM/E CLERKS NTP_SERVER NIP_CLIEENTS (DS SERVERS
exportt AAUTH SERVER CELLNAME GATEWYS QDS DSADNPREFIXK (DS INMITTIAALDSA
exportt GEDS DIR IID GDS DUAPORT GDS DSAPORIBASE QDS DSAPCRTL GDS DSAPCRI2
exportt DS HOSTOONAGS @G5 DUAPCRIBASE

13.3.1.3 dcegdshd and DSA Processes

An active GDS on any given machine consists of from three to five processes which
cooperate as a unit. From time to time, one or more of these processes may die (due to
system problems, network difficulties, or whatever), rendering GDS on the machine on
which this happens inoperative. Usually in such situations, deactivating and then
reactivating all the GDS processes will restore GDS to full functionalityegdshd in

order to avoid curtailed or useless test runs caused by instances of service failure, parses
the log from each run of thdcegdshiscript and attempts to reactivate GDS in this way

on any machine that could not be reached duringitegdshirun.

dcegdshdreports these restart attempts in the féstart_info. This file is copied, along

with the JOURNAL and spooalfile files from thedcegdshdrun, to thefail directory
named for the current iteration of the test. Thus the contents of this file can help you to
determine the reasons for a test failure, and also provide a measure of the stability of
GDS on the machines being tested.

13.3.1.4 Succed@riterion for dcegdshd

The success criterion fatcegdshlis: no failed updates to any of the DSAs containing
shadows. If you consider this too rigorous, you can modifydbegdshlscript to use
other criteria. To find the section of code where success or failure is currently decided,
editdcegdshland search for the second occurrence of the striB§T_FAILED .

13.3.2 gds_xds_str_001

The gds_xds_str_001test provides a means to verify the operation of the threadsafe
XDS, threadsafe XOM, and threaded DUA subsystems of the DCE Global Directory
Service (GDS). Thagyds_xds_str_001ltest uses thet test test driver (from the XDS

13-22 January 17, 1997



DCE System Tests not under TET

functional tests; see Chapter 6 for a description of the XDS functional tests) to execute a
specially constructed set of testcases that exercise the threadsafe features of XDS. The
gds_xds_str_00z2est files are located in the directory

systest-roddirectory/gds/gds_xds_str 001
in the source tree, and in the installed test tree.
Thegds_xds_str_0021est supports three levels of stress:
+ HIGH
- MEDIUM
+ LOW

The meaning of each of these levels is user-specified. The duration of the test run can be
specified as a number of hours or as a number of passes.

13.3.2.1 Prerequisites foRunning the Test

Thegds_xds_str_0021est requires the following to be runcessfully:
« rsh (or the equivalent) anctp access to all of the test machines

installation of GDS on all test machines

« installation of the system test tools on all test machines

« installation of the GDS system tests on all machines

- installation of the GDS functional tests on all test machines

« installation of the system test profile filprffile.dces) on all test machines

- modifications to theyds_xds_str_00ZXonfiguration file to make it correspond to the
local test environment.

13.3.2.2 Test Input

The test derives all of its runtime parameters from a datafile, and is scalable to any
number of machines and client processes. A sample datafile can be found at:

systest-roddirectory/gds/gds_xds_str001/gds_xds_str_001.data

13.3.2.3 Test Output

Thegds_xds_str_00kystem test produces the following output:

January 17, 1997 123



DCE Testing Guide

13-24

runlog.pid.date

pid.iterationpasslog

*.suxtlog

*.sud2log

* xtlog
*.d2log

This file contains output describing all of the parameters for the
test run, including the command line used to invoke the test,
output about progress in verifying the input to and environment
for the gds_xds_str_001test run, output about progress in
setting up the GDS configuration and testcase files for the test,
output showing when each test iteration started, and a one line
summary of the result from each iteration. This log also contains
the final statistics for the test run.

This file contains detailed information about the progress of a
test iteration. It contains output on progress in setting up the
GDS test tree for the test iteration, progress in starting the test
clients, whether clients exited, the results of the client runs, and
progress in cleaning up the GDS test tree.

This is thext_test standard output from the creation of the test
tree.

This is thext_test D2 logging output from the creation of the
test tree.

These contain thet_teststandard output from the test clients.

These contain thext_test D2 logging output from the test
clients.

The*xtlog and*d2log files have names in the following format:

hostiteration.client_numdriver_PID.cli_OSlog_typdog

where:
host
iteration
client_num

driver_PID

cli_0/s

log_type

is the name of the client machine
is the test iteration for which the client is being started
is the number assigned to this client

is the PID of thegds_xds_str_001driver invoking this
client

is the operating system on the client machine as reported
by uname(1)

is one ofsuxt, sud2, xt, ord2

For example, the client creating the test tree on an HP/UX machine for test iteration 3
might send itxt_teststandard output to the file:

hp1.2.3.4434 HP-UX.suxtlog

The runlog is created in the directory specified by the variahl®G_DIR in the
configuration file. Theper-iteration logs (i.e., all logs except for the runlog) are also
written in this directory during the iteration. After each iteration, the log files from that
iteration are either deleted or moved. The logs are deleted if the va@AIHFANUP is

set to 1 in the configuration filendthe iteration was successful. LEANUP is set to O

or if the iteration was not successful, the logs are moved to a directory naeration

January 17, 1997



DCE System Tests not under TET

under one of the following directories, which are created under the directory specified by
the variableLOG_BASE in the configuration file:

config_only contains logs from configuration only runs

error contains logs from iterations where errors occurred

failed contains logs from iterations that ran normally, but had client
failures

killed contains the log from the cleanup of the client machines and

GDS if a signal waseceived

passed contains logs from successful iterations

13.3.2.4 Execution Flow of Test

Thegds_xds_str_001est execution flow is as follows:

1. Readthe command line

This step gives the script the name of the data file which describes the test run. The
command line can also optionally specify that GDS is to be configured. Note that
normally GDS is configured only once (on the first invocation of the test), and that
this configuration is then used by subsequent invocations of the test.

2. Check variable settings

The variableVARLIST in the gds_xds_str_00ZIconfiguration file specifies a list

of variables that must be defined in order for the test to run. Each variable in this
list is checked to see if it has a value. The value of each variable that is set is
recorded in the runlog file. If the variabMARLIST , or any of the variables in the

list are undefined, a message indicating this is printed to the runlog and to the
standard output, and the script exits.

3. Setvariables and create directories

The variables used to run the test are derived from the values of the variables set in
the configuration file, and the log and temporary directories are created if they do
not yet exist.

4. Printthe “Hi” message

A message is printed to the runlog and the standard output that shows the time the
test started, all of the operation parameters, where logs will be written, what they
will be named, and where the programs the test uses are expected to be.

5. Setup the trap handler

The trap() function is called to setup a handler f&GHUP, SIGINT, and
SIGQUIT.

6. Build the client information file

January 17, 1997 125



DCE Testing Guide

13-26

10.

A file is built that describes the logical clients to be run for each iteration. First,
access to each client machine is verified. Second, the presence wf thet
program in the expected directory is verified. Third, a line for each logical client
assigned to each machine is generated in the client information file. This file
contains a line for each client of the following form:

client_numb machine_nameclient_OS

Set up GDS (if specified)

If the -G command line switch is specified, or the variaBl®NFIG_GDS s set to

1 in the configuration file, GDS will be configured for the test run on all the client
machines. The first machine in the list of machines assigned to the variable
CLI_MACHINES will be configured as the DSA that will be the server for the
test run, unless the variablenach_1 is assigned a machine name in the
configuration file.

Note: The xt_test program has hardcoded dependencies on the names of
the DSAs involved and the directory id that is used. This means that
the  values of the variables GDS_DSADNPREFIX,
GDS_INITIALDSA , and GDS_HOSTCONFIG in the
configuration file mushotbe changed.

Setup testcases

The testcases to be executed are setup on all of the test machines. Testcase setup
involves creating testcase files that cause the proper number of threads for the
specified stress level to be created by shetest program, and then propagating
these files to the client machines. See the section below on configuration variables
for more information on specifying the testcases to run.

Check for a GDS Configuration only run

If GDS configuration was specified, and the number of passes was specified as 0,
then the test is being run to configure GDS, but not to run any testcases. If this is
the case, just report, cleanup, and exit

Loop, executing testcases until finished
For each iteration the following steps are executed:
a. Checkto see if test loop should exit.
b. Pickthe “next” testcase to be run from the list of testcases to be executed.

c. Pick the “next” client to create and cleanup the GDS test tree from the list
of clients.

d. Create the new passlog name.
e. Printthe “BEGINNING iteration” message to the runlog and passlog.

f. Run the selected client to create the GDS test tree, and report on success or
failure in the passlog.

Start all the clients, reporting the start of each in the passlog.

h. Verify client startups.

January 17, 1997



DCE System Tests not under TET

i. Verify client exits.
Verify client exit status.
k. Cleanup the GDS test tree.
I. Cleanup the log files from the iteration.
m. Report the success or failure of the iteration.
n. Update the passed, failed, and error counters.

11. Remove the testcase files for this run and report statistics from the run

13.3.2.5 Test Options

The syntax of thgds_xds_str_00kystem test command line is:
gds_xds_str_001 -h-f config [G]

where:

-h print a usage message. This works for the regular or enhanced
command-line modes.

-f config specifies the path to thgds_xds_str_00ZXonfiguration file.

-G specifies that GDS is to be configured on all the test machines.

The -h option cannot be specified with any other option-Hfis not specified, thef
configoption is required.

There is also an enhanced command line interfacgd® xds_str_001 This interface

allows some of the parameters for the test to be specified on the command line; however,
specifying parameters in this way is not recommended as usual practice. The enhanced
command-line interface is enabled by creating a link (nagasd xds_str_001_glto the
gds_xds_str_001script, and then invoking the test using this link. For further
information on the enhanced interface, create the link and run the test with (hsage
message) option.

13.3.2.6 Data and Configuration Variables

This section describes in a general way the configuration variables that control the
execution of thegds_xds_str_00kystem test. For more details refer to the configuration
file at:

systest-roddirectory/gds/gds_xds_str001/gds_xds_str_001.data

« Required variables
As stated above, th#ARLIST variable describes all of the variables that must be
defined in order for the test to run. This list should be updated if required variables

January 17, 1997 17



DCE Testing Guide

13-28

are added to the configuration file, antlstbe updated if required variables are
deleted from the file.

Test machines and GDS configuration

The test machines should be specified by shell variatiash_1to mach_n (where

n is the number of machines participating in the test). The shell variable
CLI_MACHINES also should be coded with the names of all the test machines;
these can be hard-coded in the variable, or specified via the values of the single
machine variables $fnach_1 and so on). The variables containing the string
“GDS " in their names define the GDS configuration. In general, the only changes
you will probably want to make to the GDS configuration will be to specify the
names of the test machines; specify a different machine as the DSA server for the test
by assigning the name of that mchine to the variabkch_1; or specify a different
number of client processes; by changing the value of the
stress_levelGDS_NCLIENTS variables near the end of the file.

Testcase available and testcases to execute

Which testcases are to be executed is specified by the vari&@8d CASES in the
configuration file. The testcases that are available to be executed is specified by the
variableTESTCASE_LIST. The value of theTESTCASESvariable is a list of one

or more of the testcase names specified by the varidBI8STCASE_LIST in the
configuration file, or the string “variant”. If “variant” is specified, the test driver
cycles through all of the testcases specified by THESTCASE_LIST variable,
executing a different testcase in each iteration. If “variant” is not specified, the
driver will cycle through the testcases specified by TRESTCASESvariable.

Directories
The following variables specify the paths to the directories needed by the test:

TESTCASEDIR directory where the testcase files should be located, and
where the per-run testcase files will be created

BINDIR directory where thet_testbinary should be located

TMP_DIR directory where temporary files will be created

LOG_ROOT directory under which thegds_xds_str_0Oltest results
directory will be created

LOG_BASE directory under which all of theyds xds_str_00lresults
directories pass failed, error , etc.) will be created

LOG_DIR directory in which the runlog will be created and in which
the per-iteration files will be written during the course of the
iteration

STTOOLS _DIR directory where the system test tools are located

D2_LOGDIR directory (on both the local and the remote machines) in
which the D2 log output of thext test program will be
written

Wait Values

The following variables specify the amount of time to allow for certain operations to
complete, or to wait at some point in the test:

January 17, 1997



DCE System Tests not under TET

GDSSETUP_WAIT The amount of time, in minutes, to allow for the
configuration of GDS to complete. This value can be
adjusted to correspond to the number of machines you are
configuring. For example, a combination of two HP/9000-
700's, one RISC System/6000 and one DECpc 450ST will
take about 15 - 20 minutes to configure.

READY_WAIT Amount of time, in minutes, to wait for the client building or
removing the GDS test tree to complete, and to wait for the
clients to report ready.

EXIT_WAIT Amount of time, in minutes, to wait for the clients to report
that they are exiting.

ITERATION_SLEEP Amount of time, in seconds, to wait between test iterations.

The* WAIT variables specify the upper bounds on how long some phase of the test
should take. If the phase is not complete by the end of the specified wait period,
something is most likely hung. THEERATION_SLEEP value can be used to exert
more stress on the server, since if it is set high enough (i.e., at approximately 3
minutes or higher), the DSAs from each iteration will exit due to lack of activity.
This will in turn force the S-stub on the server to spawn a new group of DSAs for
each iteration, instead of allowing it to continue to reuse the DSAs from the previous
iteration(s). Note however that running the test in this fashion has been noted to
decrease the load on the DSAs.

+ Duration and Log Handling

The HOURS variable sets the time of the test run in hours, and @d&ANUP
variable specifies whether to save or remove logs from successful iterations. If the
test is to run for some number of passes, the number of passes is specified via the
PASSESvariable (which supersedéfOURS if both are specified).

. Stress Level Semantics

TheLOW_*, MEDIUM_* , andHIGH_* variables specify the meaning of the stress
levels LOW, MEDIUM , andHIGH respectively. For each stress level, the number

of client processes and number of threads per client process can be specified. The
*stress_levelGDS_NCLIENTS variables allow specification of the number of
client processes specified when GDS in configured. This nummstbe greater

than the number of threads per client, multiplied by the number of clients per system.

13.3.2.7 Example GDS Configuration

An example GDS configuration for the test is shown in the following table.

January 17, 1997 129



DCE Testing Guide

TABLE 13-1. Example Cell Configuration for gds_xds_str_001

Machine | DSA-name | Dir-id | GDS type default DSA | initial DSA

mach_1 dsa-ml 1 Client/Server  dsa-ml dsa-ml
2 Client dsa-m2 none

mach_2 dsa-m2 1 Client/Server  dsa-ml dsa-ml
2 Client/Server| dsa-m2 none

mach_3 hostname 1 Client/Server  dsa-ml dsa-ml
2 Client dsa-m2 none

mach_n hostname 1 Client/Server  dsa-ml dsa-ml
2 Client dsa-m2 none

Note: “hostname” in the above table means that the DSA name is the name of the
machine.

13.3.2.8 Running gds_xds_str_001

After all test prerequisites have been satisfied, the test can be executed with the
command:

gds_xds_str_001 -Eonfiguration_fileG

—which means to configure GDS before starting the test itself.
When runninggds_xds_str_001you should keep the following information in mind:

« If tracing is turned on (viagdssysadnm for the DSA server, DSA log files will
accumulate in the

dcelocalvar/directory/gds/adm/dsa/dirl

directory over the course of the test run. For long runs, if tracing is turned on, the logs
can consume large amounts of disk space. For example, over a 48 hour run, the logs
have been observed to consume approximately 70 megabytes of disk space. If you
are planning a long run with tracing turned on, make sure there is plenty of space
available for the log files. The directory can be a symbolic link to a partition with
more disk spce.

« If large numbers of clients and threads are to be used, you may experience problems
with limits on process table size and processes per id on the server side. This may
happen because the S-Stub must spawn a new DSA process for each client request it
receives when all DSAs are busy.

13-30 January 17, 1997



DCE System Tests not under TET

13.3.2.9 Analyzing Test Results

The results of runninggds_xds_str_00lcan be determined during the test run by
examining the runlog file for messages indicating that iterations failed or that errors were
encountered. Another method is to look for a directory naragdr or failed in the
LOG_BASE directory. The presence of either of these directories indicates that some
iterations either failed or encountered errors. When the test run is complete, the number
of iterations that passed, failed, or encountered errors is printed in the runlog. To
determine which iterations failed or encountered errors, examinerioe and failed
directories in theeOG_BASE directory.

13.3.2.10 Sample Configuration File

A samplegds_xds_str_00Xonfiguration file is located in the source tree at:

systest-roddirectory/gds/gds_xds_str001/gds_xds_str_001.data

13.4 DFS System Tests

The following sections describe the automated tests and checklists used for system
testing the DCE Distributed File Service, and how to set them up and run them.

A checklist is a series of instructions and manually-entered commands, together with a
description of the expected results of executing the commands. Checklists are used to
document test functions for which no automated test exists.

13.4.1 DFS System Test Cell Requirements

The following list shows the minimum cell requirements for running each of the DFS
system tests. The configurations and optional data file settings used are recorded in the

dce-root-dirproject/test.plans

subdirectory for each DCE release. Data files and log files for automated tests can be
found in the

dce-root-dirproject/test.results
directory.
dfs.maxfile and

dfs.maxdir Require a single DFS (server and client) machine. These
tests should be run both fodfsexported native

January 17, 1997 31



DCE Testing Guide

filesystems and for LFS filesystems.

dfs.glue Requires 2 or more DFS machines (1 combined server
and client; the others may be simply clients). The test
must be run on the server machine, and the server
machine must havdfsexported a native filesystem.

dfs.lock Requires 2 or more DFS machines (1 combined server
and client; the others may be simply clients). The test
can be run on any DFS machine and can use either
native or LFS filesystems.

dfs.read_write_all.main Requires 2 or more DFS machines (1 combined server
and client; the others may be simply clients). The test
can be run on any DFS machine, but there must be at
least one LFS aggregatiisexported.

dfs.block_frag Requires a single DFS (combined server and client)
machine with anexpendable LFS aggregate. This
aggregate will benewaggrd a number of times during
the test, so it must not contain needed filesets.

dfs.repfldb_checklist Requires 3 DFSfidb server) machines and 1 core server
machine. The test involves rebooting the machine
serving as théldb sync site, so this machineust notbe
providing the DCE core services (unless sufficient core
replication is in phce).

dfs.repfs_checklist Requires 2 DFS (server and client) machines and 3 LFS
aggregates.

dfs.sec.cross_bind_checklist Requires 2 DFS (server and client) machines in separate
cells.

dfs.wan_checklist Requires 2 DFS (server and client) machines in separate

cells across a WAN connectioand an additional DFS
(client) machine across a WAN connection to a server in
the same cell.

13.4.2 Installing the DFSSystem Tests and Checklists

The DFS system tests are installed wditetest_configSee “Installing the DCE System
Tests”, in Chapter 11, for instructions on runnidgetest_config

13.4.3 dfs.glue

Thedfs.gluetest tests the DFS glue code by accessing directories and files via their UFS
and DFS paths.

13-32 January 17, 1997



DCE System Tests not under TET

13.4.3.1 Syntax

Thedfs.gluesystem test is invoked as follows:
dfs.glue[-f ] datafile[-t] hours_of operation

Where:
datafile
Specifies the name of a datafile. A sample can be found at:
systest-rodfile/glue.data
You should create one datafile pfsexported UFS partition.
hours_of_operation

An integer value that specifies the number of hours of continuous operation
desired.

13.4.3.2 Prerequisites foRunning the “dfs.glue” System Test

In order for you to successfully run ttis.gluetest, the following things must be true:

« The local machine is both the file server for the UFS/DFS path variables in the data
file anda DFS client.

« You are currently logged in as UNIX user and DCE principal with “root” read and
write access to the UFS/DFS paths asld (remote shell) permission to all machines
specified by theMACHINES datafile variable.

« There is sufficient space to run the test (see below).

« Any data written via the DFS path is visible to aMACHINES after
MAXTIME_DFSUPDATE seconds.

« Unauthenticated users have read and execute permission to the DFS path.

13.4.3.3 Space Required for Running the “dfs.glue” Test

The significant space requirements for runnitigiglueare as follows.

« Each test file created bijlewnr (the program called byifs.glueto write and read
files) will be:

8193 bytes NUMFILEWRITES

large (whereNUMFILEWRITES is a variable whose value is specified in the
dfs.glue datafiles). Note that the value 8193 can be overridden by specifying a

January 17, 1997 133



DCE Testing Guide

different value via theb parameter tdilewnr.

Each test directory created lborwrite.sh (the script called bylfs.glueto write test
directory entries) will contain a copy of the host kernel. Note that you can override
this by specifying an alternate “large” file tdirwrite.sh via the-lI parameter, or by
specifying a different value for theARGE_FILE datafile variable.

The maximum number of test files and test directories that will exist at any given
time during the test can be determined by multiplying the value of the datafile
variableMACHINES by the value of the datafile variabMUMPROCPERMACH .

13.4.3.4 Components of “dfs.glue”

Thedfs.gluetest alternates between reading and writing files and directories locally and
remotely via their UFS and DFS paths; the test components for writing and reading (i.e.,
verifying what was written) are:

systest-rodfile/filewnr
systest-rodfile/dirwrite.sh
systest-rodfile/dirread
dce-root-dirdce/src/test/file/cache_mgr/spoke

dce-root-dirdce/src/test/file/cache_mgr/hub

13.4.4 dfs.lock

The dfs.lock test script uses thilewnr program to test if whole file shared read locks
and exclusive write locks can be obtained and honored correctly in DFS fesiti¢)

calls. That is, iNCLIENTS processes per machine all concurrently request an exclusive
write lock to the same DFS file, does only one succeed? ANNCIEIENTS processes

per machine all concurrently request a shared read lock to the same DFS file, do all
succeed?

Concurrency is achieved by starting all the processes sequentially but having them all
wait for the existence of a file in DFS before attempting to access the test file.

13.4.4.1 Syntax

dfs.lockis invoked as follows:

dfs.lock [-f] datafile[-t] hours_of operation

13-34

January 17, 1997



DCE System Tests not under TET

Where:
datafile

Specifies the name of a datafile. This script can be executeddngdFS client
machine. A sample datafile can be found at:

systest-rodfile/lock.data
hours_of_operation

Specifies number of hours test is to run.

13.4.4.2 Prerequisites foRunning the “dfs.lock” System Test

In order for you to successfully run ttis.lock test, the following things must be true:

« You are currently logged in as a UNIX user and DCE principal with read and write
access to the DFS path arsh (remote shell) permission to all machines specified by
theCLI_MACHINES datafile variable.

« The DCE principal specified by tHeRINC datafile variable (see below) is valid and
has read and write access to the DFS path.

« There is sufficient space to run the test (see below).

13.4.4.3 Space Required for Running the “dfs.lock” Test

The only significant space requirement for runnilig.lock is that the host machine must
contain:

8193 *NUMFILEWRITES bytes

(where NUMFILEWRITES is a variable whose value is specified in thés.lock
datafile).

13.4.4.4 Components of “dfs.lock”

Thedfs.lock test uses:
systest-rodfile/filewnr

to perform writes, reads and lock operations.

January 17, 1997 135



DCE Testing Guide

13.4.5 dfs.maxdir

This test creates, reads and deletes a large directory with various entries (symbolic links,
hard links, fifo file, etc). The bulk of the entries are simple ASCII files. Directory size and
location are specified in a data file. The test verifies that the various entries can be
created and read scessfully.

The test uses thdirwrite.sh anddirread test components. An example data file can be
found at:

systest-rodfile/maxdir.data

The test is invoked as follows:
Jdfs.maxdir [-f] config_file> log_file2>&1 &

If the test runs successfully to completion, the last line ofrttexdir.log file will contain
the string “PASSED”.

13.4.6 dfs.maxfile

This test creates, reads and deletes a large file. The test invokidewhe program with
switches based on the contents of a data file. Note that files creaféeioy consist of
“blocks” of bytes that are empty except for the specified pattern, and that these blocks
are read randomly. An example data file can be found at:

systest-rodfile/maxfile.data

The test can be invoked as follows:
Jdfs.maxfile[-f] config_file> log_file2>&1 &

If the test runs successfully to completion, the last line of I file will contain the
string “PASSED".

13.4.7 dfs.block frag

This test exercises all the block-fragment combinations by performing the following
operations on an LFS aggregate:

« newaggr
. dfsexport
. fts create

. dfsexport -detach

13-36 January 17, 1997



DCE System Tests not under TET

« salvage

Block-fragment combinations used are based on ranges specified in a data file. The data
file also specifies log sizes and fileset sizes. Future versions of the test may include fileset
and replication operations. An example data file can be found at:

systest-rodfile/block_frag.data

The test can be invoked as follows:
Jdfs.block_frag[-f] config_file

If the test runs successfully to completion, the last line of the test output will contain the
string “PASSED”".

13.4.8 dfs.read_write_all.main

This test emulates concurrent but independent end user activity in LFS filesets in DFS.
The test establishes DCE principals and “home” filesets for each principal, containing a
work script. The test then logs in as each DCE principal on client machines and runs the
work script for the specified number of hours. The data file specifies aggregates,
aggregate sizes, server machines, client machines, principal names, uids and passwords.
An example data file can be found at:

systest-rodfile/dfs.read.write.data
An example work script can be found at:
systest-rodfile/do.ksh

The test can be invoked as follows:
Jdfs.read_write_all.main[-f] config_file[-t] hours_of operatiomr 2>&1 &

If the test runs successfully to completion, the last line of the test output will contain the
string “PASSED".

13.4.9 filewnr.c

Thefilewnr.c program is the basic file write-and-read module for the DFS system tests.

filewnr simply opens the specified file, and then writes and/or reads a specified pattern,
at a specified offset in the file, in “blocks” of bytes for all blocks in the file. When
allowed to run with all defaultsfilewnr will create an 8 kilobyte+ file containing
“holes”. i.e., unwritten bytes.

The program operates on a single file. It is called bydfeglueanddfs.lock scripts to
verify the ability to write, read and lock a file. Its unique characteristics are that it does
not write every byte of the file and that it performs random rather than sequential reads.

January 17, 1997 137



DCE Testing Guide

13.4.9.1 Syntax

filewnr accepts the following parameters and options:

TABLE 13-2. filewnr.c Parameters and Values

Parameter | Values Description
-b size integer Size (in bytes) of blocks to read and/or write
-d none Delete file when finished

-f filename valid pathname  Name of file to read and/or write

-I locktype EW Exclusive write lock

SR Shared read lock
-h none Print help message
-C integer ID number assigned to client by driver
-C character string  Continuation message string
-T character string] Termination message for wait file
-n bnum integer Number of blocks to read and/or write
-0 offset integer Byte offset at which to read and/or write
-p pattern character string  Data to read and/or write
-r none Read only flag
-srange integer Number of seconds to sleep while waiting
-v none Verbose output flag

If specified, following data is logged:
Parameters used
Test successes and failures
Output is to stdout; test failure messages to stderr

-w filename | valid pathname Do not start until specified file exists

13.4.9.2 Logic Flow of “filewnr.c”

When invokedfilewnr performs the following series of actions:

13-38 January 17, 1997



DCE System Tests not under TET

if (-w flag was specified)
loop untilfile_to_wait_forexists

if (-r flag wasnot specified)
open file (withlocktypespecified witht| flag if specified)
exit with failure if unable to obtain lock (i.e., don't block)

if (continuation message was specified)
inspect the wait file for specified string:

if (termination message is found)
exit

for each block:
write (patternspecified with-p flag) at pffset
specified byo flag)
close file
open file (withlocktypespecified with-l flag if specified)

exit with failure if unable to obtain lock (i.e., don't block)

if (continuation message was specified)
inspect the wait file for specified string:

if (termination message is found)
exit

for each block (randomly chosen):
readpatternlength number of bytes afffset
compare what was read pattern

close file

13.4.9.3 “filewnr” Program Output
The output ofiilewnr is one of the following exit values:
Value Meaning

0 SUCCESS
1 FAILURE
2 USAGE

January 17, 1997 139



DCE Testing Guide

3 BAD_OPTIONS
4 BAD_WAIT
5 BAD_LOCK

If the -v (verbose) flag is specifiedijlewnr’s invocation parameters and operation
success/failure messages will be logged to standard output. If the program is compiled
with the PERROR _is_perror flag, error output will be sent tetderr; otherwise it will

be sent testdout (the default, and necessary for the operatiodfeflock).

13.4.10 dirread.c

Thedirread.c program is the read module for DFS directory integrity system testing.

dirread is passed an input file of directory entries (one entry per line) and the name of a
test directory in which to find the entries. The program then verifies, usingetugir()

call, that all the entries do in fact exist in the test directory, and that no other entries exist
in the test directory.

The program can be used in conjunction with the sadipivrite.sh to verify directory
contents. It will accept as input the output file dirwrite.sh and verify that the
supposedly just-written entries do exist.

13.4.10.1 Syntax

dirread accepts the following parameters and options:

13-40 January 17, 1997



DCE System Tests not under TET

TABLE 13-3. dirread.c Parameters and Values

Parameter Values Description

-i inputfile Valid file pathname File from which to read

-p parentdir Valid directory pathname  Directory in which to
find testdir

-n nr_entries| integer Number of directory entries
to read

-t testdir Valid directory pathname  Directory which contains

file entries to read

-d none If specified, entries and testdir
are deleted when program
completes execution

-v none Verbose output flag

13.4.10.2 Logic Flow of “drread.c”

When invokeddirread performs the following series of operations:
read {nputfile specified with-i flag) into an array
readdir the test directory, marking array entries as found:
if there is a directory entry that is not in the array
report an error
if there is an array entry that is not in the directory
report an error
if an entry is found in the directory more than once
report an error
if deleting test directory:
readdir the test directory, marking array entries as deleted
stat entry
rmdir directory entry

unlink non-directory entry

13.4.10.3 “dirread” Program Output

January 17, 1997 11



DCE Testing Guide

The normal output oflirread is one of the following exit values:

Value Meaning

SUCCESS

FAILURE

USAGE

chdir to parentdirfailed
chdir to testdirfailed
inputfileerror

file close error

malloc error

directory open error

© 0O N O O b~ Ww N - O

closetestdirerror

rmdir testdirerror

=
o

11 staterror

If the -v (verbose) flag is specifiedjirread’s invocation parameters and operation
success/failure messages will be logged to standard output (failure messages are logged
to standard error).

13.4.11 dirwrite.sh

Thedirwrite.sh script is the write module for the DFS directory integrity system test.

dirwrite.sh simply creates a test directory at a specified or default path and fills it with
the specified (or default) number of entries. The minimum number of entries is six (6).
These are:

- a‘“large” file (by default, the kernel)

an empty file

a directory
a hard link

a symbolic link

«+ aspecial file (mkfifo)
Any subsequent files created (UupN@WMDIRENTRIES ) are all small ASCII files.

In addition to filling the test directorydirwrite.sh also performs the following
operations on the directory:

-Cp

13-42 January 17, 1997



- mv
- chown
« chgrp

- chmod

DCE System Tests not under TET

The return status of each operation is checked dingrrite.sh exits immediately after

any detected failure.

13.4.11.1 Syntax

dirwrite.sh accepts the following parameters and options:
TABLE 13-4. dirwrite.sh Parameters and Values

Parameter | Values Description
-r none Remove test directory when finished
-h none Help flag: Display a usage message
-p valid pathname| Specifies name of parent directory in which
to create test directory
Default is current directory.
-t valid pathname| Specifies name of test directory to create
Default name is: <hostname_PID>_dir
-n integer Specifies number of entries to create
in test directory
Default is 5000
-l valid pathname| Specifies pathname of a “large file”
to place in test directory
-0 valid pathname| Specifies name of file in which to
output a listing of contents of test
directory
Default is <test_directory>/CONTENTS
13.4.11.2 Logic Flow of “dirwrite.sh”
When invokeddirwrite.sh performs the following series of operations:
1. create adirectory
2. chmodthe directory
3. chgrp the directory
January 17, 1997 33



DCE Testing Guide

4. chownthe directory
create links to the directory
copy the directory

5

6

7. move the directory

8. fill the directory (includes usingp, In, touch, mkdir , mkfifo, rm, rmdir )
9

(if specified) remove the directorynf -rf )

13.4.11.3 “dirwrite.sh” Usage Example

Following is an example of callindirwrite.sh directly:
dirwrite.sh -p /:/ctd -t test_dir -n 500 -I /vmunix -o /:/ctd/test_dir_lIs

This command line specifies the following:
« The test directory’s parent directory has the following pathname:
[:Ictd

Note that the parent directory must exisfore you rundirwrite.sh, and you must
have write permission for this directory.

« Create the test directory with the following pathname:
[:/ctd/test_dir

« Create 500 entries in the test directory.

« Use/vmunix as the “large” file.

« Output a listing of the test directory’s contents to:
[:/ctd/test_dir_lIs

13.4.11.4 “dirwrite.sh” Output

If the test directory was not specified to be removed, the specifieebflmutput file will
contain a listing of the test directory’s contents.

If a command failsdirwrite.sh exits with a message to standard output announcing the
failure.

13-44 January 17, 1997



DCE System Tests not under TET

13.4.12 dfs.fmul

The dfs.fmul test currently tests partial file locking, blocking while locked, and
unlocking by using RPC from the client to the servers.

The test consists of three modules:
« dfs.fmul (Top level script not yet implemented)
Tests fileset move under load.
« fmul.client
Client module fordfs.fmul.
« fmul.server

Server module fodfs.fmul.

13.4.12.1 Syntax

Thedfs.fmul system test is invoked as follows:

For each server:
fmul.server [-d]
For the client:
fmul.client -f datafile-snumber_of servers lockfile-p lockfile_path[-d]

Where:

-d Specifies additional output useful for debugging.

-f datafile Specifies the name of a datafile.
snumber_of_serverSpecifies the total number of servers required.
-n lockfile Specifies the name of the file created and locked by test.

-p lockfile_pathSpecifies the path to the lockfile.

13.4.12.2 Prerequisites foRunning the dfs.fmul

In order for you to successfully run ttis.fmul test, the following things must be true:

- All machines used for the client and servers must be able to read and write the
lockfile specified in the arguments fimul.client.

January 17, 1997 a5



DCE Testing Guide

« You are currently logged in as UNIX user root and DCE princigell_admin.

« The appropriate number of servers must be started before the client. More than one
server may run on an individual machine.

13.4.13 DFS System Testing Checklists

The present section describes checklists used for system testing DCE administrative and
distributed file system functions.

A checklist is a series of instructions and the expected results of following those
instructions. Checklists are used to document how to test functions for which no
automated test currently exists.

13.4.13.1 dfs.repfs_checklist

Steps to follow for setting up and testing replicated filesets. At the minimum, 2 machines
are required, both DFS servers, one as both client and server.

The testing includes:
« multiple read/write access to a LFS fileset that is replicated
- verifying both release and scheduled replication
. disabling and re-enabling the primary (r/w) fileset

« disabling and re-enabling a secondary (read-only) fileset

13.4.13.2 dfs.repfldb_checklist

Steps to follow for setting up and testing replicated fileset location database servers. At
the minimum, 3 machines are required, each configured as a fileset location database
server.

The testing includes:
« multiple read/write access to both native and LFS filesets
- fileset manipulation (cloning, renaming, moving)

« disabling and re-enabling one or more fileset location database servers.

13-46 January 17, 1997



DCE System Tests not under TET

13.4.13.3 dfs.wan_checklist

Steps to follow for setting up and testing wide-area network access to DFS. A minimum
of 2 machines, one at each end of a wide-area network, is required for the test.

The testing includes:
- intra-cellaccess

- cross-cellaccess

13.4.13.4 dfs.sec.cross_bind_checklist

Steps to follow for setting up and testing cross-cell DFS access with ACLs. A minimum
of 2 machines, each configured in a different cell, is required for the test.

The testing includes:
« cross-cell write access (denied/granted)

« cross-cell read access (denied/granted)

13.5 Security Delegation Tests

There are two security delegation system tests that are not run under TET. They are
described in the following two subsections.

13.5.1 digstr001

digstrO01is a multi-delegate test of delegation. See the
dce-root-dirdce/src/test/systest/security/dlgstr001/README

file for details on how to run it.

13.5.2 dlgcf002

digcf002is an ACL and compatibility delegation system test. See the
dce-root-dirdce/src/test/systest/security/dlgcfg002/README

January 17, 1997 ra7



DCE Testing Guide

file for details on how to run it.

13.6 RPC-CDS System Test

Therpc.cds.3system test is designed, as its name suggests, to stress the RPC and CDS
components of the DCE software.

The test first determines the maximum number of concurrent calls that the server can
handle, using no authentication. The maximum number of concurrent calls has been
reached when clients start receiving the stajus s_server_too_busy(if the client is

using a connection-oriented protocol) oc_s _comm_failure (if the client is using a
connectionless protocol) in response to calls to the server.

After the maximum for concurrent calls has been determined, the test loops, importing a
server binding from a different CDS object on each loop, and using that binding to
request data from the server (the data consists of a conformant structure containing an
array of strings, modelled as a personal calendar). During this looping, the CDS cache
data maintained on behalf of the clients is frequently invalidated in order to force the
CDS clerk to obtain new information from the cell clearinghouse.

The rpc.cds.3system test exerts stress on the RPC component by making many remote
procedure calls passing a complex data type at some specified level of authentication.
The test exerts stress on the CDS component by executing many namespace lookups and
binding import operations, forcing the use of group attributes to resolve binding searches,
and forcing many namespace searches to resolve names by frequently invalidating the
contents of the CD8ache.

13.6.1 Features of the RPC-CDS System Test

Some special features of thgc.cds.3system test are:
« Instant status reports on receiptIGQUIT
« Toggling of debug output on receipt StGHUP
« Graceful shutdown on receipt 8IGINT

13.6.2 Logic Flow of RPC-CDS System Test Setup

In outline, the operation apc.cds.3_setup.slis as follows:
1. Checks to make sure that the user has a valid identitgldsadmin.

2. Checks to make sure that all of the variables used by the setup script are assigned
values in the configuration file.

13-48 January 17, 1997



DCE System Tests not under TET

Creates the client and server principals.

4. Creates the client and server accounts and keytab files. If the path to the keytab file
does not exist, the script attempts to create it. Note that you will be prompted for
the cell_admin password twice during this part of the setup.

5. Creates the CDS directory into which the server interface entry will be exported.

6. Attempts to create a client keytab file on any systems named in the configuration
file (or via the-r command line option) as client machines in the test.

7. Attempts to create a server keytab file on any systems named in the configuration
file (or via the-R command line option) as server machines in the test.

Therpc.cds.3server binaryrpc.cds.3_sry exports to the CDS namespace a number of
objects that refer, via the object UUID in each entry, to one of the calendars that the
server has data for.

In order to make use of the server easier, the object names are of the form:
rpccds3_caN

—that is, the stringpccds3_calwith a numeric suffix.

13.6.3 Server Side Logic Flow

The rpc.cds.3_srvbinary implements the server side of thae.cds.3 system test. The
flow of logic in the server is as follows:

1. Parse the command line.
2. Read the configuration file specified by theommand line parameter.
3. Register authorization information.

The following step is executed only if th@c.cds.3_smain.cobject was compiled with
the DRPCCDS3_DO_LOGIN switch:

4, Establish the server identity.

If the rpc.cds.3_smain.cobject was not compiled with thBRPCCDS3 DO_LOGIN
switch then the following step is executed:

4, Get the login context for the current identity.
The main line of the test logic flow resumes with step 5:

5. Initialize the mutex and condition variables for thiread cond_timedwait()
call that controls the duration of the RPCs.

If the rpc.cds.3_smain.o  object was compiled with the
DRPCCDS3_AUTO_REFRESHSswitch, then the following four steps are executed:

6. Initialize the mutex and condition variables for ththread cond_timedwait()
call that is used to time identity refreshes.

7. Get the expiration time of the server’s current identity, and from it calculate the
ticket lifetime.

January 17, 1997 a9



DCE Testing Guide

13-50

8.

9.

Save the encrypted key from the key returnedsbg key mgmt_get key(in
order to use it when refreshing the server identity.

Spawn the thread that will maintain the server identity.

The main line of the test logic flow resumes with Step 10:

10.
11.

12.

Spawn the thread that will catch and handle signals for the process.

Read the calendar data files specified on the command line or in the
configuration file, and load the calendar data into an internal array. Note that the
number of calendar data files does not have to be the same as the number of
calendars. If the number of data files is smaller then the number of calendar
objects to be exported to the namespace, then in some cases more than one
namespace entry will refer to a single calendar. This convention allows the user
to specify that many objects are to be created without having to specify many
calendar data files.

Loop through the range of humbers specified by the sequence start and number
of calendars (specified respectively witRPCCDS3_SRV_CALSEQ and
RPCCDS3_SRV_NCALS in the configuration file) to be managed by this
server.

For each number in the range of numbers mentioned in the previous step above, the test
now does the following:

1.

Construct the CDS name of the calendar object that will be associated with that
number. This name is of the form:

CDS_PATHrpccds3_cahumber

Get a UUID for the calendar object. If the calendar object already exists in the
CDS namespace, then the UUID from the existing entry is used; if the entry does
not exist, or if it exists but has no UUID in it, then one of two things can happen:

. If the calendar that is to be associated with the CDS entry already has a
UUID associated with it, then that UUID is used.

« If the calendar that is to be associated with the CDS entry has not yet had a
UUID associated with it, then a new UUID is generated.

If the CDS entry exists and has a UUID in it and the calendar has a UUID
associated with it, then if the UUIDs match, that UUID is used; if the UUIDs
don't match, then the old UUID is removed from the object, and the UUID from
the calendar is used.

If the UUID is not from the namespace entry, then the UUID is exported to the
namespace entry (this has the side effect of creating the namespace entry if does
not already exist).

If the server object UUID vector does not yet contain the UUID, then the UUID
is added to the server object UUID vector.

The CDS name of the CDS server entry is added to the group attribute of the
CDS object.

The server obtains binding handles and exports them to the namespace entry
specified in the configuration file.

January 17, 1997



DCE System Tests not under TET

The server listens for client requests for calendar data.

8. When a client call request is received, the server extracts the object UUID from
the client binding and searches the internal array of calendars for a calendar
associated with that UUID. If such a calendar is found, then the calendar data is
returned to the client.

Note that during the server's run, information on total calls handled, calls that passed and
failed, number of id refreshes, and the last time the id was refreshed can be obtained by
sendingSIGQUIT to the server process. This report is also generated if the server is
killed with SIGINT.

13.6.4 Client Side Logic Flow

Following is a detailed list of the steps the client performs:

1. Gets values for operational parameters by reading the configuration file, the
name of which by default ispc.cds.3.conf or it can be passed in the command
line via the-f option.

2. Assumes the client principal identity specified in the configuration file.
Sets various strings for reporting, such as hostname and operating system.

4, Looks in the CDS namespace for an existing entry forrfheecds.3 interface
(defined in the configuration file). If a CDS namespace entry is found, then all
the binding handles thatrpc_binding_import_next() will return are
sequentially imported, and apc_mgmt_is_server_listening()call is made to
verify that the binding is usable. This step ensures that the later steps will find
some usable bindings at the server, and that the server is alive.

5. If a protocol is specified, converts the binding handle to a string binding and
parses it to find the protocol type.

6. Looks for the synchronization file and sleeps after finding it, in order to
synchronize startup of its RPCs.

7. Makes the RPC. If theb flag was specified, the client checks the return status
from the call and exits with the appropriate value, as described above. If the
client is running in stress mode, the status is checked, counts coesses,
failures, total calls and call times are updated, and the next RPC is made.

13.6.5 Parameters and Options for the RPC-CDS System Test

Therpc.cds.3_setup.stscript accepts the following command line switches.

January 17, 1997 51



DCE Testing Guide

TABLE 13-5. Command Line Switches for rpc.cds.3_setup.sh

n

Parameter | Function Default value

-B path Sets the path to the rpc.cds.3 The value of RPCCDS3_BIN_DIRPATH in
binaries on the remote machine  the configuration file.
or machines.

-f path Sets the path to the rpc.cds.3 The path to the rpc.cds.3 binaries
configuration file on the on the remote machine(s).

-r mach Adds a machine to be The value of RPCCDS3_CLI_MACHINES
configured for running the the configuration file.
test’s client side.

-R mach Adds a machine to be The value of RPCCDS3_SRV_MACHINES in
configured for running the the configuration file.
test's server side.

-l Specifies local setup None.
only.

Therpc.cds.3_srvexecutable accepts the following command line switches.

TABLE 13-6. Parameters for rpc.cds.3_srv

Specification in

Parameter Option | Configuration File Values

Directory for calendar data -D not specified Default is ™"

files

Calendar data file list -C RPCCDS3_SRV_CAL_DATA | List of file names separatec

with spaces.

)

Configuration file
pathname

-f not specified

path

Protection level for RPCs | -1

RPCCDS3_PROT_LEVEL

conn, call, pkt, integ, priv
Default is priv

by server

Number of calendars to bg -n
exported to the namespace

RPCCDS3_SRV_NCALS

any number
Default is 200

cds calendars

Initial sequence number of -I

RPCCDS3_SRV_CALSEQ

any number

Default is 1

13-52

January 17, 1997



DCE System Tests not under TET

TABLE 13-7. Flags for rpc.cds.3_srv

Parameter Option
Debug on -d
Let epv default -e

Replace any existing uuids -r
use only one of -r or -n

January 17, 1997 53



DCE Testing Guide

Therpc.cds.3_cliexecutable accepts the following command line switches.
TABLE 13-8. Parameters for rpc.cds.3_cli

Specification in

Parameter Option | Configuration File Values

Directory for calendar data -D not specified Default is ™"

files

Calendar data file list -C RPCCDS3_SRV_CAL_DATA list of file names separate
with spaces

Protocol to use -P RPCCDS3 PROT_LEVEL datagram or connection
Sync file name -S not specified file name
Configuration file -f not specified path

pathname

Last client flag -L

Protection level for RPCs -1 RPCCDS3 PROT_LEVEL conn, call, pkt, integ, priv
Default is priv

Number of passes -p not specified any number
(cannot be used with

time interval or boundary mode

Hours to execute (plus -h RPCCDS3 CLI_DEF_RUN_INTVL any number
minutes if -m specified) Default is 48
Minutes to execute (plus -m not specified any number

hours if -h specified)

Report interval (in -i RPCCDS3_CLI_DEF_REP_INTVL any number
passes if -p specified, Default is 60

in calendar imports if -r minutes or passes
specified, in minutes if

-m or -h specified)

Number of calendars to be -n RPCCDS3_SRV_NCALS any number
exported to the namespace Default is 200
by server

Age in minutes for cds cache | -a RPCCDS3 _CLI_CDS_CACHE_AGE | any number

data Default is 5

Initial sequence number of -l RPCCDS3_SRV_CALSEQ any number

cds calendars Default is 1
Starting sequence number -S RPCCDS3_SRV_CALSEQ any number

for calendars exported by Defaultis 1

the server

13-54

January 17, 1997




DCE System Tests not under TET

TABLE 13-9. Flags for rpc.cds.3_cli

Parameter Option

Boundary mode -b
(not allowed to do boundary
mode with -h -i -p or -m

options)
Debug on -d
Test all bindings -t

13.6.6 Compile-Time Switches for Optional Functionality

There are several areas of optional functionality available inrpieecds.3 system test

that can be used to expand the scope of the test or to provide additional runtime
information. These areas of optional functionality are compiled into the program via the
definition of tags which can be specified in either of two ways:

« On thebuild command line; for example:
% build -DRPCCDS3_ALL_OPTS
« In the environment variabl€EENV; for example (in a C shell):

% setenv CENV RPCCDS3_ALL_DEBUGS
% build

The defaultuild flag value iSRPCCDS3_ALL_OPTS

The table below lists the supported compiler flags, the functionality that they control, and
the operation of the test depending on whether the flag is or is not specified.

January 17, 1997 55



DCE Testing Guide

TABLE 13-10. Compile-Time Switches for rpc.cds.3

Flag

Functionality

Test Operation

RPCCDS3_KEEP_SYMBOLS

Keeps debugging symbol
in compiled objects

5

If defined, code is compiled with debuggi
symbols; else debugging symbols usually
stripped from objects.

RPCCDS3_ID_REFR_DEBUG

Print ID refresh

If defined, code is compiled to

nce

messages cause messages about identity maintenar
activity to be printed.
RPCCDS3_ADD_DUMP_ROUTINES | Dump data If defined, server code is compiled
structures to dump contents of data structures.

RPCCDS3_SRV_REPORTING

Turns on server
status reporting

If defined, server reports on call requests
received, calls passed and failed, id refres

and time of last id refresh at an interval speci

fied by RPCCDS3_CLI_DEF_REP_INTVLI
configuration file. If not defined, server
reports only upon receipt of SIGQUIT.

hes,

v

RPCCDS3_AUTO_REFRESH

Turns on auto-
matic identity
refreshing

If defined, server spawns a thread that will
maintain the authentication ticket by wakin
up prior to the ticket's expiration time,
and refresh the ticket. If not defined,
server will lose its network credentials
when its tickets expire as dictated by
cell security policy.

RPCCDS3_DO_LOGIN

Causes server to
assume its own
identity

If defined, server will make security calls

to establish network credentials. If not
defined, server will run with invoker's
credentials.

RPCCDS3_ALL_OPTS

turns on all optional
code

Has the same effect as specifying
RPCCDS3_SRV_REPORTING,
RPCCDS3_AUTO_REFRESH, and
RPCCDS3_DO_LOGIN.

RPCCDS3_ALL_DEBUGS

turns on all debugging
options

Has the same effect as specifying
RPCCDS3_ID_REFR_DEBUG,
RPCCDS3_KEEP_SYMBOLS,
and RPCCDS3_ADD_DUMP_ROUTINES.

Specifying server reporting can provide useful information about the server side of the
test. The login and auto refresh flags allow the scope of the test to be expanded to include
the Security component, especially if the policy for the test run is set to expire tickets
frequently, and a high protection level is used on RPC calls. The login and auto refresh
options are also useful if the test is intended to run for extended durations.

13-56

January 17, 1997



DCE System Tests not under TET

13.6.7 Customizing the Configuration File

Setting up to run the setup script for thpc.cds.3 system test consists of one step,
namely customizing the

/dcetest/dcelocal/test/tet/system/rpc/ts/rpc.cds.3/rpc.cds.3.conf
configuration file. The present section describes this step.

The scripts and programs that make up tipe.cds.3 system test get most of the
information they need from a single configuration file whose default name is
rpc.cds.3.conf If the file is named something other than the default, the hame can be
specified to the test via thd command line option (see below) or via the environment
variableRPCCDS3_CONFE

The information normally contained in this file can be split up roughly into two
categories: default runtime parameters, and environment information.

Examples of default runtime information in the file are: the time duration a test should
run; the names of machines on which clients will be run; etc.

Examples of environment information stored in this file are: the name of the CDS
namespace entry to which the server exports its bindings; the name of the client and
server principals; etc.

Before running the test, it is important to inspect the configuration file to see if any
changes should be made for the site at which the test is to be performed. This is
particularly important in regard to the environment configuration information. For
example, you may wish to use a different client or server principal, a different CDS entry
name, etc. All of these things, if they are to be changed, must be changed in the
configuration file before running the test.

Note that all machines that the test is to be run on must have idemgicalds.3.conf
files.

13.6.8 Format of the Configuration File

The contents of the test configuration file consist of text lines conforming to normal
Bourne shell syntax.

Note, however, the following restriction. The configuration file, as implied above, is read
by shell scripts, and by thgpc.cds.3_cliandrpc.cds.3_srvbinary programs. In order to
simplify the routine used by these programs to read the file, lines that set values for the
rpc.cds.3_cliandrpc.cds.3_srvprogramamustbe in one of the two followingformats:

<strriimg>=<strriimmgl> # NOIE: iim thiss case, sstrriimgl cannot
# contaainn any Sjpaces.

or:
<strriimg>="<sfriinngl>" # NOIE: iin thhiss case strriinngl may

January 17, 1997 57



DCE Testing Guide

# contaaim spaces.

Any lines that are not in this format will either be ignored by the routirtk ¢onf(), in

the file rdconf.c) that the client and server use to read the configuration file, or will
generate an error. Comments are begun by a “#” character anywhere on a line, as shown
above, and continue to the end of the line.

13.6.9 Contents of the Configuration File

The assignments in the configuration file as it is shipped represent the minimum set
required to run the tests scripts and programs. You may add to the configuration file, but
you should not remove any of the original assignments.

The information in the configuration file determines the way that your Security and CDS
namespaces are set up. This being the case, you may want to modify the configuration
information to tailor the namespace to your preferences. If you do not want to use the

default values in the configuration file for the client or server principal name, CDS
directory, CDS name, or for any of the other configuration file variables, you will have to
modify the configuration file in accordance with your preferences before running the

setup script.

TABLE 13-11. Contents of Configuration File

Variable Default Value
in Config File Description as Shipped
RPCCDS3 PROT_LEVEL Default protection level none
RPCCDS3_CLI_PRINC_NAME Client principal name rpc.cds.3 cli
RPCCDS3 _CLI_INIT_PW Client initial password "rpc&cdsC"
RPCCDS3 _CLI_KEYTAB_DIRPATH Directory for client keytab tmp

file

RPCCDS3_CLI_KEYTAB_FN

Client keytab file name

rpc.cds.3_cli.keytab

RPCCDS3_CLI_MACHINES

Client machine names

"machinel machine2"

RPCCDS3_CLI_DEF_RUN_INTVL

Client interval to run

48 (hours)

RPCCDS3_CLI_DEF_REP_INTVL

Client report interval

60 (minutes)

RPCCDS3_CLI_SYNC_DELAY

Client start delay time after
finding sync file

60 (seconds)

RPCCDS3_CLI_START_DELAY

Startup delay

180 (seconds)

RPCCDS3_CLI_CDS_CACHE_AGE

Maximum time that data can
cached

5 (minutes)

RPCCDS3_SRV_PRINC_NAME

Server principal name

rpc.cds.3_srv

RPCCDS3_SRV_GROUP_NAME

Server Group

subsys/dce/cds-test-group

13-58

January 17, 1997



DCE System Tests not under TET

Variable Default Value
in Config File Description as Shipped
RPCCDS3_SRV_INIT_PW Server initial password "rpc&cdsS"
RPCCDS3_SRV_KEYTAB_DIRPATH | Directory for server keytab tmp
file
RPCCDS3 _SRV_KEYTAB_FN Server keytab file name rpc.cds.3_srv.keytab
RPCCDS3_SRV_MACHINES Server machine names "machinel"
RPCCDS3_SRV_CDS _NAME Server interface name /.:Itest/systest/srv_ifs
/rpceds3_if
RPCCDS3_SRV_0OBJ DIR Directory for server objects /.:ltest/systest
[/srv_objs/rpccds3
RPCCDS3_SRV_CAL_DATA Calendar data file names “rpc.cds.3_call.data

rpc.cds.3_cal2.data
rpc.cds.3_cal3.data”

RPCCDS3_SRV_CALSEQ Starting calendar sequence 1

number
RPCCDS3_SRV_NCALS Number of calendar objects 200
RPCCDS3_SRV_CDS DIR_ACL Directory ACL rwditca
RPCCDS3_SRV_CALL_DELAY Server call duration 2 (seconds)
RPCCDS3_SRV_CDS I0_ACL Initial object ACL rwdtc--
RPCCDS3_SRV_MAX_ CALLS Maximum concurrent calls for 5

server
RPCCDS3_SRV_MAX_ EXEC Maximum concurrent execs fof 1

server
RPCCDS3_BIN_DIRPATH Directory for binaries /dcetest/dcelocalltest

[tet/system/rpc
Itslrpc.cds.3

RPCCDS3_TMP_DIRPATH Directory for tmp files /dcetest/dcelocal/tmp
RPCCDS3 LOG_DIRPATH Directory for log files /dcetest/dcelocal/status

13.6.10 Setting Up to Run the RPC-CDS System Test

Before you can run thegpc.cds.3system test, certain objects in the CDS namespace and
certain accounts in the Security registry must exist. The following table describes these
necessary items, as well as the variables in the configuration file relevant to the creation
of these objects, and the default values of these variables (i.e. the values in the file as
shipped). Note that the required objects are created from the specified values
automatically by thepc.cds.3_setup.stscript described below.

The configuration file describes the parameters and environment for running the
rpc.cds.3system test. Customization of this file for your site characteristics and testing
requirements is the only prerequisite for running tipe.cds.3_setup.shscript, which

will setup your DCE cell to run thegpc.cds.3system test.

January 17, 1997 59



DCE Testing Guide

TABLE 13-12. Objects Required by the rpc.cds.3 System Test

DCE Object Variable in Default value

Needed config file as shipped

Server principal and RPCCDS3_SRV_PRINC_NAME rpc.cds.3_srv

account

Client principal and | RPCCDS3_CLI_PRINC_NAME rpc.cds.3 cli

account

Group for the RPCCDS3_SRV_GROUP_NAME subsys/systest/cds_test

server test

Server key file RPCCDS3 _SRV_KEYTAB_FN rpc.cds.3_srv.keytab

Server key file RPCCDS3_SRV_KEYTAB_DIRPATH | /tmp

directory

Client key file RPCCDS3 CLI_KEYTAB_FN rpc.cds.3_cli.keytab

Client key file RPCCDS3_CLI_KEYTAB_DIRPATH /tmp

directory

CDS directory for RPCCDS3_SRV_CDS _NAME [.:Itest/systest/srv_ifs/rpccds3 |if
server interface

object

CDS directory for RPCCDS3_SRV_0OBJ DIR /.:Itest/systest/srv_objs/rpccdsB
calendar objects

exported by server

13.6.11 Running the rpc.cds.3 setup.sh Setup Script

Make sure that the machine on whicpc.cds.3_setup.shwill be run canrsh to the
client machines for the test.

Note that both the setup script and the test assume that you have a DCE cell up and
running.

If you wish to use a configuration file with a name other thpo.cds.3.conf then you

can specify the desired name by assigning it to the environment variable
RPCCDS3_CONFbefore running the setup script, or the name can be specified on the
command line with thef option.

In order to run therpc.cds.3_setup.shscript, you mustdce_login as thecell_admin
principal. This is necessary because you will be creating DCE accounts during the setup,
and this requires special privileges. During execution of the setup script you will be
prompted twice for thecell_admin password. If you want to skip these prompts, you
must modify therpc.cds.3_sec_util.shscript; see the comments to the shell function
rpccds3_sec_add_accourhere for details on the modifications required. After you are
dce_logired, make sure that the path to the directory containingghesds.3scripts and

the configuration file is in your execution path.

13-60 January 17, 1997



DCE System Tests not under TET

Now you can simply type:
rpc.cds.3_setup.sh -Bpath

(wherepathis the path to thepc.cds.3binaries and scripts on the client machines). The
setup script assumes that the configuration file is in the same directory as are the
rpc.cds.3binaries on each client test machine. If this is not the case, then the path to the
configuration file (whichmustbe the same on all test machines) must be specified with
the-f option.

Enter thecell_admin password when prompted, and, if no errors are reported, your cell
will be set up to run thepc.cds.3system test. Note that the setup can be repeated as
many times as necessary without adverse effect.

13.6.12 Starting the Servers

Once the setup script has been successfully executed, the servers must be started. This is
done as follows.

On the machines specified in the configuration file or through-Beswitch on the
command line, you must rurpc.cds.srv using the appropriate server options described
in the “Test Options” section. The output frompc.cds.3_srvshould be redirected into a
file for future reference.

For example:
rpc.cds.3_srv -1 1 -n 20 > /dcetest/dcelocal/tmp/rpc.cds.3_srv.log

The above command specifies 20 calendars, starting with the sequence number 1. The
rest of the parameters have been specified in the example configuration file.

13.6.13 Starting the Clients

Starting the clients is done similarly to the servers.

On the machines specified as clients, you mustrpaencds.3_cliusing the client options
described in the “Test Options” section. You can start multiple clients on the
samemachine. Again, you should redirect the output to a file for future reference.

For example:
rpc.cds.3 cli -1 1-n 20 -P datagram > /dcetest/dcelocal/tmp/cli_Iquid.1

The above command specifies 20 calendars, starting with sequence number 1. The
ncadg_ip_udpprotocol is also specified on this command line.

January 17, 1997 81



DCE Testing Guide

13.6.14 Analyzing the Results

If you are not running the test in boundary mode, then after all the clients have exited,
you can generate a report of the results of the test by executing the following commands
in a Bourne or Korn shell:

$ cdlogdir

$ foriin‘ls cli_log pid.*

> do

> grep -v READY $i | awk -f bindir/rpc.cds.3_gen_summ.awk >> rupid.summ
> done

$ awk -f bindir/rpc.cds.3_gen_rep.awk rupid.summ > runpid.results

wherepid is the process id of the driver script.

Note that this sequence of commands can be run at any time during the test run to obtain
a report on the current status of the clients as of the last time that reports were generated.
If up-to-the-minute status is desired, then executing:

kill -3 <pids>

(where <pids> is the process ids of all the clients running on a particular machine)
should be run on each machine in the test to cause the clients on that machine to generate
a current status line in the log file. Then tfe loop andawk command combination
described above can be used to generate a current status report.

13.6.15 Implementation Notes

13-62

As shipped, thepc.cds.3test exerts stress on the CDS clerk and (indirectly) on the CDS
clearinghouse. Other stresses can be induced by running the test in a manner different
from the way it runs as shipped. For example:

« If you want to stress the system and the CDS clearinghouse by running multiple CDS
clerk processes, you can invoke different test clients with different UIDs on the same
machine. The CDS advertiser process will start a new CDS clerk for each different
UID for which a CDS operation is requested.

« If you want to stress the CDS clerk caching and ACL mechanisms, you can run a
number of test clients with different UIDs accessing the same object or objects.

If you wish to have more than one server exporting objects to the namespace for this test,
it is a good idea to use a different configuration file for each server, each specifying a
different server CDS name. This makes administration of the namespace exsesé

the RPC API does not (for a number of reasons) provide a way to remove some bindings
from a CDS entry; all or none must be removed. This means that if two servers export
bindings to the same namespace entry, and one of the servers later terminates, you

January 17, 1997



DCE System Tests not under TET

cannot remove that server's bindings from the entry while preserving the other server's
bindings. On the other hand, leaving the entry as it is means that clients can still import
(and attempt to use) the invalid bindings. The only thing that can be done in such a
situation is remove, and then re-export, all of the bindings.

13.6.16 Runtime Error Handling

The spurious test failure scenario described earlierrfiarsec.2can also occur with
rpc.cds.3 for the same reason: thpc.cds.3clients do not currently perform any error
handling of the communication status value returned from a remote call. This scenario
can probably be avoided if you add code to handle the three following errors:

. rpc_s_server_too_busy

(Returned only by TCP clients.) The server does not have a thread available to
service the client request, nor does it have space in any call request buffer to queue
the request. When a test client receives this error, it will go into a tight loop as
described in the previous section, making RPCs and continuing to receive this same
status, until sufficient resources are freed at the server to permit the call to be
serviced or queued. While testing did not prove this looping to have a significant
impact on the overall success rate of the TCP clients, it is wasteful of CPU cycles.
One way to avoid the tight looping would be to have the TCP clients wait for a few
seconds if they receive this status before doing anything. Another approach would be
to allocate more server threads to begin with, and thus avoid the situation altogether.

« rpc_s_connection_closed

A protocol error has occurred in the connection to the server. This means (with a
connection-oriented protocol) that the binding to the server has become permanently
useless, and the thread in the server runtime that listens for connection-oriented
protocol requests is probably unavailable, so that no connection-oriented protocol
calls will succeed. The only remedy for this condition is for the server to re-export its
binding handles.

« rpc_s_auth_tkt expired

The client's network credentials (i.e., ticket) have expired. The client thread
receiving this error can recover from the situation by notifying the ticket
maintainance thread that it should now refresh the ticket.

January 17, 1997 83



Appendix A. File and Path Names Cross-

Reference

This appendix lists the pathnames of many files mentioned in the DCE documentation.

A.1 Threads Files

Filename
exc_handling.h
pthread.h

cma_stdio.h

A.2 RPC Files

Filename
dce.rc
dcecds.cat
dce_error.h
dcerp.cat
ep.idl
file.ext

idl
id_base.h

January 17, 1997

Default Location
dceshareddhare/include
dcesharedhclude

dcesharedshare/include

Default Location
dcelocaletc
dcesharedils/msg/${LANG}
dcesharedshare/include
dcesharedils/msg/${LANG}
dce/ep.idl
dcesharedshare/include
/pbin/idl

dcesharefshare/include



DCE Testing Guide

idlbase
idlbase.h
idl.cat
nbase.acf
nbase.idl
nidl_to_idl
rpccp
rpcexc.h
rpc.h
sec_login.h
uuidgen
uuidgen.cat
uuid.h

A.3 CDSFiles

Filename
cds_attributes
cdsadv
cds_cacheannnnnnn
cds_cache.version
cdsclerk

cdscp

cdsd

cds_files

cds_globalnames

dcesharedshare/include
dcesharedshare/include
dcesharethls/msg/${LANG}
dcesharedinclude
dcesharedinclude
dcesharetbin

dcesharetbin
dcesharedshare/include/dce
dcesharedshare/include
dcesharedshare/include
dcesharetbin
dcesharethls/msg/${LANG}

dcesharefshare/include

Default Location

dcelocaletc

dcesharetbin
dcelocérar/adm/directory/cds

dcelocalvar/adm/directory/cds

dcesharetbin

dcesharetbin

dcesharetbin

dcelocalvar/directory/cds

dcelocaletc

clearinghouse-name.checkpoimnnnnnnn

dcelocalvar/directory/cds

clearinghouse-name.tlognnnnnnn

clearinghouse-name.version

dcelocalvar/directory/cds

dcelocalvar/directory/cds

January 17, 1997



A.4 GDAFiles

Filename
gda_child
gdad

A.5 GDSFiles

Filename
gdscache
gdscacheadm
gdscmxl
gdscstub
gdsditadm
gdsdsa
gdsipcchk
gdsstep
gdsstub
gdssysadm
osiforminfo

nsapmacros

A.6 DTS Files

Filename

dce

utc.h

dts

dtscp

dtsd
dtsprovider.idl

January 17, 1997

File and Path Names Cross-Reference

Default Location
dceshareddin

dceshareddin

Default Location
dcesharedsin
dceshareddin
dceshareddin
dcesharedsin
dceshareddin
dceshareddin
dceshareddin
dceshareddin
dceshareddin
dceshareddin
dcelocaliar/adm/directory/gds/conf

dcelocalkar/adm/directory/gds/adm

Default Location
{usr/include/dce
dcesharedshare/include
dcelocalusr/examples
dcesharetbin
dcesharetbin

dcesharetexamples/dts



DCE Testing Guide

dts-servers

A.7 Security Files

Filename
acct.h
aclbase.h
acl_edit
binding.h
daclif.h

group
keymgmt.h
kdestroy

klist

kinit
krb5cc_unix_id
misc.h

passwd
passwd_export
pe_site

pgo.h

policy.h
rdaclif.h
rgybase.h
rgy_data
rgy_edit
sec_admin
sec_create db
secd
secidmap.h
sec_login.h

Su

/.:/subsys/dce

Default Location
dcesharedshare/include/dce
dcesharedshare/include/dce
dcelocalbin
dcesharedshare/include/dce
dcesharedshare/include/dce
letc
dcesharedshare/include/dce
dcelocalbin

dcelocalbin

dcelocalbin

tmp
dcesharedshare/include/dce
letc

dcesharetbin
dcelocaletc/security
dcesharedshare/include/dce
dcesharedshare/include/dce
dcesharedshare/include/dce
dcesharedshare/include/dce
dcelocalvar/security
dcelocalbin

dcesharetbin

dcelocalbin

dcelocalbin
dcesharegshare/include/dce
dcesharedshare/include/dce
dcelocalbin

January 17, 1997



v5srvtab

A.8 DFSFiles

Filename
admin.bak
admin.bos
admin.fl
admin.ft
admin.up
bak
BakLog
bakserver
bkdb.*
bos
BosConfig
BosLog
bosserver
butc
Cachelnfo
Cacheltems
cm

core.*
dfsatab
dfsbind
dfsd
dfsexport
DFSLog
dfstab
FileLog
Filesetltems
fldb.*

January 17, 1997

File and Path Names Cross-Reference

/krb5

Default Location
dcelocalkar/dfs
dcelocalkar/dfs
dcelocalkar/dfs
dcelocalkar/dfs
dcelocalkar/dfs

dceshareddin
dcelocalkar/dfs/adm
dcelocalbin anddcesharedsin
dcelocalkar/dfs/backup
dcelocalbin anddcesharedsin
dcelocalkar/dfs
dcelocalkar/dfs/adm
dcelocalbin anddcesharedsin
dceshareddin

dcelocalktc
dcelocalkar/adm/dfs/cache
dcelocalbin anddcesharedsin
dcelocalkar/dfs/adm
dcelocalkar/dfs

dcelocalbin anddcesharedsin
dcelocalbin anddcesharedsin
dcelocalbin anddceshareddin
dcelocalkar/adm/dfs/cache
dcelocalkar/dfs
dcelocalvar/dfs/adm
dcelocalkar/adm/dfs/cache

dcelocalkar/dfs



DCE Testing Guide

FlLog

flserver

fms

FtLog

fts

ftserver

fxd

newaggr

NoAuth

ReplLog
repserver
salvage
Salvagelog
scout

TapeConfig
TE_device_name
TL_device_name
upclient

UpLog

upserver

Vn

dcelocalkar/dfs/adm
dcelocalbin anddcesharedsin
dcesharedsin
dcelocalkar/dfs/adm
dcelocalbin anddcesharedsin
dcelocalbin anddcesharedsin
dcelocalbin anddceshareddin
dcelocalbin anddcesharedsin
dcelocalkar/dfs
dcelocalkar/dfs/adm
dcelocalbin anddceshareddin
dcelocalbin anddceshareddin
dcelocalkar/dfs/adm
dceshareddin
dcelocalvar/dfs/backup
dcelocaktr/dfs/backup
dcelocakr/dfs/backup
dcelocalbin anddceshareddin
dcelocalkar/dfs/adm
dcelocalbin anddceshareddin

dcelocalvar/adm/dfs/cache

January 17, 1997



Appendix B. DCE Abbreviations List

This appendix contains a list of abbreviations and acronyms used in DCE, both in the
DCE source code and in the documentation.

Note that the distinction in many abbreviations and acronyms between the upper- and
lower-case version is arbitrary. For example, the abbreviation “XOM” is spelled thus
when cited in documentation as the component name; the same abbreviation appears in
lowercase in library routine and constant names in source code (it has the same meaning,
however, in both forms). In other words, although an attempt has been made to preserve
the customary case of all abbreviations, the list below should be regarded as being case-
insensitive.

Note also that the following list is of abbreviations only; it is not a general DCE glossary.

B.1 A
acb association control block (RPC internal)
acf attribute configuration file (RPC)
acl Access Control List (Security)
acct account
ACSE Association Control Service Element
addr address

admin_gd OSF DCE Administration Guide

command_ref OSF DCE Command Reference

AEP Application Environment Profile (see ISP & IEEE 1003.10, .11)
AES OSF Application Environment Specification
afl aggregate fileset list (DFS LFS)

January 17, 1997 B



DCE Testing Guide

AFNOR

afs

agfs
AlX
alloc
ANSI
API
APP

app_gd
app_ref

ASN

assoc
attr
auth
authn
authz
AVA

B.2 B

BIND

bos
BOSS
bosserver
butc

butm

B-2

Association Francaise de Normalisation. French ISO member body

Andrew filesystem (both Carnegie and Mellon had first names Andrew)
(DFS)

aggregate filesystem (DFS)

Trademark name for IBM OS, derived from UNIX System V
allocate

American National Standards Institute, US member of ISO
application programming interface

Application Portability Profile. NIST environment for application
portability

OSF DCE Application Development Guide
OSF DCE Application Development Reference

(ASN.1) abstract syntax notation: ISO/ANSI Std. 8824/8825 Data format
for various data types

association

attribute

authentication (Security)

authentication (Security)

authorization (Security)

attribute value assertion (XDS/XOM/GDS)

Berkeley Internet Naming Daemon (DNS)

Basic Overseer Server (BOS Server) (DFS)
Basic Overseer Server (BOS Server) (DFS)
Basic Overseer Server (BOS Server) (DFS)

back up tape coordinator (DFS) (“backup tape controller” in some
specs)

back up tape manager (DFS)

January 17, 1997



B3 C

ccall
CCITT
CDS
cdsadv
cdspi

cdsta

cf
C-ISAM

CLNS
cm

cma

cn
com

cond
CONS
CPIO
CPU

cre

cred

cs
CSMA/CD
ctl

Cctx

B4 D

dap
db

January 17, 1997

DCE Abbreviations List

client call

International Telegraph & Telephone Consultative Committee (of ITU)
Cell Directory Service

the CDS advertiser

CDS'’s (DCE-private) programming interface

CDS transaction agent protocol; a DCE-private protocol between the
CDS server and clerk. Also used among CDS servers.

configuration

C-based index sequential access method database; used to hold the GDS
DIB

Connectionless network service (OSI Layer 3 Protocol)
cache manager (DFS)

Concert Multithread Architecture (name for earlier DCE Threads
interface)

connection (connection-oriented RPC protocol)

common

condition variable (Threads)

Connection oriented network service (OSI Layer 3 Protocol)
Tape I/O format, interchange format Std. in IEEE 1003.1 (POSIX)
central processing unit

cyclic redundancy check (RPC internal)

credentials (Security) (RPC internal)

character set or code set

Carrier Sense, Multaccess/Collisioetection (see IEEE 802.3)
control

context

directory access protocol; used between the GDS DUA and DSA

database



DCE Testing Guide

DBMS Data Base Management System

dcache data cache

DCE Distributed Computing Environment

dced DCE Host Daemon

DECdns Digital Distributed Naming Service

DECdts Digital Distributed Time Synchronization Service

DES Digital Encryption Standard (Security)

DFS Distributed File Service

dg datagram (connectionless RPC protocol)

DIB directory information base; the GDS database

Dir-X the Siemens/Nixdorf implementation of X.500 that serves as a base for
GDS

DIS ISO Draft International Standard (DP accepted, second technical ballot)

DIT directory information tree; the logical structure of the GDS database

dn DECnet network address family services

DN Distinguished name (GDS)

DNS Domain Name Service DEC DNA Name Server; the base technology for
CDS

dnspi original name of cdspi

dnsta DNS transaction agent interface; the original name of CDSTA

DP ISO Draft Proposed Standard (has started first technical ballot)

ds XOM directory service

DSA directory service agent; the GDS name for the directory server code

dsP ds private extension

DSP directory service agent protocol; a DSA/DSA protocol in GDS

dsm distributed storage manager (underlies the epdb)

DTS Distributed Time Service

DUA directory user agent; the GDS name for the directory client code

BS5 E
elt element
ep endpoint

B-4 January 17, 1997



epdb
epv
exc

exp

B6 F

fd

fifo

FIPS

fldb
flserver
FL server
fptgt

FTP
ftserver
fxd

B.7 G

GDA
GDS
gen
GOSIP

grp

B.8 H

HP/UX

January 17, 1997

DCE Abbreviations List

endpoint database
endpoint vector; entry point vector
exception

expiration

file descriptor

first-in, first-out (the standard model of a queue)

Federal Information Processing Standard (US Government)

Fileset Location Database (or FLDB) (DFS)

Fileset Location server (DFS)

Fileset Location server (DFS)

foreign privilege ticket-granting ticket

File transfer protocol (DDN- TCP/IP application) Functional Standards
Fileset Server (DFS)

File Exporter (formerly known as “Protocol Exporter”, px) (DFS)

Global Directory Agent
Global Directory Service
generate

Government OSI Profile (US FIPS 146, UK, EC versions) Gateway
System that interfaces one network to another

group

Trademark name for Hewlett-Packard OS, derived from UNIX



DCE Testing Guide

B.9 |

iapl* interface application programming language; interface used between
XDS/XOM and GDS

icl in core logging

id identifier

IDL Interface Definition Language (RPC)

IDU interface data unit

IEEE Institute of Electrical and Electronics Engineers. Professional
organization

IEEE 1003.0 Guide to POSIX Open Systems Environment. POSIX suite

IEEE 1003.1 Operating System interface Std. (ISO 9945). POSIX suite

IEEE 1003.2 Shell and Utilities document. POSIX suite

IEEE 1003.3 Test Methods. POSIX Suite (see also PCTS)

IEEE 1003.4 Real Time extensions to 1003.1. POSIX suite

IEEE 1003.4a Threads Extension to 1003.1. POSIX suite

IEEE 1003.5 Ada API for IEEE 1003.1 Std.

IEEE 1003.6 Security extensions for POSIX

IEEE 1003.7 System Administration services for POSIX

IEEE 1003.8 POSIX Distribution Services (RPC, XTI, TFS, FTAM API)

IEEE 1003.9 FORTRAN API for IEEE 1003.1 Std.

IEEE 1003.10 Supercomputing AEP (Application Environment Profile)

IEEE 1003.11 Transaction Processing AEP (Application Environment Profile)

IEEE 1003.14 Multiprocessor AEP (Application Environment Profile)

IEEE 1201.1 High level (toolkit) windowing project

IEEE 1201.2 Windowing drivability guide

IEEE 802.3 ISO/ANSI Std.LAN OSl layer 1 CSMA/CD (Ethernet)

IEEE 802.4 ANSI/IEEE Std.Token Bus LAN OSl layer 1 (a la MAP)

IEEE 802.5 ANSI/IEEE Std.Token Ring LAN OSl layer 1 (a la IBM)

IEEE Standards Board. Authorized by ANSI as a Standards development
organization

if interface

info information

init initialize

B-6 January 17, 1997



DCE Abbreviations List

ing inquire
intro Introduction to OSF DCE (book)
IP IP network address family services
IPC Interprocess Communications (function in IEEE 1003.4)
IS ISO International Standard (DEcepted)
ISAM Indexed Sequential Access Method. No standards to date, except
COBOL
ISO International Organization for Standards (see also JTC1)
B.10 K
kdc Key Distribution Center (Security)
kutils kernel utilities
B.11 L
LAN Local Area Network (such as ISO/IEEE 802.B
LFS Local Filesystem (DFS)
lifo last-in, first-out (the standard model of a stack)
B.12 M
mepv manager entry point vector (RPC)
mgmt management
mgt management services
MHS Message Handling Service (X.400 name for mail service)
msg message
mutex mutual exclusion lock (Threads)

January 17, 1997 2=



DCE Testing Guide

B.13 N

NAF
NAS
NDR
NFS
NIST
np

ns
NSAP
NSI
NTP

B.14 O

B-8

obj
OID
om
op
org
(01
(01

OSF

OSF/1
OSF/Motif
0sSi

oSl

0SS

network address family

Network Application Support

network data representation (RPC)

Network File System (SUN specification)

National Institute of Standards and Technology (formerly NBS)
non portable (Threads routine name suffix)

nameservice; naming service

Network Service Access Point (OSI)

Name Service Interface (RPC)

Network Time Protocol

object

object identifier (GDS, CDS)
X/Open object management (XOM)
operation

organization

Operating System

Interface 1SO DIS9945. IEEE 1003.1 Std.operating system service API
(POSIX)

Open Software Foundation. Consortium developing AES, OSF/1 and
tests

First release of OSF's system implementation
OSF's Windowing environment: toolkit and style guide
operating system independent (DFS)

Open System Interconnect network address services

(communication protocols) (GDS). ISO 7498-1984

family

OSI Session Service

January 17, 1997



B.15 P

PAC
pag
PDU
perm
pgo

pkt
pmax
port_gd
POSIX
prin
protseq
psap
ptgt
pthread
pvt

pX

B.16 R

rcx
RDN
relnotes
repl
repserver
rgy

rios

RISC
ROS

ROSE

January 17, 1997

DCE Abbreviations List

Privilege Attribute Certificate (Security)

process authentication group (DFS)

protocol data unit

Permission

principal/group/organization (Security)

packet (RPC)

DECstation 3100 platform

OSF DCE Build Environment, Porting, and Testing Guide
Suite of API standards (see IEEE 1003, OS interface, shell, admin., UPE)
principal (Security)

protocol sequence (RPC)

presentation service access point; the address of a GDS DUA
privilege ticket-granting ticket (Security)

DCE Threads (POSIX 1003.4a conformant)

private (Security)

protocol exporter (alternatively fxd) (DFS)

recovery tests

relative distinguished name; the GDS name for an attribute/value pair
OSF DCE Release Notes

replica/replication

Replication Server

registry (Security)

IBM RISC System/6000 platform

Reduced Instruction Set Computer (as opposed to CISC)

remote operation service layer; a collection of networking support
routines used to implement GDS

Remote Operation Service Elements



DCE Testing Guide

RPC
rpcd

rpc_ss

B.17 S

SAP
sautils
scache
scall
sec
SGML
sm
SQL

ssr
svc
SVID

sys
sb

B.18 T

B-10

tar

tcb
TCP
TCP/IP

TDF
tech_supp
TET

Remote Procedure Call

remote procedure call daemon (also known as the “endpoint mapper”)
(not supported in DCE 1.2.1) (RPC)

RPC stub support

service access point

stand alone utilities (DFS LFS)

status cache

server call

security; Security service

Std.Generalized Markup Language. ISO 8879-1986 - page formatting
state machine

Structured Query Language. ISO/ANSI Std.X3.135-1986. Relational
DBMS API

stub support routine (RPC)
service; sengeability

System V Interface Definition. Specification for AT&T's UNIX System
Y,

system

System V (a popular implementation of UNIX)

Tape archive format, interchange format std. in IEEE 1003.1 (POSIX)
task control block; thread control block (Threads)
transmission control protocol - used by the RPC CN protocol (RPC)

Transmission control protocol, Internet protocol: US DoD network
(DDN)

Time Differential Factor
OSF DCE Technical Supplement

Test Environment Toolkit

January 17, 1997



tgs
tgt
thr
tke
tkm
tkt
tir
tpg
tsap

twrfl
T1

B.19 U

ubik
UDP/IP

UFS

ULTRIX
UNIX
users_gdref
utc

util

UuiD

B.20 V

VEFS
VFES+

vnops

January 17, 1997

DCE Abbreviations List

ticket-granting service (Security)
ticket granting ticket (Security)
threads (do not use thd) (Threads)
token cache (DFS)

token manager (DFS)

ticket (Security)

(auth) trailer (Security)

thread pool queue

transport service access point (GDS)
tower

tower floor

Standard for high bandwidth WAN connection

the library of routines used to implement the FLDB

User Datagram Protocol/Internet Protocol - used by the RPC DG
protocol (RPC)

UNIX file system (also known as the “Berkeley file system” and the
“fast file system”)

Trademark name for Digital OS, derived from Berkeley
Trademark name for AT&T operating system product (System V)
OSF DCE User’s Guide and Reference

coordinated universal time (DTS)

utility

Universal Unique Identifier

virtual file system
OSF's extension to VFS (necessary for DFS)

vnhode operations

H1



DCE Testing Guide

volreg volume registry
B.21 W
WAN Wide area network (as in world-wide, usually synchronous)
way “who are you” (RPC protocol)
B.22 X
xaggr extended aggregate (DFS)
XDS X/Open Directory Service
X lib Low level windowing API, linked to X-11. X Window System, X3H3.6
Std.
XOM X/Open OSI-Abstract-Data Manipulation
XPG4 X/Open Portability Guide 4
XTI X/Open Transport Interface (network stack independent)API. Also IEEE
1003.8 project
xvnode extended vnode
xvolume extended volume
B.23 Z
zlc zero link count

B-12 January 17, 1997



